
Temporal Multidimensional Model for Evolving Graph-Based Data
Warehouses

Redha Benhissen a, Fadila Bentayeb b and Omar Boussaid c

ERIC Laboratory, University of Lyon 2, 5 Av. Pierre Mendès, Bron, France

Keywords: Temporal Data Warehouse, Multidimensional Model, Data Evolution, Slowly Changing Dimension, Graph-
Based Database, Temporal Query, NoSQL.

Abstract: Nowadays, companies are focusing on overhauling their data architecture, consolidating data and discarding
legacy systems. Big data has a great impact on businesses since it helps companies to efficiently manage
and analyse large volumes of data. In business intelligence and especially decision-making, data warehouses
support OLAP technology, and they have been very useful for the efficient analysis of structured data. A
data warehouse is built by collecting data from several data sources. However, big data refers to large sets
of unstructured, semi-structured or structured data obtained from numerous sources. Many changes in the
content and structure of these sources can occur. Therefore, these changes have to be reflected in the data
warehouse using the bi-temporal approach for the data and versioning for the schema. In this paper, we
propose a temporal multidimensional model using a graph formalism for multi-version data warehouses that
is able to integrate the changes that occur in the data sources. The approach is based on multi-version evolution
for schema changes and the bi-temporal labelling of the entities, as well as the relationships between them,
for data evolution. Our proposal provides flexibility to the evolution of a data warehouse by increasing the
analysis possibilities for users with the decision support system, and it allows flexible temporal queries to
provide consistent results. We will present the overall approach, with a focus on the evolutionary treatment of
the data, including dimensional changes. We validate our approach with a case study that illustrates temporal
queries, and we carry out runtime performance tests for graph data warehouses.

1 INTRODUCTION

The architectures of data warehouses (DWs) allow the
storage of data that are extracted from diverse and het-
erogeneous data sources in a coherent and integrated
way, providing decision-makers with a better under-
standing of their environments and adequate support
for strategic decision-making (Inmon, 1992; Kimball,
1996). Since the appearance of DWs, the warehous-
ing approach has become an important research field
in which many problems still need to be solved, par-
ticularly problems related to the evolutionary aspect
of DWs.

The growth and diversification of data sources
through the advent of big data involves changes in the
content and structure of DWs. In effect, a schema is
designed to meet predefined analysis needs; if these
needs change, it can be costly to change the schema.

a https://orcid.org/0000-0002-6974-0838
b https://orcid.org/0000-0002-7404-0852
c https://orcid.org/0000-0001-6388-3152

The classical multidimensional model, based on the
star schema and its variants, has limited possibili-
ties when it comes to change, and its evolution is
complex. These limitations are related to the fixed
star model: it is created for analysis needs that are
known in advance. We previously proposed a flexible
multidimensional model for big data named graph-
based agile multidimensional model (GAMM), which
is based on an extension of the classical multidimen-
sional model, to support chronological evolution on
the conceptual level and the evolution of the graph
structure on the logical and physical levels (Benhissen
et al., 2023; Benhissen et al., 2022). GAMM allows
the evolution of a schema in a data warehouse by cre-
ating a new version of the schema at each evolution
using evolution functions. Each version corresponds
to a data instance extracted from an agile graph data
warehouse. A meta-model has been proposed to man-
age the different schema versions.

In this work, we are interested in the temporal evo-
lution of data in a multi-version DW. In fact, for a real

40
Benhissen, R., Bentayeb, F. and Boussaid, O.
Temporal Multidimensional Model for Evolving Graph-Based Data Warehouses.
DOI: 10.5220/0012080400003541
In Proceedings of the 12th International Conference on Data Science, Technology and Applications (DATA 2023), pages 40-51
ISBN: 978-989-758-664-4; ISSN: 2184-285X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

representation of the analysis context, periodic and
regular data refreshing using heterogeneous sources
must be implemented through ETL (extract, trans-
form, load) processes. Indeed, a mismatch between
the source data and the data in a DW can alter the
consistency of the analyses, which makes the pro-
cessing of the multidimensional model data extremely
important. Conventionally, the refreshment process
regularly provides the warehouse with collected and
transformed data. These data are integrated into mul-
tidimensional structures that are suitable for decision
analysis. However, once it is in operation, the data
warehouse is not just provided with new facts; there
may also be changes in the data of the dimensions,
notably in the hierarchical relationships or descrip-
tor attributes. The appropriate management of these
changes is a key factor in the consistency of data
warehousing systems.

These changes in dimensions necessitate the study
of the aspect of temporality; a piece of information /
relationship is true during a specific period of time.
Temporal data warehouses (TDWs), inspired by the
principles and rules of temporal databases, have been
adopted to facilitate the management of this notion of
temporality, making it possible to offer coherent anal-
yses despite these changes. In this article, we propose
a temporal approach for multi-version DWs based on
a graph database to keep the evolutionary history of
the data, including the changes in the dimensions; this
approach also allows flexible temporal queries to pro-
vide consistent results.

The rest of the article is organised as follows.
First, the notion of changes in the dimensions is pre-
sented (Section 2); this is followed by a running mo-
tivating example (Section 3). Then, related work
on data evolution and temporal approaches in a DW
context are presented (Section 4). In Section 5, we
present our concept of a temporal multidimensional
model for multi-version DWs based on a graph for-
malism. We then provide in Section 6 examples of
temporal queries. In Section 7, we describe a use case
based on the Star Schema Benchmark (SSB) dataset1
2 to perform functional validation and study the run-
time performance. Finally, conclusions and future re-
search topics are presented.

2 CHANGES IN DIMENSIONS

In addition to the insertion of new entities (facts and
dimensions) into the data warehouse, existing data

1https://jorgebarbablog.wordpress.com/2016/03/21/how-
to-load-the-ssb-schema-into-an-oracle-database/

2https://github.com/Kyligence/ssb-kylin

could be modified by update operations. These mod-
ifications are made by changing existing attributes
and/or changing the relationships between hierar-
chies, which involves updating keys. If they are not
handled correctly, these update operations can alter
the analyses produced by the DW.

Kimball and Ross studied the problem of changes
in dimensions and proposed processing techniques
according to the speed of the changes (Kimball and
Ross, 2013). For a slowly changing dimension
(SCD), the following types of techniques are pro-
posed: (i) the original value of the attribute is main-
tained, so that the facts are always grouped by this
original value (Type 0). (ii) The old value of the at-
tribute is replaced with a new value. The facts will be
associated with the current value of the attribute (Type
1). (iii) A new dimension row with a new value of the
attribute / foreign key is added, taking into account
the temporal aspect so that the facts will be associ-
ated with the value of the attribute according to the
time span of its veracity, which is delimited by a start
date and an end date (Type 2). (iv) A new column
is added to preserve the current and previous values
of the attribute (Type 3). For fast-changing dimen-
sions, the proposed technique involves the addition of
a mini-dimension so that frequently analysed or fast-
changing attributes are split into a separate dimension.
Other so-called hybrid techniques have been proposed
that involve combining some or all of the different
techniques proposed above to meet the requirements
of historical attribute preservation and reporting.

3 RUNNING MOTIVATING
EXAMPLE

Figure 1: Multidimensional model schema for retail sales
using DFM formalism.

We use the dimensional fact model (DFM) formal-
ism (Golfarelli et al., 1998) to represent the concep-

Temporal Multidimensional Model for Evolving Graph-Based Data Warehouses

41

tual schemas of our example (Figure 1). Our ex-
ample is composed of a fact SALES and three di-
mensions, the PRODUCT, CUSTOMER and DATE di-
mensions. For the sake of consistency, we will use
this schema configuration as a running example dur-
ing the presentation of all parts of our proposed ap-
proach. The PRODUCT dimension is described by the
attributes Product Name and Unit Price and a hier-
archical level CATEGORY. This dimension therefore
has a single hierarchy on the analysis axis (PRODUCT,
CATEGORY). The CUSTOMER dimension is de-
scribed by the attributes Customer Name, Address
and Phone, and a hierarchical level CITY. The dimen-
sion DATE has two hierarchical levels, i.e. MONTH
and YEAR. The fact SALES is described by the mea-
sure Sales Amount.

In the following, we present an example of the
temporal evolution of data in a DW to illustrate a
case involving changes in dimensions. Note that the
representation of instances in this example illustrates
the instances of a temporal DW based on the prin-
ciple of temporal databases. Indeed, this representa-
tion allows the data to have an advanced chronologi-
cal precision; a piece of information is true during a
specific lifespan characterised by a From Date (FD)
and a To Date (TD), and entities are characterised
by a Valid Time (VT) and/or a Transaction Time
(TT) (mono- or bi-temporal approach) (Golfarelli and
Rizzi, 2011). This notion of temporality offers a level
of analysis that better represents the real world, par-
ticularly when it comes to managing the temporality
of aggregation links.

The instances of the CUSTOMER dimension
shown in Table 1 indicate that the customer Mary
Saveley initially lived in the city of Paris from
01/01/2020 to 31/07/2020 and then moved to Lyon,
where she has lived since 01/08/2020. Similarly, the
instances of the PRODUCT dimension shown in Ta-
ble 2 indicate that the product Mozzarella was clas-
sified into the category Fresh from 01/01/2020 to
31/03/2020 and was then reclassified into the category
Dairy on 01/04/2020.

Table 4 shows some instances of the fact SALES
that describe the Sales Amount for the customer Mary
Saveley and the product Mozzarella. These sales
amounts represent the customer’s purchases when she
lived in Paris and when she lived in Lyon. Addition-
ally, these same amounts represent the sales of the
product Mozzarella when it belonged to the category
Fresh and when it belonged to the category Dairy.
These changes in the dimensions require a temporal
treatment of the queries in order to avoid any mis-
match in the results. In general, the Type 2 technique
of adding a new row with the new value while taking

into account the time interval of the veracity of the
data is the most representative of the real world, offer-
ing consistent analyses. Indeed, the Type 0 technique
of maintaining the original value and the Type 1 tech-
nique of replacing it with the new value lead to infor-
mation losses, as does the Type 3 technique of adding
a new column; this technique cannot be applied con-
tinuously due to the modification of the schema with
each addition. As for the technique of adding a mini-
dimension, this technique is meant to be used in a par-
ticular case; it is not a general solution to the problem
of changes in dimensions.

4 RELATED WORK

There are several research works in the literature that
have addressed many facets of temporal DWs (Faisal
et al., 2017; Golfarelli and Rizzi, 2018), including
the type of temporality, conceptual and logical level,
data evolution, changes in dimensions, delayed mea-
surements, implementation of approaches, temporal
queries and aggregation in temporal relationships. We
can cite the work of (Bliujute et al., 1998), who pre-
sented a temporal approach based on the suppression
of the time dimension that makes it possible to man-
age the chronological aspect of the data and to replace
the time dimension with temporal labels at the level
of each of the instances; in particular, the VT label
or the TT label (or both for a bi-temporal approach)
can be used. (Mendelzon and Vaisman, 2000) pre-
sented a temporal multidimensional model that allows
temporal OLAP queries. (Golfarelli and Rizzi, 2007)
presented alternative design solutions, which can be
adopted in the presence of late measurements, to sup-
port different types of queries that allow a meaning-
ful historical analysis in the presence of late measure-
ments. (Faisal and Sarwar, 2014) presented a classi-
fication of queries based on the input and output at-
tributes of the query and studied the performance of
Type 2 and hybrid SCDs. (Saroha and Gosain, 2015)
presented an approach that makes it possible to man-
age dimension data and track retroactive and proac-
tive updates in a bi-temporal DW using both the VT
and TT. (Garani et al., 2016) presented an approach
for the logical modelling of TDWs based on the tem-
poral starnest schema in which time is treated not
as another dimension but as time attributes in every
temporal dimension. (Phungtua-Eng and Chittaya-
sothorn, 2019) utilised temporal database features,
including the concept of VT state tables, to solve
the SCD problem of data warehouses notamly SQL.
(Ahmed et al., 2015; Ahmed et al., 2020) presented
a logical model and querying technique for temporal

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

42

Table 1: Dimension CUSTOMER.

Surrogate Key Customer ID Customer Name City ID From Date To Date
SkCust001 Cust001 Mary Saveley City001 01/01/2020 31/07/2020
SkCust002 Cust001 Mary Saveley City002 01/08/2020 31/12/9999

Table 2: Dimension PRODUCT.

Surrogate Key Product ID Product Name Category ID From Date To Date
SkProd001 Prod001 Mozzarella Categ001 01/01/2020 31/03/2020
SkProd002 Prod001 Mozzarella Categ002 01/04/2020 31/12/9999

Table 3: Levels CITY and CATEGORY.

City ID City Name
City001 Paris
City002 Lyon

Category ID Category Name
Categ001 Fresh
Categ002 Dairy

Table 4: Fact SALES.

Sale ID Customer ID Product ID Order Date Sales Amount
Sale001 Cust001 Prod001 01/03/2020 1500
Sale002 Cust001 Prod001 01/05/2020 2200
Sale003 Cust001 Prod001 01/09/2020 1800
Sale004 Cust001 Prod001 01/11/2020 2000

data warehouses.
These studies have provided many solutions to the

management of data evolution in data warehouses and
to the problems related to SCDs, in particular due to
the incorporation of temporal support in SQL:2011
(Kulkarni and Michels, 2012) and its implementation
in some DBMSs, e.g. SQL Server 2016, Oracle 12c,
IBM DB2 and Teradata (Poscic et al., 2018). How-
ever, the work in the literature is based on the entity-
relationship (ER) model, which limits the evolution of
these multidimensional models, particularly in terms
of the schema (Benhissen et al., 2023; Benhissen
et al., 2022). This led us, in this paper, to propose an
alternative approach for temporal data management
in DWs by using graph-oriented NoSql databases, es-
pecially after the promising results obtained by the
models proposed by (Campos et al., 2016; Debrou-
vier et al., 2021). Our proposal offers a global solu-
tion to the SCD problem and allows temporal queries
with concordant results.

5 TEMPORAL
MULTIDIMENSIONAL MODEL
BASED ON A GRAPH
FORMALISM

To present our approach, we will provide a brief sum-
mary of our previously proposed model, called the
graph-based agile multidimensional model (GAMM)

(Benhissen et al., 2023); we consider the evolution of
the schema in this model. In this paper, we deal with
the temporal evolution of the data and we enrich the
formalism of the model to take into account this evo-
lution, particularly the changes in dimensions, as well
as the evolution of the schema.

We define agility in a multidimensional model as
its organisational capacity to build data warehouses in
a scalable way while prioritising the goals of business
teams. Agility involves responding to new business
objectives and the integration of new data sources in
a flexible and incremental way while maintaining all
previous builds. This flexibility delivers more busi-
ness value to decision-makers and allows them to bet-
ter manage their environment.

GAMM is a flexible approach to schema and data
evolution in data warehouses. The model allows de-
signers to integrate new data sources and accommo-
date new user requirements to enrich the analytical
capabilities of the data warehouse. It is an approach
based on a multi-version scalable schema model and
a data warehouse stored in a unique global graph
database Figure 2.

Each schema version (SV) is valid for a period of
time (T) characterised by a Starting Time (ST) and
an Ending Time (ET), and it corresponds to a data
instance (DInst) extracted from the graph-based tem-
poral data warehouse (GTDW). A meta-model is im-
plemented for the management of schema versions
whose validity periods are in sequential order. We
will develop in the following subsections the formal-

Temporal Multidimensional Model for Evolving Graph-Based Data Warehouses

43

Figure 2: Architecture of GAMM.

isation of our approach (Subsection 5.1), the concept
of the GTDW (Subsection 5.2) and the transformation
rules (Subsection 5.3).

5.1 Formalisation of the Approach

On the conceptual level, the approach represents an
extension of classical multidimensional modelling
based on the fact, measure, dimension, level and hi-
erarchy concepts. Indeed, due to the evolution of the
schema and data over time and for historical purposes,
the temporal concept has been introduced according
to the following definitions.

Definition 1: GAMM is represented as follows:

GAMM(t) = {F,D,FAssoc[F,D](t)}.

GAMM(t) represents the schema version at a time t.
t ∈ T = [ST,ET] represents the period of validity of
the schema version, where ST is the Starting Time of
the version and ET is the Ending Time of the version.
F = { fi(t)}, i ∈ [1,∗], represents the set of facts at the
moment t.
fi(t) represents the fact fi at a time t.
D = {d j(t)}, j ∈ [1,∗], represents the set of dimen-
sions according to which fi(t) is analysable at a time
t.
d j(t) represents the dimension d j at a time t.
FAssoc[F,D](t) : fi(t) =⇒ {d j(t),ST,ET}, where
j ∈ [1,∗], represents the association function of the
set of dimensions {d j(t)} and the fact fi(t) at a time
t.
Example:

GAMM(t0) = {{Sales},{Customer,Product},

{Sales =⇒Customer,Product}}
and ST0 =< t0 < ET0.

Definition 2: A measure is an indicator allowing
the analysis of the business subject represented by the
fact; it is numerical and aggregable and is defined as
follows:

M(t) = {M label, Im
k }.

M label represents the measure identifier.
Im
k , k ∈ [1,∗], represents the set of instances of mea-

sure M.
Example:

M(to) = {Sales Amount, Im
0 : {1500}}.

Definition 3: A fact represents a subject analysed
by GAMM. It is defined as follows:

F(t) = {F label, [M],MAssoc[F,M](t), [I f]}.
F label represents the fact name.
[M] = {mk(t)}, k ∈ [1,∗], represents the set of mea-
sures associated with the fact at a time t.
mk(t) represents a measure mk at an instant t.
MAssoc[F,M](t) : fi(t) =⇒ {mk(t),ST,ET} repre-
sents an association function of the set of measures
{mk(t)} and the fact fi(t) at a time t, where ST is the
Starting Time and ET is the Ending Time.
[I f] = {i f

l }, l ∈ [1,∗], represents the set of instances
of fact F . Each instance i f = {[Im

k],V T,T T}.
T T = Transaction Time represents the time point at
which a fact instance is stored in the model.
V T = Valid Time represents the time point at which
a fact instance is true in relation to reality.
Example:

F(to) = {Sales,Mo,MAssoc[F,M](to), I
f

0 }.
Mo : {Sales Amount}.
MAssoc[F,M](to) : {Sales =⇒ Sales Amount}.
i f
0 : {Im

0 : {1500}, 05/01/2020, 15/06/2020}.

Definition 4: An attribute is an element of descrip-
tion of a dimension or a hierarchical level to which it
is associated. It is defined as follows:

A(t) = {A Label,Attribute, [Ia]}.
A Label represents the attribute name.
Attribute represents the value of the description
attribute.
[Ia] = {iak}, k ∈ [1,∗], represents the set of instances
of attribute A. Each instance ia = {value,V T,T T}.
V T = Valid Time represents the time point at which
an attribute is true with respect to reality.
T T = Transaction Time represents the time point at
which an attribute is stored in the model.

Example:
A(t0) = {Product Name,name,

ia0 : {Mozzarella,05/01/2020,15/06/2020}}.

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

44

Definition 5: A level represents the degree of detail
of an analysis perspective according to a given hierar-
chy. It is defined as follows:

L(t) = {L Label,L ID,A, [Il],LAssoc[L,A](t),

Rel[[Il], [Ia]]}.
L Label represents the level name.
L ID represents the level identifier.
A = {ai(t)}, i ∈ [1,∗], represents the set of attributes
associated with the level at a time t.
[Il] = {ilk}, k ∈ [1,∗], represents the set of instances
of level L. Each instance il = {id,V T,T T}.
V T = Valid Time represents the time point at which
a level is true compared to reality.
T T = Transaction Time represents the time point at
which a level is stored in the model.
LAssoc[L,A](t) : L j(t) =⇒{ai(t),ST,ET} represents
the association function of the set of attributes
{ai(t)} and the level L j(t) at a time t, where ST
is the Starting Time, ET is the Ending Time and
j ∈ [0,∗]. Rel[[Il], [Ia]] represents the relationships
between instances of levels [L] and attributes [A],
where Rel[[ilm], [i

a
n]] = {Relation Label, From Date,

To Date}.
Relation Label represents the relationship name.
From Date represents the starting date of the rela-
tionship.
To Date represents the ending date of the relation-
ship.

Example:

L(t0) = {Category,Category Id,A0, il0,

LAssoc[L,A0](t0),Rel[[Il
0], [I

a
0]]}.

A0 : {Category Name}.
il0 : {Categ001,05/01/2020,15/06/2020}
LAssoc[L,A0](t0) : {Category =⇒Category Name}.
Rel[[Il

0], [I
a
0]] = {Category To Name,05/01/2020,

31/12/9999}
ia0 : {Fresh,05/01/2020,15/06/2020}.

Definition 6: A dimension is an axis of analysis ac-
cording to which the business subject is analysed. It
determines the level of detail of the measures and is
defined as follows:

D(t)= {D Label,D ID, [A], [L], [Id],DAssoca[D,A](t),

DAssocl [D,L](t),Rel[[Id], [Ia]],Rel[[Id], [Il]]}.
D Label represents the dimension name.
D ID represents the dimension identifier.
[A] = {ai(t)}, i ∈ [1,∗], represents the set of attributes
associated with the dimension at a time t.

a j(t) represents the attribute a j at a time t.
[L] = {lk(t)},k ∈ [0,∗], represents the set of levels
associated with the dimension at a time t.
[Id] = {idk}, k ∈ [1,∗], represents the set of instances
of dimension D. Each instance id = {id,V T,T T}.
V T = Valid Time represents the time point at which
a dimension is true in relation to reality.
T T = Transaction Time represents the time point at
which a dimension is stored in the model.
DAssoca[D,A](t) : d j(t) =⇒ {ai(t),ST,ET} repre-
sents the association function of the set of attributes
{ai(t)} and the dimension d j(t) at a time t, where ST
is the Starting Time and ET is the Ending Time.
Rel[[Id], [Ia]] represents the relationships between
instances of dimension [D] and attributes [A],
where Rel[[idm], [i

a
n]] = {Relation Label, From Date,

To Date}.
Relation Label represents the relationship name.
From Date represents the starting date of the rela-
tionship.
To Date represents the ending date of the relation-
ship.
DAssocl [D,L](t) : (d j(t) =⇒ {lk(t),ST,ET} rep-
resents the association function of the set of levels
{lk(t)} and the dimension d j(t) at a time t, where
ST is the Starting Time, ET is the Ending Time and
j ∈ [0,∗].
Rel[[Id], [Il]] represents the relationships between
instances of dimensions [DL] and levels [L],
where Rel[[idm], [i

l
n]] = {Relation Label, From Date,

To Date}.
Relation Label represents the relationship name.
From Date represents the starting date of the rela-
tionship.
To Date represents the ending date of the relation-
ship.

Example:
D(t0) = {Product,Product ID,A0,L0, id0 ,

DAssoca[D,A](t0),DAssocl [D,L](t0),
Rel[[Id

0], [I
a
0]],Rel[[Id

0], [I
l
0]]}.

A0 : {Product Name}.
L0 : {Category}.
id0 : {Prod001,05/01/2020,15/06/2020}
DAssoc[D,A](to) : {Product =⇒ Product Name}.
Rel[[Id

0], [I
a
0]] = {Product To Name,05/01/2020,

31/12/9999}
ia0 : {Mozzarella,05/01/2020,15/06/2020}
DAssocl [D,L](t0) : {Product =⇒Category}.
Rel[[Id

0], [I
l
0]] = {Product To Category,05/01/2020,

31/12/9999}
il0 : {Prod001,05/01/2020,15/06/2020}.

Temporal Multidimensional Model for Evolving Graph-Based Data Warehouses

45

Definition 7: A hierarchy is a projection of analysis
by level along the axis defined by the dimension. It
is organised from the finest to the coarsest granularity
level, thus offering analysis possibilities for ascend-
ing groupings through roll-up and descending group-
ings through drill-down. The hierarchy is defined as
follows:

H(t) = {L,Rh[L j,Lk](t)}.
L = {li(t)}, i ∈ [1,∗], represents the set of aggregation
levels constituting a hierarchy H(t) at a time t.
Rh[l j, lk](t) represents the aggregation function be-
tween the different levels {li(t)} constituting a hier-
archy H(t) at a time t, with j ∈ [1,∗],k ∈ [1,∗] and
j ̸= k.
Assume that Di(t) ∈ D with i ∈ [1,∗], ∀ H j(t) ∈ H

with j ∈ [1,∗], and L
h j
1 (t) is directly related to Di(t)

so that

Di(t)≺ L
h j
1 (t)≺ L

h j
2 (t)≺ ...≺ L

h j
k (t)≺ All.

Di(t) represents the finest level of aggregation of the
analysis axis.
L

h j
k (t) represents the coarsest level of aggregation in

the hierarchy h j.
All represents the global aggregation level of the di-
mension.
Example: Analysis projection by COUNTRY and
CITY for the CUSTOMER dimension can be per-
formed as follows:

D(t) = (Customer)≺ L
h j
1 (t) = (City)≺ L

h j
2 (t)

= (Country)≺ All.
This formalism allows us to provide flexibility in

the evolution of the model both at the schema level
and at the level of the data instances while preserv-
ing the history of these evolutions. To study the evo-
lution of the data and for a clearer explanation, we
assume that the schema does not change. Indeed, the
data instances in the GTDW evolve incrementally and
without redundancy. All data instances of previous
schemas will be available for consultation. When the
relationship between the entities of a dimension/level
and a lower level changes, a new link to the new corre-
sponding instance in this level will be created, with an
FD label that is set to the creation date and a TD label
that is set to 31/12/9999. Additionally, the TD of the
old relationship is set to the same creation date. Thus,
each relationship will be valid during a specific time
interval. The same principle is applied in the case of
changing descriptor attributes since these are also rep-
resented by external nodes in relation to the business
concept. The queries can be parameterised with these
time labels to obtain results that match the real state
of the DW and take into account any changes in the
dimensions.

5.2 Graph Temporal Data Warehouse

The GTDW is an extension of the classical DW dis-
tinguished by the introduction of the temporal concept
in the aggregation relationships due to the changes in
the data. Indeed, it is characterised by the separa-
tion of business concepts from their descriptors (at-
tributes), allowing each entity to have an indepen-
dent evolution. The graph formalisation and the graph
database implementation were adopted to overcome
the constraints generated by the use of an ER model.
Indeed, the graph formalisation offers more flexibil-
ity for the model, particularly in terms of evolution
(Akoka et al., 2021). In addition to the representa-
tive quality of the interconnected data and the use of
information-carrying links, particularly for the notion
of temporality in aggregation links, the use of graphs
was preferred due to the absence of integrity con-
straints, the absence of a pre-established schema and
the possibility of representing each value of a tuple (or
all of the tuple) using a node of the graph. This graph
implementation is unlike relational tables, which are
order schemas composed of horizontal lines and ver-
tical columns in which the addition/removal of a col-
umn affects the whole structure. A (NoSQL) graph
database (GDB) was used to represent the GTDW
based on our formalisation. It presents data in the
form of a graph (vertex/edge) using physical point-
ers between nodes, thus avoiding joins in queries; this
is advantageous, particularly in a big data context.
GDBs are also characterised by the absence of a data
type and the possibility of integrating information into
the relationships between data. Additionally, the con-
cept of graphs has been adopted to allow us to carry
out an advanced analysis of the data representation;
this makes it possible to perform an online analysis to
produce explicative and predictive models.

5.3 Transformation Rules

According to the formalisation presented in subsec-
tion 5.1 and the characteristics of the graph databases,
the business concepts, as well as the descriptors, will
be represented by nodes, and the relationships be-
tween these concepts will be represented by edges
(Figure 3). According to the formalisation of our ap-
proach, we have established the following rules for
moving from a classical multidimensional model to a
graph multidimensional model:

1. Each tuple of a fact is represented by its own node.

2. Each (business/descriptor) value of a dimension,
level or attribute is represented by its own node.

3. All relationships are represented by edges.

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

46

4. The fact nodes contain the measures.

5. The fact nodes are directly related to the dimen-
sion nodes.

6. The level nodes are related to a dimension / an-
other level node according to their depth.

7. The attribute nodes are directly related to the di-
mension/level nodes.

8. The levels constitute hierarchies according to axes
of analysis organised from the finest to the coars-
est level of aggregation.

9. All edges between the (business/descriptor) val-
ues of a dimension, level or attribute have a
chronological FD label and TD label to determine
the lifespan of the relationship.

10. All nodes have a chronological VT label and
TT label in accordance with the principles of bi-
temporal databases.

By applying these rules to the schema of our
running example, we obtain the schema represented
in Figure 3. We consider the three dimensions
PRODUCT, CUSTOMER and DATE, the fact SALES,
the measure Sales Amount and the hierarchical levels
CATEGORY (for PRODUCT) and CITY (for CUS-
TOMER). The dimensions and levels are described by
nodes representing the descriptors.

Figure 3: Logical schema for the GTDW.

This model separates the business concepts from
the descriptors (attributes) to allow the independent
evolution of each entity. Indeed, facts, dimensions
and hierarchy levels are represented by nodes corre-
sponding to the basic multidimensional concepts to
which other nodes representing descriptors are linked.
A temporal label consisting of a VT and a TT has
been assigned to all entities to allow the identifica-
tion of the different instances. Additionally, the FD
and TD parameters determine the lifespans of the re-
lationships in the dimensions, allowing the GTDW to
consistently process the queries and avoid any mis-
match in the results due to changes in the dimensions.

6 QUERIES IN THE GTDW

We represent the instances of our running example
(shown in Tables 1, 2, 3 and 4) with our temporal
approach based on a graph, as shown in Figure 4.
The FD and TD parameters were used to identify the
lifespans of the relationships between dimensions
and levels. The labels of nodes and the names of the
relationships are not included in the graph to keep the
schema from being cluttered.

Figure 4: Example of a data instance from the GTDW.

The schema shows that the relationship between
the customer Mary Saveley, who has the identifier
Cust001, and the level Paris, which has the identi-
fier City001, is valid during the time interval from
01/01/2020 to 01/08/2020; meanwhile, the relation-
ship between this same customer and the level Lyon,
which has the identifier City002, is valid during the
time interval from 01/08/2020 to the present. In
the same way, the relationship between the product
Mozzarella, which has the identifier Prod001, and
the level Fresh, which has the identifier Categ001,
is valid during the time interval from 01/01/2020 to
01/04/2020; meanwhile, the relationship between this
same product and the level Dairy, which has the
identifier Categ002, is valid during the time interval
from 01/04/2020 to the present. The use of a graph
database makes it easier to implement this temporal-
ity in the relationships between the instances since the
links are also information carriers, just like the nodes.
In our case, the links between the CUSTOMER nodes
and the CITY nodes contain the attributes FD and TD,
making it possible to determine the lifespans of the
relationships between these instances. This is also
true for the links between the PRODUCT nodes and
the CATEGORY nodes.

Figure 5 illustrates the lifespans of relationships
involving the levels CITY and CATEGORY, where
the intersections of the different lifetimes create three
time intervals denoted by T1, T2 and T3. These tem-

Temporal Multidimensional Model for Evolving Graph-Based Data Warehouses

47

Figure 5: Timeline of the evolution of the levels CITY and
CATEGORY.

poral changes in relationships require the use of tem-
poral queries to obtain consistent results. We illus-
trate through some examples (Table 5) how graph
databases could be used to extend the principle of re-
lational algebra (Vaisman and Zimányi, 2022; Ahmed
et al., 2015) to handle time-varying information in
DW.

Below, we propose three examples of illustrative
queries using temporal aggregation for, respectively,
(i) the level CITY, (ii) the level CATEGORY and (iii)
the levels CITY and CATEGORY jointly. The queries
are written in the Cypher request language (CRL),
which is specific to the Neo4j graph database.

Query 1:

MATCH (cn:city_name)<-[]-(:city)<-[r:cust-
omer_city] - (c:customer) <-[]- (s:sales)
WHERE r.From_Date<=s.valid_date<r.To_Date
RETURN cn.city_name, c.customer_id,
SUM(s.sales_amount)

Query 1 shows the sales amounts for each city for
the customer Cust001. Results (Table 6) are obtained
for each of the cities that the client lived in. Note
that in the CRL, the clause [RETURN value1,..,
valuen,AGGREGATE FUNCTION(ATTRIBUTE)
] makes it possible to group the aggregation by
value1... valuen.

Query 2:

MATCH (cn:category_name)<-[]-(:category)
<- [r:product_category]-(p:product)<-[]-
(s:sales)
WHERE r.From_Date<=s.valid_date<r.To_Date
RETURN p.product_id, cn.category_name,
SUM(s.sales_amount)

Query 2 shows the sales amounts for each cate-
gory for the product Prod001. Results (Table 7) are
obtained for each of the categories that the product
was assigned to.

Query 3:

MATCH (ctn:city_name)<-[]-(:city)<-[r1:cu-
stomer_city]-(c:customer)<-[]-(s:sales)-[]
->(p:product)-[r2:product_category]->(:ca-
tegory)-[]-> (cgn:category_name)

WHERE r1.FD<=s.valid_date<r1.TD
AND r2.FD<=s.valid_date<r2.TD
RETURN ctn.city_name, cgn.category_name,
SUM(s.sales_amount)

Query 3 shows the sales amounts for different
cities and categories. Results (Table 8) are obtained
for each of the cities that the client lived in and for
each of the categories that the product was assigned
to.

Using the temporal parameters From Date and
To Date, accurate results are obtained regardless of
the changes made in the dimension instances. The
same principle is applied to changes in the attributes
of the dimensions due to the separation of business
concepts from their descriptors (attributes), allowing
each entity to have an independent evolution, and
the temporal parameters FD and TD are also imple-
mented in the relationships between these attributes.
This feature, which is available due to the ability of
graph databases to use information about the rela-
tionships between entities, offers advantages when it
comes to formulating temporal queries.

7 VALIDATION

For validation purposes, we carried out two case stud-
ies based on the Star Schema Benchmark (SSB): the
first study was performed for the functional valida-
tion of our approach, and the second study was used
to perform runtime tests for a graph DW.

As part of the functional validation study, we
chose to perform the instantiation process on Neo4j
using the SSB data while generating several temporal
changes in the aggregation relationships of some hi-
erarchical levels and attributes; temporal queries gen-
erated from all 13 SSB queries3 were then applied to
this temporal DW. Note that in the initial SSB schema,
there were no hierarchical levels; we generated them
from the attributes, as shown in Figure 6.

As the SSB data span from 1992 to 1998, the
following changes in relationships were made:

1. For the dimension CUSTOMER, the assignments
of one hundred randomly selected customers
were changed on the hierarchical levels C CITY,
C NATION and C REGION. Thus, these clients
were assigned to two different levels according to
the two time intervals T1 = [FD1 = 01/01/1992,
T D1 = 01/01/1994] and T1

′ = [FD1 = 01/01/1994,
T D1 = 31/12/9999].

3https://github.com/Kyligence/ssb-kylin

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

48

Table 5: Temporal operators.

Temporal operation Case Condition in query

Temporal union WHERE MIN(R1.From_Date,R2.From_Date)<=
s.valid_date<MAX(R1.To_Date,R2.To_Date)

Temporal join

WITH CASE WHEN R1.From_Date >= R2.From_Date
THEN R1.From_Date ELSE R2.From_Date END as
min_date,
CASE WHEN R1.To_Date =< R2.To_Date THEN
R1.To_Date ELSE R2.To_Date END as max_date
WHERE min_date<=s.valid_date<max_date

Temporal difference

WITH CASE WHEN R1.From_Date >= R2.To_Date
THEN R1.From_Date ELSE R2.To_Date END as
min_date,
CASE WHEN R1.To_Date =< R3.From_Date THEN
R1.To_Date ELSE R3.From_Date END as max_date
WHERE min_date<=s.valid_date<max_date

Temporal aggregation WHERE R1.From_Date<=s.valid_date<R1.To_Date
AND R2.From_Date<=s.valid_date<R2.To_Date

Table 6: Results of Query 1.

Customer ID City Name Sales Amount
Cust001 Paris 3700
Cust001 Lyon 3800

Table 7: Results of Query 2.

Product ID Category Name Sales Amount
Prod001 Fresh 1500
Prod001 Dairy 6000

Table 8: Results of Query 3.

City Name Category Name Sales Amount
Paris Fresh 1500
Paris Dairy 2200
Lyon Dairy 3800

2. For the dimension SUPPLIER, the assignments
of one hundred randomly selected suppliers
were changed on the hierarchical levels C CITY,
C NATION and C REGION. Thus, these suppliers
were assigned to two different levels according to
the two time intervals T2 = [FD2 = 01/01/1992,
T D2 = 01/01/1996] and T2

′ = [FD2 = 01/01/1996,
T D2 = 31/12/9999].

3. For the dimension PART, the SIZE attributes of
one hundred randomly selected products were

Figure 6: Logical schema for the SSB graph temporal DW.

changed. Thus, these products had two different
sizes; they had one size for the time interval T3
= [FD3 = 01/01/1992, T D3 = 01/01/1995] and
another size for the time interval T3

′ = [FD3 =
01/01/1995, T D3 = 31/12/9999].

We use the query Q3.3 from the SSB queries as an
illustrative example:

OPTIONAL MATCH (c:cc_city) <-[:c_c_name]-
(:c_city)<-[r1:customer_city]-(:customer)
<-[:order_customer]-(l:lineorder)-[:orde-
r_date]->(d:date),(s:sc_city)<-[:s_c_name]

Temporal Multidimensional Model for Evolving Graph-Based Data Warehouses

49

-(:s_city)<-[r2:supplier_city]-(s:supplier)
<-[:order_supplier]-(l)
WHERE r1.From_Date<=l.valid_date<r1.To_Date
AND r2.From_Date<=l.valid_date<r2.To_Date
AND 1992<= d.D_YEAR<=1997
AND (c.c_city="united ki1"
OR c.c_city="united ki5")
AND (s.s_city="united ki1"
OR s.s_city = "united ki5")
RETURN c.c_city, s.s_city, d.d_year,
SUM(l.lo_revenue) AS revenu
ORDER BY d.d_year ASC, revenu DESC

The previous query requires an aggregation of the
CITY levels of the dimensions CUSTOMER and SUP-
PLIER. Since these levels are temporally related to
the above dimensions, the query has been conditioned
according to the FD and TD parameters of these re-
lationships. Thus, we obtain a consistent result that
accurately reflects the state of the data. We were able
to apply the 13 queries proposed for the SSB in a tem-
poral format, and all of the results were verified. The
dataset, the commands for creating the GTDW and
all the queries that have been written in the CRL are
available at GTDW GITHUB.

For the runtime performance study and due to
the lack of a baseline for scalable data warehouses,
we generated the same SSB schema using our graph
approach, spread over the entire validity period of
the data, and compared the execution times of the
13 queries on relational and graph approaches. The
dataset, the commands for creating the full graph DW
and all the queries are available at GSSB GITHUB.
The experimental procedure was performed on Win-
dows 10 Professional with an Intel(R) Core(TM) i7-
10700 CPU @ 2.90 GHz and 16.0 GB of RAM. Neo4j
4.4.5 was used for the graph approach and Oracle
11g was used for the relational approach. The exe-
cution times displayed in Figure 7 represent the aver-
age of ten executions for each query using the two
approaches (the same results were obtained on an
Ubuntu platform with the same configuration).

Figure 7: Response times for SSB queries using the graph
and relational approaches.

We found through the results obtained that the
graph approach performed better for the queries Q1.2,
Q1.3, Q2.2, Q2.3, Q3.3 and Q3.4 (from 2x to 11x
better). The two approaches were quite close, with
the relational approach being slightly faster, for the
queries Q3.2 and Q4.3, and the relational approach
performed better for the queries Q1.1, Q2.1, Q3.1,
Q4.1 and Q4.2 (2x to 8x better). These differences
in the execution times of the response graph approach
depend on the filter factors (FFs), the number of di-
mensions and the number of edges to be covered. In-
deed, Neo4j can be very efficient when the FF is low,
just as it can become less efficient as the FF and the
number of dimensions increase, which implies that
many relations need to be browsed to carry out an
aggregation function; on the other hand, Oracle is
quite homogeneous in terms of the execution time of
the queries. However, in the context of temporal ap-
proaches, a performance study must be carried out on
the entire integration and storage process.

8 CONCLUSION

In this paper, we proposed a temporal multidimen-
sional model for multi-version data warehouses based
on a graph formalism. Temporal labelling has been
used for entities and the relationships between them
to allow the optimal management of data instances
and to preserve the evolutionary history of these data,
especially for changes in dimensions, in addition to
providing the capacity for schema evolution offered
by the concept of multi-versioning in DWs. We have
established rules for moving from a classical multidi-
mensional model to the temporal graph multidimen-
sional model, and an example of an instance and ex-
amples of temporal queries have been provided. We
have validated our approach with two use cases by
carrying out functional validation and runtime perfor-
mance experiments. We plan to carry out a perfor-
mance study of the entire integration process and fur-
ther study OLAP queries and graph cubes. In addi-
tion, we plan to carry out a study on advanced analy-
ses in graph models in order to utilise online analysis
to produce explanatory and predictive models.

REFERENCES

Ahmed, W., Zimányi, E., Vaisman, A. A., and Wrem-
bel, R. (2020). A temporal multidimensional model
and OLAP operators. Int. J. Data Warehous. Min.,
16(4):112–143.

Ahmed, W., Zimányi, E., and Wrembel, R. (2015). Tempo-

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

50

ral data warehouses: Logical models and querying. In
Zimányi, E., Vansummeren, S., and Calders, T., ed-
itors, Actes des 11es journées francophones sur les
Entrepôts de Données et l’Analyse en Ligne, volume
B-11 of RNTI, pages 33–48.

Akoka, J., Comyn-Wattiau, I., du Mouza, C., and Prat, N.
(2021). Mapping multidimensional schemas to prop-
erty graph models. In Advances in Conceptual Mod-
eling – ER 2021, CMLS, St. John’s, NL, Canada, Oc-
tober 18–21, 2021, volume 13012 of Lecture Notes in
Computer Science, pages 3–14. Springer.

Benhissen, R., Bentayeb, F., and Boussaid, O. (2022).
GAMM: un modèle multidimensionnel agile à base de
graphes pour des entrepôts multi-versions. Revue des
Nouvelles Technologies de l’Information, Business In-
telligence & Big Data, RNTI-B-18:29–46.

Benhissen, R., Bentayeb, F., and Boussaid, O. (2023).
GAMM: graph-based agile multidimensional model.
In Gallinucci, E. and Golab, L., editors, Proceedings
of the 25th International Workshop on Design, Opti-
mization, Languages and Analytical Processing of Big
Data (DOLAP) co-located with (EDBT/ICDT), Ioan-
nina, Greece, March 28, 2023, CEUR Workshop Pro-
ceedings, pages 23–32. CEUR-WS.org.

Bliujute, R., Saltenis, S., Slivinskas, G., and Jensen, C. S.
(1998). Systematic change management in dimen-
sional data warehousing. In Proceedings of the Third
International Baltic Workshop on Data Bases and In-
formation Systems, Riga, Latvia. Citeseer.

Campos, A., Mozzino, J., and Vaisman, A. (2016). To-
wards temporal graph databases. arXiv preprint.
arXiv:1604.08568.

Debrouvier, A., Parodi, E., Perazzo, M., Soliani, V., and
Vaisman, A. A. (2021). A model and query language
for temporal graph databases. The VLDB Journal,
30:825–858.

Faisal, S. and Sarwar, M. (2014). Handling slowly chang-
ing dimensions in data warehouses. J. Syst. Softw.,
94:151–160.

Faisal, S., Sarwar, M., Shahzad, K., Sarwar, S., Jaf-
fry, S. W., and Yousaf, M. M. (2017). Temporal
and evolving data warehouse design. Sci. Program.,
2017:7392349:1–7392349:18.

Garani, G., Adam, G. K., and Ventzas, D. (2016). Temporal
data warehouse logical modelling. Int. J. Data Min.
Model. Manag., 8(2):144–159.

Golfarelli, M., Maio, D., and Rizzi, S. (1998). Concep-
tual design of data warehouses from E/R schema. In
Thirty-First Annual Hawaii International Conference
on System Sciences. IEEE Computer Society.

Golfarelli, M. and Rizzi, S. (2007). Managing late mea-
surements in data warehouses. Int. J. Data Warehous.
Min., 3(4):51–67.

Golfarelli, M. and Rizzi, S. (2011). Temporal data ware-
housing: Approaches and techniques. In Integrations
of Data Warehousing, Data Mining and Database
Technologies – Innovative Approaches. Information
Science Reference.

Golfarelli, M. and Rizzi, S. (2018). From star schemas to
big data: 20+ years of data warehouse research. In A

Comprehensive Guide Through the Italian Database
Research Over the Last 25 Years, volume 31 of Stud-
ies in Big Data, pages 93–107. Springer International
Publishing.

Inmon, W. H. (1992). Building the Data Warehouse. John
Wiley & Sons, Inc., USA.

Kimball, R. (1996). The Data Warehouse Toolkit: Practi-
cal Techniques for Building Dimensional Data Ware-
houses. John Wiley & Sons, Inc., USA.

Kimball, R. and Ross, M. (2013). The Data Warehouse
Toolkit: The Definitive Guide to Dimensional Model-
ing. Wiley, Indianapolis, IN, USA, third edition.

Kulkarni, K. G. and Michels, J. (2012). Temporal features
in SQL: 2011. SIGMOD Rec., 41(3):34–43.

Mendelzon, A. and Vaisman, A. (2000). Temporal queries
in OLAP. Proceedings of the 26th International Con-
ference on Very Large Data Bases, VLDB’00.

Phungtua-Eng, T. and Chittayasothorn, S. (2019). Slowly
changing dimension handling in data warehouses us-
ing temporal database features. In Intelligent Informa-
tion and Database Systems – 11th Asian Conference,
volume 11431 of Lecture Notes in Computer Science,
pages 675–687. Springer.

Poscic, P., Babic, I., and Jaksic, D. (2018). Temporal func-
tionalities in modern database management systems
and data warehouses. In 41st International Conven-
tion on Information and Communication Technology,
Electronics and Microelectronics. IEEE.

Saroha, K. and Gosain, A. (2015). Bi-temporal schema ver-
sioning in bi-temporal data warehouse. CSI Transac-
tions on ICT, 3:135–142.

Vaisman, A. and Zimányi, E. (2022). Temporal and Mul-
tiversion Data Warehouses, pages 373–436. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Temporal Multidimensional Model for Evolving Graph-Based Data Warehouses

51

