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In most countries, to have permission to drive vehicles on public roads one must have insurance against civil

liability for vehicles. In many cases, the insurance fees depend on the age of the driver, the number of years
one holds a driving license, and the driving history. The usual assumption taken by insurance companies that
younger drivers are always more risky than others are not always correct, penalizing young good drivers. In
this paper, we follow a pay-as-you-drive approach based on trip behavior data of different drivers. First, we
build a dataset from real trip data. Then, we apply a two-stage clustering approach to the dataset to identify
trip profiles. The experimental results show that we can cluster and identify distinct trip profiles in which
many trips have a non-aggressive style, some have an aggressive style and only a few are risky style trips. Our
solution finds application in fair insurance fee calculation or fleet management tasks, for instance.

1 INTRODUCTION

The European Road Safety Observatory (European
Comission, 2021) reports that from 2010 to 2020
there were approximately 1.000.000 crashes and
1.250.000 injuries, per year, in the European Union.
In most countries, car insurance is required for one to
have permission to drive on public roads (NationMas-
ter, 2014). The owner or driver of a vehicle is respon-
sible for damages it may cause, in case of accident.
The interests of injured parties must be protected, re-
gardless of whether or not the person responsible for
the accident is financially able to do so. The manda-
tory insurance against civil liability for motor vehi-
cles assures this protection. The insurance companies
typically define vehicle insurance fees as functions of
static variables, such as the age of the driver, the num-
ber of years one has a driving license, and the driving
history (Hutson, 2021).

Nowadays, the volume of data which can be ac-
quired and processed has increased exponentially,
yielding new opportunities. The acquisition of driving
behavior data brings opportunities for insurance and
transportation companies to provide solutions which
are more fair than the existing ones.
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1.1 Goals of This Work

The key idea of this work is that the more aggres-
sive/risky the driver actually behaves, the more one
should pay by the insurance. On the other hand, the
more conservative, well-behaved drivers should pay
less money, leading to an overall fair system. A com-
pany that needs to perform fleet management can also
take better planning decisions and to identify the best
drivers, based on the assessment of their real driving
style. This work has the following specific goals:

(1) from anonymous data records with events gener-
ated on trips from different drivers, perform fea-
ture engineering actions to build a dataset suited
for driver style analysis;

(2) identify and perform the necessary data prepro-
cessing operations on the dataset;

(3) analyze the output of clustering techniques on the
dataset, to assign a style to each trip.

The remainder of this paper is organized as fol-
lows. In Section 2, we overview related work and the
driver data acquisition setup. The developed approach
and the dataset details are described in Section 3. The
experimental results are reported in Section 4. Fi-
nally, Section 5 ends the paper with some concluding
remarks and directions for future work.
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2 RELATED WORK

In this section, we address related work and the state-
of-the-art regarding driver style identification (Sec-
tion 2.1), the key aspects and goals of the i-DREAMS
project (Section 2.2) and the trip data acquisition
setup, devices, and events (Section 2.3).

2.1 Driving Style Taxonomy

In the literature, driving styles are established at dif-
ferent levels of specification, ranging from simple
and single indicators, such as speeding or hard ac-
celeration, to general concepts, such as aggressive
driving or risky driving. These general concepts are
based on a combination of specific behavioral indica-
tors. In Taubman-Ben-Ari et al. (2004), eight driving
styles regarding as how one usually drives are identi-
fied. These styles are organized into two main cate-
gories named as safe and unsafe. Within the safe cat-
egory, there are three styles, as follows. The distress-
reduction driving style is related to muscle relaxation
techniques while driving. The patient style refers to
calm and safe behaviors based on the “better safe
than sorry” motto. The careful style addresses cau-
tious behaviors and a state of mind to always re-
act well and quickly to unexpected actions of other
drivers. The unsafe category has five styles. The dis-
sociative driving style is based on unaware and mis-
judging behaviors. The anxious style is related to ner-
vous and worrying behavior while driving. Risky ap-
plies to drivers that like to take risks. The angry style
means that the driver will respond with aggressive
reactions to other drivers actions. Finally, the high-
velocity style corresponds to an impulsive attitude to-
wards driving faster than allowed by the road condi-
tions or feeling impatient when traffic slows down.
Table 1 presents each style and its category.

A framework in which driving styles are seen in
terms of driving habits established as a result of indi-
vidual dispositions, as well as social norms and cul-
tural values was proposed by Sagberg et al. (2015). In
this framework, a global driving style is composed by
a set of specific driving styles. A specific driving style

Table 1: Driving categories (safe/unsafe) and the corre-
sponding driving styles (Taubman-Ben-Ari et al., 2004).

Driving Categories
Safe | Unsafe
Distress-reduction | Dissociative
Patient Anxious
Careful Risky
- Angry
- High-velocity
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is a commonly adopted behavior while driving.

Typically, the set of parameters and variables for
profiling drivers cover the most important aspects of
driving (Singh and Kathuria, 2021). These parameters
refer to the dynamic driving environment, based on
crash data gathered from self-reported surveys (Peck
and Kuan, 1983; Singh and Kathuria, 2021) as fol-
lows: (i) speed; (ii) acceleration, braking, and jerks;
(iii) annual mileage; (iv) lateral maneuver, such as
swerving, lane changing, and sharp turns; (v) time and
space factors, such as time of day, day of the week,
and month; (vi) distraction.

Recently, a method to detect city potential hazard
driving zones, using bus tracking data was proposed
by Almeida et al. (2022). The approach consists in
mapping geolocation coordinates into road segments,
using bus speed, bus maximum allowed speed, and
bus acceleration to classify the driving behavior into
one of six categories to evaluate the driving behavior.
They conclude that some roads exhibit problems that
occur in the same period of the day while other roads
present circulation issues regardless of the time period
or day.

2.2 The i-DREAMS Project

This work arises as part of the European Hori-
zon2020 i-DREAMS project (i-DREAMS Team,
2021). The project proposes a solution with a set of
devices installed in vehicles to acquire data about the
driver’s status and driving behavior. The i-DREAMS
project aims to determine the safety tolerance zone
(STZ) for driving and interventions for driver-vehicle-
environment interactions.

Figure 1 depicts a global overview of the i-
DREAMS project. The Gateway (GW, in Figure 1)
is the central element of the system, by collecting the
data originated from other components and handling
data connectivity and transmission. It is an edge com-
puting device that determines the STZ, allows the trig-
gering of alarms, and real-time communication with
an application programming interface (API) or stor-
age for post-trip synchronization. The access to the
data is carried out through this API, which defines
that each data collection system is assigned to a ve-
hicle and not with a specific driver. Data is acquired
anonymously during trips from the moment the vehi-
cle’s engine is activated until the moment it is deac-
tivated. By interacting with this API, we retrieve trip
event data to build a dataset.
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Figure 1: Global overview of the i-DREAMS on-vehicle
systems (i-DREAMS Team, 2021).

2.3 Trip Data Acquisition

The devices in the i-DREAMS on-vehicle systems
produce data events for the identification of the driv-
ing style. After data collection, the gateway makes it
available through an API. The types of data provided
by the main elements of the i-DREAMS architecture,
are summarized in Table 2. The project also includes
a smartphone application to detect driver distraction.

The CardioWheel device is installed on the steer-
ing wheel and the Mobileye (Mobileye, 2021) device
is placed on the windshield. Figure 2 shows the sen-
sors installed on a vehicle. CardioWheel can pro-
duce hands-on wheel detection events. The Drowsi-
ness Detector device detects events of the driver’s
drowsiness level according to the Karolinska sleepi-
ness scale (KSS) (Shahid et al., 2011). KSS is a 10-
point Likert scale (Joshi et al., 2015), to classify the
states of human sleepiness in periods of five minutes,
as described in Table 3.

Table 2: Data acquisition devices and data identifiers of the
i-DREAMS project.

Device Data Identifier
CardioWheel LOD_Event
Driver App Distraction
Drowsiness Detector Drowsiness
Gateway Ignition

Gateway Motion Sensor | DrivingEvents
Global Navigation
Satellite System (GNSS) | Geolocation Coordinates

Mobileye ME_AWS

ME_TSR

ME_CAR
Safety iDreams_Fatigue
Tolerance iDreams_Headway
Zone (STZ) iDreams_Overtaking

iDreams_Speeding
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The Gateway generates data for ignition and driv-
ing events, corresponding to harsh driving detec-
tion events. The GNSS module provides satellite-
based geolocation data, at a rate of one sample per
second. The Mobileye device produces data about
the safety and warning states in a certain timestamp
(ME_AWS). It also generates data about the traffic
signs (ME_TSR) and vehicle parameters (ME_CAR).
Finally, the STZ device produces fatigue, headway,
overtaking, and speeding events.

3 THE DEVELOPED APPROACH

In this section, we describe the key aspects of the de-
veloped approach. We begin with the overview of
the solution architecture, functionalities, and gener-
ated events (Section 3.1 and Section 3.2). Then, we
describe the key steps and procedures to build the
dataset from the events generated by the devices (Sec-
tion 3.3). The dataset pre-processing steps are ad-
dressed in Section 3.4. Finally, Section 3.5 describes
the clustering techniques we apply on the dataset.

3.1 Block Diagram of Our Approach

Figure 3 depicts the block diagram of the devel-
oped trip profiling system. It shows an example of
some data types obtained by interacting with the i-
DREAMS API. From the exported driving data events
trough the API, we perform a feature engineering step
to build a dataset. From the set of events described in
Table 2, we establish a set of features and we build
an unlabeled dataset. Then, we apply unsupervised
learning to cluster trips. The clustering output is ana-
lyzed by human experts to assess the trip style.

3.2 The i-DREAMS Generated Events

The CardioWheel device produces Hands-On Detec-
tion (LOD_Event) events that signal the presence of

Table 3: The 10-point Karolinska Sleepiness Scale
(KSS) (Shahid et al., 2011).

Level | Description
1 Extremely alert
2 Very alert
3 Alert
4 Rather alert
5 Neither alert nor sleepy
6 Some signs of sleepiness
7 Sleepy, but no effort to keep awake
8 Sleepy, but some effort to keep awake
9 Very sleepy, great effort to keep awake, fighting sleep
10 Extremely sleepy, can’t keep awake
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Figure 2: CardioWheel on the steering wheel (left). Mobileye and dashcam seen from the inside (middle) and from the outside

of the vehicle (right).
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Figure 3: Proposed solution architecture to build and use a dataset with trip data for generic purposes. In this work, we also

aim to identify the driving style for each trip, using the dataset.

the driver’s hands on the steering wheel. Each event
consists of a timestamp and the Hands-On state (with
four possible values). These events allow us to deter-
mine how much time the driver spent with no hands,
left hand, right hand and both hands on the steering
wheel. The Driver App provides real-time mobile
phone use events, which are an indicator of distrac-
tion. Each sample is mapped by the type of event, mo-
bile usage start, and mobile usage end. These events
signal any distractions while driving. The Drowsiness
Detector system is able to detect events of the driver
drowsiness level based on the KSS scale, described in
Table 3, at certain timestamps.

The Gateway Motion Sensor system generates
driving behavior (DrivingEvents) data, which indicate
the occurrence of harsh acceleration, harsh braking,
and harsh cornering behaviors. Each event stores the
timestamp and the type of event (harsh acceleration,
braking, and cornering). Simultaneously, the maxi-
mum acceleration (in g-force) during an event is reg-
istered with the total duration of the event in seconds,
and the event severity level is measured with one of
three values: low, medium, or high. This indicator is
useful to calculate the number of times each type of
event occurs on a given trip. These events are widely
used in the literature for driver profile classification
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applications and are mostly associated with aggres-
sive driving. The Gateway device is able to provide
events regarding if the ignition is on or off.

The GNSS system offers satellite-based geolo-
cation data, with a rate of about one sample per
second. The Mobileye Advanced Warning System
(ME_AWS) produces data about the safety and warn-
ing state of the Mobileye system in a given timestamp.
A significant part of this data refers to the system us-
age; for this work, the relevant events are:

e fcw - if true, forward collision warning is active;

* hw_level - headway monitoring level (no car de-
tected, green car, red car, warning);

e ldw - if true, lane departure warning is active (left
or right);

o ldw_left - if true, left lane departure warning is
active;

* ldw_right - if true, right lane departure warning is
active;

e pcw - if true, pedestrian collision warning is ac-
tive;

* pedestrian_dz - if true, pedestrian detected in dan-
ger zone;

e time_indicator - states the lighting conditions
(day, dusk, or night);



* tsr_level - traffic sign recognition level. Level of
warning according to units over the speed limit (in
km/h or mph);

* zero_speed - if true, the vehicle is stopped.

The fcw parameter corresponds to the forward col-
lision warning (FCW), which is activated when the
system detects an imminent collision danger with cars
ahead and triggers visible and audible warnings. The
hw related parameters correspond to headway moni-
toring & warning (HMW), triggered when the vehicle
is too close to the vehicle ahead and will raise visible
and audible warnings. The /dw related parameters re-
fer to the lane departure warning (LDW) event, acti-
vated when the vehicle departs from the current lane
without turning signals and will also raise visible and
audible warnings.

The Mobileye system also provides information
about the vehicle parameters (ME_CAR). Each data
sample holds the current speed of the vehicle (ex-
pressed in km/h) and the following parameters:

* brakes - if brakes are on or off;

¢ low_beam - if the low beam is on or off;

* high_beam - if the high beam is on or off;

* signal_left - if the left turn signal is on or off;

* signal right - if the right turn signal is on or off;
* wipers - if wipers are on or off.

In this work, we are not using the Mobileye Traffic
Sign Recognition (ME_TSR) events.

The STZ device generates real-time fatigue inter-
vention (iDreams_Fatigue) events with the following
levels:

* 0 - no warning (normal driving);
* | - visual warning (dangerous driving);
* 2 - visual and auditory warning (dangerous driv-
ing);
* 3 - frequent warnings (avoidable accident).
STZ also generates the following real-time head-
way intervention (iDreams_Headway) events:
* -1 - no vehicle detected (normal driving);
* 0 - vehicle detected, but headway >= 2.5 (normal
driving);
* 1 - vehicle detected, headway < 2.5, but above
warning threshold (normal driving);
* 2 - first warning stage (dangerous driving);
* 3 - second warning stage (avoidable accident).
STZ also provides real-time overtaking interven-
tion (iDreams_Overtaking) events with these levels:
* 0 - no warning (normal driving);
* | - visual warning (normal driving);
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¢ 2 - visual and auditory warning (dangerous driv-
ing);
* 3 - frequent warnings (avoidable accident).

Finally, we have the real-time speeding interven-
tion (iDreams_Speeding) events:

* 0 - no warning (normal driving);

¢ 1 - visual indication (normal driving);

* 2 - visual speeding warning (dangerous driving);

e 3 - visual and auditory warning (avoidable acci-
dent).

3.3 Dataset Construction

After the analysis of the available events, the next step
is to build a dataset through these events. To do this,
for each event we devised several features, which we
consider to be the most appropriate to determine the
style of driving on a given trip. The events provided
vary from trip to trip, since we are dealing with a nat-
uralistic driving environment (et al, 2011). This in-
cludes aspects of vehicle movement, driver behavior,
and the direct environment. As a result, there may be
sensor failures on a given trip and as a consequence
some features may have missing values, handled as
described in Section 3.4. Although some events may
not be available, all trips are represented by the fol-
lowing mandatory set of features:

e trip_start - date and time trip started; this feature
is also relevant to input missing values for other
features such as the trip lighting condition;

* trip_end - date and time trip ended; this feature
is also relevant to input missing values for other
features such as the trip lighting condition;

* distance - trip distance in kilometers;
* duration - trip duration in seconds.

The available data was collected and the features
were designed. After a deeper analysis of the data,
only the most relevant features were selected accord-
ing to the literature. Through interaction with the
i-DREAMS API, we gather trip data from April 1,
2021, to July 20, 2022, yielding a total of 17138 trips.
The designed features are organized by the type of
system that originated them. According to the four
mandatory features, for each of the 17138 trips, 75
features were generated. However, for this collection
of trips, the Hands-On and Drowsiness systems were
not available, so only 67 features were kept. As a
consequence, at this stage the dataset was composed
of n = 17138 instances (trips) and d = 67 features.
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3.4 Dataset Pre-Processing

After constructing the dataset, we performed data pre-
processing by summarizing data and imputing miss-
ing values. We removed trips with less than one
minute, trips with less than 1.5 km, and trips in which
all features had missing values. To handle missing
values, we locate features with such a problem. Sub-
sequently, these values were imputed as follows:

« if the percentage of missing values for feature X;
is less than or equal to 50%, then these values are
filled with the mean, median, or mode of the re-
maining values on that column;

» if this percentage is greater than or equal to 50%,
the feature is removed.

We applied data normalization techniques because
many clustering algorithms are based on distances,
and the different orders of magnitude of the fea-
ture values influences the result (Witten et al., 2016).
Thus, we normalize the data by trip distance or by
trip duration, separately. Then, we evaluate both and
choose the one with the best results. We have also
removed the features unrelated with the objective of
this work (to identify a trip style), yielding a dataset
with n = 15002 instances (trips) and d = 53 features.

3.5 Clustering Algorithms

The clustering phase is organized into two cluster-
ing stages. In the first, we applied different cluster-
ing techniques. Initially, we use the K-Means algo-
rithm (Hartigan and Wong, 1979). The strategy con-
sisted in initially trying to identify the best value of K
through the elbow and silhouette methods. Density-
based spatial clustering (DBScan) (Ester et al., 1996)
was also applied to check for outliers in the dataset.
The parameters were set as in Sander et al. (1998).
Another technique used was gaussian mixture models
(GMM) (Reynolds, 2009) that states the probability
that each instance of the dataset belongs to a Gaussian
distribution. The advantage of using this type of clus-
tering is that it can better deal with different shapes of
the data distribution. The K-Means algorithm with
Euclidean distance handles spherical shapes better.
The number of components/gaussians used was the
same as K in K-Means. Finally, evidence accumula-
tion clustering (EAC) by Fred and Jain (2002) with
K-Means (Okun and Valentini, 2008) was also evalu-
ated.

The objective of the second stage of clustering was
to use the best combination of the first stage, to check
if the clusters found could be further decomposed into
sub-clusters, given more details on the drivers pro-
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files. After running the clustering algorithm, we as-
sign a trip style to each cluster, by human analysis
and inspection.

4 EXPERIMENTAL EVALUATION

In this section, we address the experimental evalua-
tion of the developed solution, focusing on the goal to
devise trip styles with clustering techniques, from the
built dataset. The source code was written in Python.
Section 4.1 describes the standard clustering evalua-
tion metrics. In Section 4.2, we address the use of
dimensionality reduction techniques. Finally, Sec-
tion 4.3 reports the experimental results of clustering
and the identification of trip styles.

4.1 Clustering Evaluation Metrics

The clustering algorithms results were evaluated with
the Calinski-Harabasz (CH) (Calinski and Harabasz,
1974), Silhouette (Sil) (Rousseeuw, 1987), and
Davies-Bouldin (DB) (Davies and Bouldin, 1979)
scores. The CH metric, also known as the variance
ratio criterion, is the ratio of the sum of between-
clusters dispersion and inter-cluster dispersion for all
clusters; the higher the score, the better the perfor-
mance. The Silhouette score ranges from -1 (worst)
to 1 (best); it is computed as functions of the average
intra-cluster distance and the average inter-cluster dis-
tance. The DB score is a function of the ratio of the
within cluster scatter to the between cluster separation
and a lower value means better clustering.

4.2 Dimensionality Reduction

We have considered the use of dimensionality re-
duction techniques to reduce the number of features,
and avoid the curse of dimensionality (Bishop and
Nasrabadi, 2006). Since the dataset does not have
pre-labeled data, we chose an unsupervised feature
reduction (FR) technique, namely principal compo-
nent analysis (PCA) (Jolliffe, 2002). The use of PCA
yielded the following results: (i) with data normaliza-
tion, the number of features was reduced from d = 53
to m = 17; (ii) without normalization, we got m = 1
which is an extreme dimensionality reduction causing
loss of information. Thus, we opted to consider the
data with normalization by distance or by duration.

4.3 Clustering the Trip Dataset

For the first stage clustering, we use the normalization
and dimensionality reduction techniques. The experi-



mental results of the best combination, for each algo-
rithm, are reported in Table 4.

Table 4: First stage clustering results of the n = 15002 trips,
by K-Means, DBScan, GMM, and EAC algorithms evalu-
ated with the CH, Sil, and DB scores. We aim to maximize
the CH and Sil scores (denoted by the 1 symbol) and to
minimize the DB score (the | symbol).

Scores K-Means | DBScan GMM EAC
CH 1 7258.919 | 2365.621 | 5602.887 | 1965.691

Sil 0.488 0.650 0.382 0.807

DB | 1.164 1.372 1.377 0.482
# cluster 0 11916 14550 5287 54
# cluster 1 3086 452 9715 14948

Total 15002 15002 15002 15002

Although the results state that EAC has better
DB and Silhouette scores, further cluster analysis has
shown that its results yield large imbalance between
clusters on different runs of the algorithm over the
training data. We choose the K-Means algorithm be-
cause it was more consistent on successive runs and
the scores were better overall when comparing to DB-
Scan and GMM. In summary, normalization by dis-
tance, dimensionality reduction by PCA, and cluster-
ing with K-Means yield the best results. Moreover,
using PCA evaluation we found that the most im-
portant features (for the first PCA component) were:
speed, number of speeding events, number of times
breaks are on, number of harsh cornering events, and
the number of harsh acceleration events.

The second stage of clustering consisted in apply-
ing K-Means individually to cluster 0 and to cluster 1,
in Table 4, to check if they can be further decomposed
into sub-clusters. The experimental results showed
that cluster 1 attained by K-Means was further decom-
posed in two clusters. Table 5 provides the scores for
the second stage of clustering.

Table 5: Second stage clustering results with CH, Sil, and
DB scores. The 3086 instances of # cluster 1 by K-Means,
in Table 4, are further split into two clusters with 3033 and
53 instances, respectively.

CH 1 Silt | DBJ | # cluster 1.1 | # cluster 1.2
1144.656 | 0.735 | 0.548 3033 53

Table 6 and Figure 4 report the final results for
unsupervised learning. After human inspection of the
clusters and feature values, cluster 0 was assigned as
aggressive trips while cluster 1 was defined as non-
aggressive trips, and cluster 2 holds the risky trips. In
detail, cluster O represents trips with low-speed val-
ues per km and low speeding events per km. Cluster
1 represents trips with low to medium speed per km
and low to medium speeding events per km. In terms
of the number of braking events per km, cluster 1 has

Building a Dataset for Trip Style Assessment Based on Real Trip Data

more events. For cluster 2, the number of events ex-
ceeding the speed limit was the most important fea-
ture to differentiate, aggressive trips from risky trips.
Risky trips involve more speeding events than aggres-
sive trips.

Table 6: Second stage final clustering results - distribution
of the n = 15002 trips per K = 3 clusters, holding the trip
styles, after human expert analysis.

Cluster ID | Description Number of instances
0 Aggressive trips 3033

1 Non-Aggressive trips 11916

2 Risky trips 53
Total 15002

Clusters

® 0

[ ] 1

2

0

10
20
30

40 0

50
60

Figure 4: A 3D visualization of the final clustering results,
with the aggressive trips (0), non-aggressive trips (1), and
risky (2) trip styles.

S CONCLUSIONS

The monitoring of driver behavior based on real trip
data acquired from a vehicle yields many useful ap-
plications. In this paper, our key goal was to show
that it is possible to devise a driver style identification
solution, from a built dataset from the i-DREAMS
project devices. Using anonymous trip data, our ap-
proach was to acquire data from a set of trip events
and to perform feature extraction to build a dataset.
Then, we apply some pre-processing techniques on
the dataset. Afterwards, we perform clustering, eval-
uated with standard metrics. The dataset construction
and pre-processing phases were the ones that most in-
fluenced the clustering results. By normalizing the
trips by distance and performing dimensionality re-
duction by principal component analysis we achieved
the best results. We applied a two-stage clustering
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strategy, in which the K-Means algorithm has shown
to be the best. The most challenging part of the clus-
tering phase was to assign meaning (trip style) to the
clusters, which implied further human analysis and
inspection on the clustering results. Thus, the pro-
posed solution was found to be able to identify the
trip styles in a satisfactory way.

As future work, we may use different clustering
algorithms and perform a deeper analysis of the ev-
idence accumulation algorithm. We can use feature
selection techniques instead of feature reduction, to
identify the most relevant original features for the
trip style identification task and the smallest subset
of these features that yield robust classification.
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