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Abstract: Maintaining data confidentiality at the asymmetric-resource devices across emerging technologies needs vary-
ing cryptographic algorithms. Quantum computing makes preserving data confidentiality across asymmetric
infrastructure more difficult. However, exploiting the architecture of classical cryptographic schemes to in-
tegrate the post-quantum constructs could be used to maintain post-quantum level confidentiality over the
Internet. This paper presents a post-quantum secure classical ABE-IBE proxy re-encryption scheme (L ABE-
IBE PRE) that utilizes the classical ABE-IBE proxy re-encryption capabilities at the end nodes in a system
and raises the data confidentiality to post-quantum secure level over the Internet. The proposed L ABE-IBE
PRE transforms a ciphertext of the classical ABE scheme to a post-quantum secure ciphertext and from a post-
quantum secure ciphertext to a ciphertext of the classical IBE scheme. We compare our proposed L ABE-IBE
PRE scheme with classical ABE-IBE proxy re-encryption schemes, including Encryption Switching ABE-IBE
(ES.ABE-IBE) scheme (He et al., 2019). We discuss the security and efficiency of our proposed scheme.

1 INTRODUCTION

Integrating asymmetric devices with emerging tech-
nologies (IoT, edge, fog, cloud and quantum) opens
up new opportunities but poses new security chal-
lenges (Lohachab and Karambir, 2019). For exam-
ple, data encrypted using lightweight cryptographic
mechanisms for resource-limited devices become vul-
nerable over resourceful devices. Similarly, classical
cryptographic primitives do not address the security
needs of resource-constrained devices. Thus, exist-
ing classical cryptography does not address the se-
curity of the growing number of asymmetric devices
over the Internet. Resource-limited devices can use
resourceful parties (edge or fog platforms) for com-
putation, but these parties work in less secure envi-
ronments with a significant risk of attacks (such as
man-in-the-middle, denial-of-service) (Roman et al.,
2018). Despite this, outsourcing data to more re-
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sourceful parties (cloud, edge, and fog) continues to
grow.

Identity-based encryption (IBE) and attribute-
based encryption (ABE) schemes provide fine-grain
access control over outsourced data. Proxy re-
encryption schemes, such as ABE-IBE or IBE-ABE,
have been developed for secure data outsourcing from
one domain to another without compromising the
sender’s privacy. However, these schemes ignore the
asymmetric nature of devices across the IT infras-
tructure. Furthermore, quantum computing tips the
balance against asymmetric devices using classical
cryptography. In this paper, we propose a proxy re-
encryption scheme that transforms the existing classi-
cal ciphertext to a post-quantum one for secure data
outsourcing via the insecure Internet.

This paper is organised as follows: Section 2 illus-
trates the related work. Section 3 discusses the prob-
lem statement and motivation. Section 4 gives basic
mathematical preliminaries and notations. Section 5
describes our proposed scheme. Section 6 evaluates
the security and Section 7 illustrates the efficiency of
proposed scheme. Section 8 concludes this paper.
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2 RELATED WORK

The asymmetric nature of devices significantly af-
fects data outsourcing/data sharing between parties
via an insecure Internet. Several classical crypto-
graphic primitives have been developed to address the
security of individual or group devices. However,
none of these primitives addresses the security of dis-
persed and asymmetric devices and secure data out-
sourcing requirements.

Shamir (1985) proposed the first IBE scheme that
applies public identity information (such as email ad-
dresses) as public keys. IBE scheme based on bilin-
ear pairings was proposed by (Boneh and Franklin,
2001). IBE has been extensively studied, see for ex-
ample Hofheniz et al. (2018), as it simplifies pub-
lic key management without public-key infrastructure
(PKI) and certificates, and also improves efficiency
and security of asymmetric devices (Xiong et al.,
2019).

Sahai and Waters (2005) proposed the first
attribute-based encryption (ABE) scheme that re-
places the identity with attributes of an intended re-
ceiver and provides better access control over data.
Many ABE variants have been proposed, see (Li et al.,
2018, Chen et al., 2018, Li et al., 2019, Miao et al.,
2021, Li et al., 2020). Extensible and expandable
ABE methods (Susilo et al., 2017, Yang et al., 2018)
provide secure data sharing between entities. How-
ever, these methods require the valid recipients to sat-
isfy the access policies, which need to be continu-
ously updated by adding or revoking entities.

The first proxy re-encryption (PRE) scheme was
developed by Blaze et al. (1998) to transform a ci-
phertext encrypted for one receiver into a ciphertext
that a different receiver could decrypt. Several ABE-
IBE and IBE-ABE proxy re-encryption schemes have
been developed (Cao et al., 2019, He et al., 2019,
Deng et al., 2020). The security of these proxy re-
encryption schemes depends on bilinear pairing, mak-
ing them all insecure against a quantum adversary.

Post-quantum cryptography such as lattice-based
cryptography (LBC ) applies quantum intractable lat-
tice problems for designing new cryptographic algo-
rithms and protocols or re-designing existing classical
cryptography schemes to withstand quantum adver-
saries (Banerjee et al., 2019, Nejatollahi et al., 2019,
Fernández-Caramés, 2020, Tao et al., 2023). LBC
also provides a rich source of cryptographic tools for
secure data sharing through resource-rich Internet or
cloud nodes.

The first LBC scheme was proposed by Ajtai
(1996) and Regev (2009) giving a rigorous security
proof of the scheme. Security of lattice-based cryp-

Figure 1: ABE-IBE Proxy Re-encryption between Alice
and Bob through Untrusted Cloud Environment.

tographic schemes depends upon intractable lattice
problems (Peikert, 2016) such as learning with er-
rors (LWE). Lattices are considered the best choice
for the design of new post-quantum cryptographic al-
gorithms and protocols in the research community.

3 PROBLEM STATEMENT

Existing classical cryptographic schemes includ-
ing ABE and IBE are vulnerable to quantum at-
tacks (Shor, 1999). It is possible to address this prob-
lem by using quantum-resistant cryptographic primi-
tives such as lattices (Asif, 2021). NIST has published
the post-quantum security recommendations for com-
mercial entities (Joseph et al., 2022). However, these
primitives have not been thoroughly tested, making it
highly likely that they will continue co-existing with
classical cryptography.

In this paper, we propose the transformation of
classical ciphertext to post-quantum secure ciphertext
using a proxy re-encryption scheme and vice versa.
Here, we solve the following problem.

How do we securely share data between two local do-
mains via the Internet under the following assumptions:

• The local domains (consisting of classical asymmet-
ric devices) predominantly use classical encryption,
and are not accessible to quantum adversaries.

• The Internet domain (consisting of cloud or quantum
devices) supports post-quantum cryptography and is
accessible to quantum adversaries.

This research aims to design a classical to
post-quantum secure ABE-IBE proxy re-encryption
(L ABE-IBE PRE) scheme for secure data sharing
between the two local domains. For this purpose, we
adapt the ABE-IBE proxy model defined by He et al.
(2019) and Deng et al. (2020) to incorporate post-
quantum secure primitives (lattice-based encryption),
transforming a classical ciphertext (ABE) to a post-
quantum secure ciphertext for secure data sharing.
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Figure 2: Proxy Re-encryption on Edge Nodes for secure
communication between Alice and Bob via unsecure and
untrusted network with the presence of quantum adversary.

The idea is illustrated in Fig. 1. Consider a com-
pany ABC with two isolated departments, A and B
(local domains). Alice and Bob work in departments
A and B, respectively. Department A deploys several
asymmetric devices connected to a local Edge node
to monitor the environment (such as an early storm
warning system). The data inside Department A is en-
crypted using an access-control policy (ABE) based
on the attributes of the devices and people working in
Department A. Bob is interested in the encrypted data
from department A. When he asks Alice for the data,
she uses the ABE-IBE proxy (He et al., 2019) model
to allow him to access data without changing depart-
ment A’s access-control policy. That is, ABE-IBE re-
encryption facilitates one-way data sharing over the
Internet. Once quantum adversaries are allowed over
the Internet, the ABE-IBE cryptographic scheme (He
et al., 2019) becomes vulnerable due to the Shor al-
gorithm (Monz et al., 2016).

To solve this problem, we propose secure proxy
re-encryption at the local Edge nodes, which “isolate”
the local domains from the untrusted Internet – see
Fig. 2. Alice sends ABE ciphertext (secure against
a classical adversary) to the local Edge node (in her
local domain), which re-encrypts the ABE ciphertext
to post-quantum secure ciphertext (secure against the
quantum adversary) and either stores it on cloud or
sends it to Bob’s local domain via the insecure Inter-
net. When Bob requests the outsourced ciphertext, the
local Edge node on his side receives it and applies re-
decryption to transform the post-quantum secure ci-
phertext to IBE ciphertext. Finally, Bob decrypts the
generated IBE ciphertext using his private key.

This scenario motivates our work, and our solu-
tion applies novel classical to post-quantum secure
ABE-IBE proxy re-encryption (L ABE-IBE) to se-
cure data over the Internet from quantum adversaries.

The main contributions in this paper are:

• We design a proxy re-encryption scheme
(L ABE-IBE PRE) that securely transforms
the attribute-based ciphertext to post-quantum
secure ciphertext (at sender’s local Edge-A) and
post-quantum secure ciphertext to identity-based

ciphertext (at receiver’s Edge-B). Our scheme
is post-quantum-safe because its security relies
on the quantum intractability of NP-hard lattice
problems.

• Our scheme provides an effective and secure com-
munication channel between two local domains
via an insecure cloud/Internet that could be con-
trolled by a powerful quantum adversary. The
re-encryption operations are performed by local
Edge nodes – see Fig. 2.

• We evaluate the performance and security of
our scheme. We also demonstrate that our
scheme is selectively secure against indistinguish-
able chosen-ciphertext attacks (IND-sCCA).

4 PRELIMINARIES

This section illustrates the mathematical definitions,
notations, and concepts related to bilinear pairing and
lattice-based cryptography.

4.1 Bilinear Pairing

Definition 4.1 (Bilinear Pairing (Deng et al., 2014)).
Given cyclic groups G1, G2 and GT of prime order p,
where g1 is a generator of G1 and g2 is a generator
of G2, a bilinear pairing is a map e : G1×G2→GT
with the following properties:

i. Bilinearity: ∀h1,h2∀a,b e(ha
1,h

b
2) = e(h1,h2)

ab,
where h1 ∈G1,h2 ∈G2 and a,b ∈ Zp.

ii. Non-degeneracy: e(g1,g2) ̸= 1.
iii. For G1 and G2, there exists an algorithm that can

efficiently compute the bilinear map e : G1×G2
→ GT . □

The bilinear map e(,) is symmetric if G1 =G2.

Definition 4.2 (Linear Secret Sharing Scheme
(LSSS) (Beimel, 1996, Susilo et al., 2017)). Given a
set of n parties P = {P1,P2, ...,Pn} as an access struc-
ture, a secret sharing scheme Π is a LSSS over Zp if

i. Each party’s shares of the secret form a vector
over Zp.

ii. There is an (l× n) matrix M (share generating)
matrix. The ith row of M, Mi is assigned to the
party Pi according to a function ρ(i), for all i =
1, . . . ,n. Let vector v = (s,r2, ...,rn), where s ∈
Zp is the secret to be shared and r2, ...,rn ∈ Zp
randomly chosen, then M ·v represents l shares of
s. The share of Pi is given by λi = Mi · v. □

Recovery of a secret proceeds as follows. Given
an authorized set Û ∈ U and I ⊆ {1,2, · · · , l} defined
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as I = {i : ρ(i) ∈ Û}, then there exist some constants
{ωi ∈ Zp} such that ∑

l
i ωiλi = s for each valid share

{λi} of secret s.
Definition 4.3 (Computational Bilinear Diffie-Hell-
man (CBDH) Problem (Joux and Nguyen, 2003)).
Let e : G1×G2 → GT be a non-degenerate bilinear
pairing. Then

• The bilinear Diffie-Hellman problem 1 (BDH-1)
asks to find z = e(R,S)ab for given R,aR,bR∈G1,
S ∈G2 and random a,b.

• The bilinear Diffie-Hellman problem 2 (BDH-2)
asks to find z = e(R,S)ab for given R ∈G1, S, aS,
bS ∈G2 and random elements a,b.

4.2 Lattices

Definition 4.4 (Lattices (Micciancio and Regev,
2009)). Given a collection B = {b1, ...,bn} consist-
ing of n linearly independent vectors b1, . . . ,bn ∈ Rm,
an n-dimensional lattice Λ generated by B (further
called a basis) is defined as:

Λ = L(b1, . . . ,bn) = {
n

∑
i=1

ci ·bi : ci ∈ Zn, ∀1≤ i≤ n}, (1)

where n is the rank of lattice Λ. Λ is called full rank
if and only if n = m. □
Definition 4.5 (q-ary Lattice (Micciancio and Regev,
2009)). Given a vector u⃗∈Zn

q and a matrix A∈Zn×m
q ,

whose entries are chosen uniformly at random, a q-
ary lattice for prime q is defined as:

Λ
u⃗
q(A) := {⃗e ∈ Zm s.t. A⃗e = u⃗(mod q)},

Λ
⊥
q (A) := {⃗e ∈ Zm s.t. A⃗e = 0(mod q)}.

(2)

The security of LBC schemes rests on the in-
tractability assumptions of lattice problems, such as
learning with error (Lindner and Peikert, 2011).

4.2.1 Learning with Error (LWE)

Let Ψ be a security parameter and X = X (Ψ) be a
Gaussian distribution over Zq (Gentry et al., 2008).
The LWEn,m,q,X assumption requires that, if A ∈
Zm×n

q , s⃗ ∈ Zn
q , e⃗ ∈ X m, u⃗ ∈ Zm

q , then (A, A⃗s+ e⃗) ≈c
(A, u⃗), where ≈c is computational approximation.

The prime q must be sufficiently large such that
∑i∈S ei ≤ q/4 holds.
Definition 4.6 (TrapGen (Micciancio and Peikert,
2012)). Let A ∈ Zn×m

q and G ∈ Zn×(k−1)z
q be matrices

with m ≥ z ≥ n and k ≥ 2. A trapdoor for A is a ma-
trix TA ∈Zm×(k−1)z, where m=m+(k−1)z, such that

A
[

TA
I

]
= HG for some invertible matrix H ∈ Zn×n

q

and identity matrix I ∈ Z(k−1)z×(k−1)z. H is the tag
matrix and can be the identity matrix I.

5 PROPOSED SCHEME

In this section, we detail the algorithms related to the
basic building blocks (ABE, IBE and Lattice-based
cryptographic) and then use these algorithms to con-
struct our proposed scheme.

5.1 Building Blocks

We start with the mathematical details of ABE, IBE
and Lattice-based schemes.

5.1.1 ABE

The Waters (2011) scheme consists four algorithms:
SetupABE(U): Let U be a set of attributes, and G1
and G2 cyclic groups of prime order p with the bi-
linear pairing (Definition 4.1). First choose g1 ∈ G1,
g2 ∈ G2 and random elements h1, ...,hl ∈ G2 associ-
ated with attributes from U, where l is the number of
attributes. In addition, choose two random exponents
αA, a ∈ Zp (where the A in αA represents ABE). The
function SetupABE outputs a master public key mpkA
and a master private key mskA as follows:

mpkA = (g1,e(g1, g2)
αA , ga

2,h1, ...,hl), mskA = g
αA
2 . (3)

EncryptABE(mpkA,M ,(M,ρ)): It takes mpkA, a message
M and access structure (M,ρ), where M is the share
generating matrix and ρ is a function that links at-
tributes in U to the rows of M (Definition 4.2). Choose
a random secret s and variables y2, ...,yn ∈ ZP, and
define a vector v = (s,y2, ...,yn) ∈ Zn

p. Then calcu-
late λi = Mi · v from (Definition 4.2). The EncryptABE
function chooses random r1, ...,rl ∈Zp and calculates
ciphertext CA = (C,C′,{Ci,Di}l

i=1) as follows:
C = M · e(g1,g2)

αAs, C′ = gs
1,

{Ci = gaλi
2 h−ri

i , Di = gri
1 }i∈I .

(4)

The Encrypt function outputs CA.
KeyGenABE(mpkA,mskA, Û): Given the master public
key mpkA, the master secret key mskA, an attributes
set Û and a random t ∈ Zp, generate a private key
skS = (K,L,Kρ(i)) as follows:

K = gαA
2 gat

2 ,L = gt
1, ∀ρ(i) ∈ Û, i ∈ I : Kρ(i) = ht

i.
(5)

DecryptABE(CA,skS): Given mpkA, skS, and U, which
qualifies access structure (M,ρ) and I ⊂ {1,2, ..., l}
as I = {i : ρ(i) ∈ Û}, there exists a set of constants
{ωi ∈Zp}i∈I} such that ∑i∈I ωiλi = s (Definition 4.2).
The DecryptABE function decrypts as follows:

M =
C ·∏i∈I

(
e(L,Ci) · e(Di,Kρ(i))

)ωi

e(C′,K)
,

=
M · e(g1,g2)

αA s ·∏i∈I e(g1,g2)
aωiλit

e(g1,g2)
αA s · e(g1,g2)

ast .

(6)
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5.1.2 IBE

The IBE scheme designed by Boneh and Boyen
(2004) is a collection of four algorithms.
SetupIBE : Let G1 and G2 be cyclic groups of prime
order p (Definition 4.1). First, choose elements
g5,hID ∈ G1, g3,g4 ∈ G2, and αI ∈ Zp (where the I
in αI represents IBE) to calculate g4 = g3

αI . Then,
SetupIBE outputs a master public key mpkI and a mas-
ter secret key mskI as follows:

mpkI = (g3, g4, g5, hID), mskI = αI . (7)

EncryptIBE(mpkI ,M , ID): Taking an identity ID, mpkI
and M ∈ GT as input and choosing random w′ ∈ Zp
to output a ciphertext CI as follows:

CI = (C1
I ,C

2
I ,C

3
I ) = (gw′

3 ,(gID
5 hID)

w′ ,M .e(g5,g4)
w′). (8)

KeyGenIBE(mpkI ,mskI , ID): Given mpkI , mskI and ID as
input, this function picks a random u ∈ Zp and gener-
ates a private key skID for ID as follows:

skID = (SK1
ID,SK2

ID) = (gαI
5 (gID

5 hID)
u,gu

3). (9)

DecryptIBE(CI ,skID): Given CTID and skID as input,
this function computes M as follows:

M =
C3

I · e(C2
I ,SK2

ID)

e(SK1
ID,C

1
I )

. (10)

5.1.3 Learning with Error - Lattice-Based
Cryptography (LWE-LBC)

LWE-LBC (Lindner and Peikert, 2011) scheme is a
collection of the following four algorithms.
SetupLBC takes a system security parameter Ψ and de-
fines X = X (Ψ) to be a Gaussian distribution DZq . It
chooses positive integers m, n, q, where q is prime,
and generates a lattice (Definition 4.4) of n linearly
independent vectors of length m with an m× n ma-
trix A = {a1, ...,an} ∈ Zn

q using uniform distribution
and a trapdoor TA using TrapGen(n) (Definition 4.6),
where the master public key mpkL = A and the master
secret key mskL = TA.
KeyGenLBC(A,m,n,q,X ) takes positive integers m, n,
q, and X as input and chooses random error vector
{e1, ...,em} ∈X . Then it chooses uniform short vector
γ ∈ Zn

q from a Gaussian distribution for basis of TA as
a secret key and generates the public key as follows:

pkL = {βi}n
i=1 where βi =< A,γ >+ei mod q. (11)

EncryptLBC(mpkL,pkL,M ) takes mpkL, pkL and m ∈M
as input. Then, it chooses random s′ ∈ Zm

q to generate
the ciphertext CL = (u,v) as follows:

u := (AT s′+ e1) v := β
T s′+ e2 + ⌈q/2⌋.m. (12)

DecryptLBC(CL,γ): This function takes a secret key γ

and CL and outputs a message m ∈M as follows:

m := (v− γ
T u). (13)

Figure 3: Construction of L ABE-IBE Proxy Re-encryption
Scheme between Alice and Bob.

5.2 Construction of L ABE-IBE PRE

We construct a classical to post-quantum secure ABE-
IBE proxy re-encryption (L ABE-IBE PRE) scheme
using the basic building blocks. Our scheme consists
of seven algorithms, and four of them are as follows:

• Setup = ⟨SetupABE ,SetupIBE ,SetupLBC⟩.
• KeyGen = ⟨KeyGenABE , KeyGenIBE , KeyGenLBC⟩.

– Alice chooses a random t ∈ Zp and executes
KeyGenABE to generate her private key skS for
a set of attributes U.

– Bob chooses a random u ∈ Zp and executes
KeyGenIBE for his ID to generate his private key
skID.

– Edge-B chooses a random uniform secret vec-
tor γ∈Zn

q and generates β for a uniform random
matrix A using KeyGenLBC algorithm.

• Encrypt = ⟨EncryptABE(mpkA,M ,(M,ρ)⟩: Alice ex-
ecutes the EncryptABE algorithm defined in Eq. (4).

• Decrypt(CI ,skID): This function is derived from
Eq. (10). Bob receives an IBE ciphertext CI from
Eq. (18) and uses his private key skID to execute
the following Decrypt algorithm to get a message
M .

M =
CI

e(sk1
ID · (gID

5 hID)
u′
,gτ

3)
. (14)

The other three algorithms are: ReKeyGen, ReEncrypt
and ReDecrypt.

More precisely, Alice executes ReKeyGen algo-
rithm, and Edge-A and Edge-B execute ReEncrypt and
ReDecrypt algorithms, respectively, and finally Bob
executes Decrypt algorithm (Eq. (14)). The working
of our proposed scheme using these algorithms is il-
lustrated in Fig. 3.
(rkA→L, rkL→I)←ReKeyGen(mpkA,mpkI ,mpkL, Û, ID, skS,

sk2
ID
′
, gτ

5,h
τ
ID): Given the parameters mpkA (Eq. (3)),

mpkI (Eq. (7)), mpkL (Eq. (11)), Alice’s private key skS,
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Bob’s identity ID, three components sk2
ID
′
, gτ

5 and
hτ

ID from Bob, and pkL from Edge-B. Alice and Bob
execute the following steps to generate re-encryption
and re-decryption keys:

• Bob chooses two random variables u′,τ ∈ Zp, and
computes sk2

ID
′
= sk2

ID.g
u′
3 = gu′′

3 and gτ

5, where
u+ u′ = u′′. Bob shares sk2

ID, gτ

5, and hτ
ID with

Alice.

• Edge-B chooses β and generates a secret γ from
a Gaussian distribution for a uniform random ma-
trix A. Edge-B share β with Alice.

Alice generates the re-encryption key rkA→L for Edge-
A and re-decryption key rkL→I for Edge-B as follows:

Ra =K ·ga·ID
2 · sk2

ID
′
= gαA

2 gat
2 ga·ID

2 gu′′
3 ,

Rb ={L̂, ˆKρ(i)}= {L ·gID
1 ,Kρ(i) ·hID

i }ρ(i)∈Û,

Rc =gτ·ID
5 ·hτ

ID, Rd = ⟨A,β⟩, Re = e(gτ
5,g4).

(15)

Edge-A receives rkA→L = (Ra, Rb, Rc, Rd) to re-
encrypt ABE ciphertext to post-quantum ciphertext
and Edge-B receives rkL→I = (Re) to transform post-
quantum ciphertext to IBE ciphertext.
CL ←ReEncrypt(rkA→L,CA): For rkA→L and ABE ci-
phertext CA = (C,C′,{Ci,Di}l

i=1) (Eq. (4)), Edge-A
performs ReEncrypt to output a post-quantum cipher-
text CL = (C1

L,C
2
L). Let {ωi ∈ Zp}i∈I be a set of con-

stants such that if λi are valid shares of any secret s,
then ∑i∈I ωiλi = s (Definition 4.2). Then compute C2
using Ci and Di for all i = 1, · · · , l, where

C
′

1 =
C · e(C′Rc,gu′′

3 )

e(C′ ,Ra)
,

C
′

2 =
l

∏
i=1

(e(L̂,Ci) · e(Di, ˆKρ(i)))
ωi .

(16)

C
′
1 and C

′
2 lie on the bilinear vector space e : G1 ×

G2→ GT . Using the bilinear vector space, given bi-
linear results C

′
1 = {x1,y1} and C

′
2 = {x2,y2}, we use

the Encode function as a⃗1 = Encode(x1,y1) where
{a11, · · · ,a1n/2} ← x1 and {a1n/2+1, · · · ,a1n} ← y1.
Similarly, we use the Encode function for C

′
2 to

get a⃗2. Transformed vectors are symmetric, non-
degenerate and bilinear under vector space of map
e. These transformed vectors a⃗1 and a⃗2 are used as
an input to a black box lattice-based encryption func-
tion (Ioannou and Mosca, 2011) to output the post-
quantum secure ciphertext as follows:

C1
L = (u1,v1) = (AT s′+ e1,β

T s′+ e2 + ⌈q/2⌋ ·a1),

C2
L = (u2,v2) = (AT s′+ e1,β

T s′+ e2 + ⌈q/2⌋ ·a2),
(17)

where the output is CL = (C1
L,C

2
L).

CI ←ReDecrypt(rkL→I ,CL,γ) takes CL, rkL→I and a se-
cret vector γ. Edge-B performs ReDecrypt algorithm
and decodes the results to bilinear vectors (Bartocci
et al., 2009) using the Decode function as follows:

r1 := (v1− γ
T u1), r2 := (v2− γ

T u2),

D1
L(x,y) =Decode(r1),

D2
L(x,y) =Decode(r2),

CI =rkL→I ·D1
L ·D2

L.

(18)

The ciphertext CL is post-quantum secure and
stored on the cloud, while Bob works in the classical
IBE domain. Therefore, the ReDecrypt algorithm on
the Edge-B transforms this post-quantum secure ci-
phertext into classical IBE ciphertext, making it suit-
able for Bob to decrypt using his secret key. More-
over, Edge-B also performs multiplication operations
on decoded ciphertexts to reduce the number of oper-
ations on Bob’s side without leaking any information
about the encrypted message (i.e., IBE ciphertext) to
Edge-B. Bob uses the output ciphertext CI to perform
decryption as defined in Eq. (14).

5.3 CBDH Assumption

Given cyclic groups G1, G2 and GT of prime order p,
generators gx of G1 and gy of G2, and bilinear map-
ping e : (G1×G2)→GT (Definition 4.3), let a,b∈Zp
be randomly chosen. Consider a polynomial time ad-
versary A in the CBDH problem who takes the tuple
(G1,G2, p, gx, gy, ga

x , gb
x , ga

y , gb
y) as an input, and outputs

e(gx,gy)
ab with advantage

AdvA = Pr
[
A(G1,G2, p,gx,gy,ga

x ,gb
x ,ga

y ,gb
y) = e(gx,gy)

ab
]

(19)

Definition 5.1. The CBDH assumption holds if there
exists no PPT adversary with non-negligible advan-
tage (defined above) in solving the CBDH problem.

5.4 Hard Assumptions of L ABE-IBE

The key actors involved are Alice as a sender, Bob as
a receiver, and a trusted third party (TTP). In the pro-
posed scheme, the collusion of all the communicating
parties, except Alice, will not allow an adversary to
retrieve Alice’s secret key. Trusted third parties (TTP)
may be compromised, and corruption of master secret
keys can affect re-encryption and re-decryption algo-
rithms. However, TTP will not leak any information
about Alice and Bob’s encrypted message or secret
keys to adversary at edge nodes.

Moreover, the local edge nodes perform re-
encryption and re-decryption of ciphertexts. How-
ever, the generation of correct or incorrect ciphertexts
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from these algorithms entirely depends on parame-
ters, such as master keys, private keys, random and in-
dependent variables. Based on hardness assumptions
i.e., CBDH and LWE, in our proposed L ABE-IBE
PRE scheme, if all the parties involved in communi-
cation are corrupted, the ReEncrypt and ReDecrypt al-
gorithms will still generate random indistinguishable
ciphertexts. In the following subsection, the security
of the proposed scheme is modeled as a game.

5.5 Security Game of Proposed Scheme

The indistinguishability security of our proposed
L ABE-IBE scheme is modeled by a game played be-
tween a challenger C and an adversary A . C generates
L ABE-IBE, while A tries to break it. To start, C gen-
erates the master key pairs (mpkA,mskA) and (mpkI ,mskI).
A has access to master public keys mpkI and mpkA,
while master secret keys mskA and mskI are not known
to A . A then outputs two message m0 and m1 from
the message space, an access structure (M,ρ)∗ for a
set of attributes Û∗ and identity ID∗ to be challenged.
The challenger C generates two classical challenge ci-
phertexts C∗A and C∗I for the given (M,ρ)∗ and ID∗,
and one post-quantum secure challenge ciphertext C∗L
for the given A∗ and β∗. Note a classical adversary A
tries to break C∗A and C∗I while a quantum adversary
AL tries to break C∗L.

During the game, A can make private key queries
on any access structure and identity other than the
challenge access structure and challenge identity. In
particular, A can make re-encryption and decryp-
tion queries on ((M,ρ), ID,CA,CI) satisfying either
(M,ρ) ̸= (M,ρ)∗ or ID ̸= ID∗ or CA ̸=C∗A or CI ̸=C∗I .
Similarly AL make post-quantum encryption queries
on (A,γ,TACL), where A ̸= A∗ or γ ̸= γ∗ or TA ̸= T ∗A . A
guesses the chosen message in the challenge cipher-
texts C∗A and C∗I , and AL guesses the encrypted cipher-
text CA in the post-quantum challenge ciphertext C∗L.
Here we only give the classical security game. The
details of post-quantum security of challenge cipher-
text C∗L against AL are given under Theorem 3.

The selective indistinguishability game against
chosen-ciphertext attacks (IND-sCCA) is as follows:

1. Setup: Challenger C runs this algorithm to gen-
erate master key pairs (mpkA,mskA) and (mpkI ,mskI)
and sends mpkA and mpkI to A , but keeps master
keys mskA and mskI secret for queries from A .

2. Phase 1: A can make the following queries.

• Key Queries: A chooses a set of attributes
U and an identity ID. Then A makes key
queries and C runs key generation algorithms
KeyGenABE and KeyGenIBE to return the skS and

skID respectively to the A .
• Decryption Queries: For chosen CA and CI ,

the A makes decryption queries. C runs
DecryptABE and DecryptIBE and returns result to
the A .

• ReKey Queries: A makes re-encryption
key queries on (U,(M,ρ),skS, ID), C runs
ReKeyGen and returns rkA→L and rkL→I to the A .

3. Challenge: A adaptively chooses two mes-
sages m0 and m1 from a message space, an ac-
cess structure (M,ρ)∗ and an identity ID∗ to
be challenged. We restrict the access structure
(M,ρ)∗ and the identity ID∗ to that not previ-
ously queried in Phase 1. C randomly chooses
c ∈ {0,1} and computes the two classical chal-
lenge ciphertexts; one before re-encryption C∗A =
E[mpk,(M,ρ)∗,mc] and other after re-decryption
CI
∗ = ReDec[rk∗L→I ,ReEnc[mpk, rk∗A→L,CA

∗]], and
one post-quantum ciphertext C∗L where rk∗A→L ̸=
rkA→L and rk∗L→I ̸= rkL→I .

4. Phase 2: C responds to all private-key queries,
re-key queries and decryption queries from A
in the same way as in Phase 1 with restriction
that the A can not make private key queries on
(M,ρ)∗ and ID∗, and no decryption queries on ei-
ther ((M,ρ)∗,C∗A) or (ID∗,C∗I ).

5. Guess: The adversary A outputs a guess c′ of c
and wins the game if c′ = c. The advantage ε of
the A in winning this game is defined as

ε = 2(Pr
[
c′ = c

]
−1/2). (20)

Definition 5.2. The scheme is said to be IND-sCCA
secure, if there exists no probabilistic polynomial time
(PPT) adversary having non-negligible advantage in
the above mentioned game.

5.6 Correctness of L ABE-IBE PRE

We prove the correctness of L ABE-IBE PRE using
the following Theorem.

THEOREM 1 (Correctness). Given a L ABE-IBE
PRE scheme. If the reverse substitution of parame-
ters from the Decrypt function to Encrypt function (from
Section 5) yields the message M , then the scheme is
correct.

Proof: We start with the IBE decryption algorithm
(Eq. (14)) and apply reverse substitution of security
parameters or equations up to the encryption algo-
rithm given in Eq. (4). We start with Eq. (14) and
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substitute Bob’s private secret key as follows:

M =
CI

e(sk1
ID · (gID

5 hID)
u′
,gτ

3)
,

=
CI

e(gαI
5 · (g

ID
5 hID)u · (gID

5 hID)u′ ,gτ
3)
,

where u+u′ = u′′. Substituting CI from Eq. (18):

M =
RL→I ·D1

L ·D2
L

e(gαI
5 · (g

ID
5 hID)

u′′
,gτ

3)
.

We apply decode function on D1 and D2 (Eq. (18)),
and re-decryption function for a secret vector γ and
rkL→I (Eq. (15)) to reduce the above as:

M =
e(gτ

5,g4) · (v1− γT u1) · (v2− γT u2)

e((gαI
5 ·g

ID
5 hID)

u′′
,gτ

3)
.

Applying g4 = gαI
3 from Eq. (7), substituting func-

tions from Eq. (17) and Encode to transform resulting
{x1,y1} and {x2,y2} to C

′
1 and C

′
2 respectively, gives:

M =
e(gτ

5,g
αI
3 ) · {x1,y1} · {x2,y2}

e(gαI
5 · (g

ID
5 hID)

u′′
,gτ

3)
,

=
C
′

1 ·C
′

2
e((gID

5 hID)u′′ ,gτ
3)
.

Substituting C
′
1 and C

′
2 from Eq. (16):

M =
C · e(C′Rc,gu′′

3 ) ·∏l
i=1 (e(L̂,Ci) · e(Di, ˆKρ(i)))

ωi

e(C′ ,Ra).e((gID
5 hID)u′′ ,gτ

3)
.

Substituting C, C′, Ci and Di from Eq. (4):

M =
M · e(g1,g2)

αAs · e(gs
1Rc,gu′′

3 ) · e(gt
1gID

1 ,gas
2 )

e(gs
1,Ra).e((gID

5 hID)u′′ ,gτ
3)

,

where ∑
l
i=1 ωiλi = s. Applying re-encryption key

rkA→L (Eq. (15)) and bilinear pairing properties as fol-
lows.

M =
M · e(g1,g2)

αAs · e(gs
1gτ·ID

5 hτ
ID,g

u′′
3 ) · e(gt

1gID
1 ,gas

2 )

e(gs
1,g

αA
2 gat

2 ga·ID
2 gu′′

3 ).e((gID
5 hID)u′′ ,gτ

3)
,

= M . □

Based on this, we give the following corollary.

Corollary 1.1. If reverse substitution method yields
a message M , then our proposed L ABE-IBE proxy
re-encryption scheme is correct.

6 SECURITY ANALYSIS

We consider the following theorem to analyze that
our proposed L ABE-IBE PRE scheme is selectively
IND-sCCA secure (Section 5.5):

THEOREM 2. Given a L ABE-IBE PRE scheme.
Assuming the CBDH problem is intractable, then the
scheme is IND-sCCA secure.

Sketch of Proof. We illustrate the security of the
proposed scheme as a game played between adversary
A and challenger C . In Setup phase, C computes the
master public keys and shares them with A . In Phase
1, A can make an unlimited number of private key,
re-key, and decryption queries for the challenge ci-
phertexts. Once Phase 1 is over, we restrict A from
making any key or decryption queries to C . Then A
selects two messages from the message space, any at-
tribute set, and identity for a challenge with restric-
tions that A has not queried these attributes and iden-
tity in Phase 1. C randomly selects one of the mes-
sages and computes the challenge ciphertexts using
encryption and re-encryption algorithms. C presents
challenge ciphertexts to A to break. The target of A
is to correctly guess the ciphertext generated from one
of the two known messages. Here the CBDH assump-
tions come into play when C generates the challenge
ciphertexts for A . Moreover, the simulator B sim-
ulates the scheme as closely related to the proposed
scheme as possible such that A cannot distinguish be-
tween the simulated and real schemes. Below in de-
tailed proof, we use B instead of the challenger C to
respond to the adversary’s queries (Guo et al., 2018).

Detailed Proof. Let there exist a PPT adversary
A who can (t,qk,qd ,ε)-break the L ABE-IBE PRE
scheme, where t is time cost, qk is number of key
queries, qd is number of decryption queries, and ε

is the advantage of A . We construct a simulator B
to solve the CBDH problem. Given the instance of
the problem (gx,g

a
x ,g

b
x ,g

c
x,gy,g

a
y ,g

b
y ,g

c
y) over the pair-

ing group PG = (G1,G2,GT , p, gx, gy,e) as an input,
B runs A and works as follow:
Init: A outputs an access structure (M,ρ)∗ and an
identity ID∗.
Setup: B randomly selects x1,x2,x3,y1,y2 ∈ Zp and
computes master public keys:

e(g1,g2)
αA =e(gx,gy)

x1+ab = e(gx,gy)
x1 e(gx,gy)

ab,

g1 =gx, g2 = gx2+a
y , g3 = gy,

g4 =gαI
3 = gy1+ac

y = gy1
y gac

y , g5 = gb
x ,

where αA = x1+ab, αI = y1+ac, and a,b,c are from
problem instance. The master public keys are

mpkA = {G1,G2,GT , gx, gx2+a
y ,e(gx, gy)

x2 e(gx, gy)
ab,hl

i=1},

mpkI = {G1,G2,GT , gy, gy1
y gac

y , gb
x ,hID}.

hi Queries: For the set of attributes Û, B chooses hi
for 1≤ i≤ l uniformly from G2 and sends to A .
hID Queries: For the identity ID, B chooses a random
value hID from G1 and sends to A .
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Phase 1: A makes private-key, re-key, and decryption
queries in this phase. For the private-keys and re-key
queries, A chooses (M,ρ) ̸= (M,ρ)∗ and ID ̸= ID∗.
B chooses t ′, t ′′ ∈ Zp and computes

K =gx1+ab
y g(x2+a)t ′

y , L = gt ′
x ,Ki = ht ′

i ,

SK1
ID =gb(y1+ac)

x (gbID
x hID)

t ′′ , SK2
ID = gt ′′

y ,

and constructs: skS = (K,L,Ki), skID = (SK1
ID,SK2

ID).
For re-key queries, B chooses random τ, t1′′ ∈ Zp

where t ′′+ t ′′1 = t ′′2 and computes:

Ra =K.g(x2+a)ID
y sk2

ID
′
= gx1+ab

y g(x2+a)t ′
y g(x2+a)ID

y gt ′′2
y ,

Rb =(L ·gID
x ,Ki ·hID

i ) = (gt ′
x gID

x ,ht ′
i hID

i ),

Rc =gbτID
x ·hτ

ID, and Re = e(gbτ
x ,gy1+ac

x ),

where rkA→L = (Ra,Rb,Rc) and rkL→I = Re.
For a decryption queries on ((M,ρ), ID,CA,CI),

suppose CA = (C,C′,Ci,Di) and CI derives from D1
L

and D2
L. If (M,ρ) ̸= (M,ρ)∗ and ID ̸= ID∗, B gener-

ates the corresponding private keys and re-keys to per-
form decryption of CA and CI . For (M,ρ) = (M,ρ)∗,
B continuous the simulation if it satisfies ∑i∈I ωiλi =
s for a set of constants ωi. If ∑i∈I ωiλi ̸= s, it aborts
the simulation. Then B uses (M,ρ) to compute

d =∏
i∈I

(e(L,Ci) · e(Di,Ki))
ωi ,

=∏
i∈I

(
e(gt ′

x ,g
(x2+a)λi
y h−ri

i ) · e(gri
x ,h

t ′
i )
)ωi

,

=∏
i∈I

e(gx,gy)
(x2+a)ωiλit ′ ,

=∏
i∈I

(
e(gx,gy)

x2ωiλit ′ · e(gx,gy)
aωiλit ′

)
.

Therefore for valid (M,ρ) satisfying ∑i∈I ωiλi = s,
the simulator B uses d to decrypt CA.

Similarly for ID = ID∗, B continues the decryp-
tion (DecryptIBE ) of CI . B searches hID from the list of
hID and chooses random τ, t ′′2 ∈Zp where t ′′+ t ′′1 = t ′′2
satisfying ID. B computes d′ as

d′ =e
(
sk1

ID · (gbID
x hID)

u′
,gτ

y

)
,

=e
(

gb(y1+ac)
x (gbID

x hID)
t ′′ · (gbID

x hID)
t ′′1 ,gτ

y

)
,

=e(gx,gy)
by1τ · e(gx,gy)

abcτ · e(gx,gy)
bIDt ′′2 τ · e(hID,gy)

t ′′2 τ.

Let IDt ′′2 = −b(y1 + ac), then we have d′ =
e(hID,gy)

t ′′2 τ. Therefore, B uses d′ for valid t ′′2 and
randomly chosen τ to decrypt ciphertext CI . Here we
distinguish two cases as follow:

• Case I: For the queries satisfying the conditions
and hash mentioned above, B returns the correct
challenge ciphertext to A .

• Case II: For the queries not satisfying the condi-
tions mentioned in the above equations, the simu-
lator returns incorrect challenge ciphertext to A .

Challenge: A adaptively chooses two distinct mes-
sages m0 and m1, a challenge access structure (M,ρ)∗,
and a challenge identity ID∗. B randomly flips the
coin c ∈ {0,1} and sets the challenge ciphertext C∗A =
(C∗,C′∗,C∗i ,D

∗
i ) as

C∗A =(mc · e(gx,gy)
(x1+ab)s, gs

x,g
(x2+a)λ∗i
y h−ri

i , gri
x ).

B returns challenge C∗A to A . At this stage, there
exists the two more cases for computing C∗I from C∗A
as follows.

• Case I: B utilizes the challenge C∗A generated in
the above step to compute challenge C∗I .

• Case II: A randomly chooses C∗A and B uses that
C∗A to compute the challenge C∗I .

B computes the challenge C∗I for the identity ID∗ as

C∗I =rk∗L→I ·mc · e
(
(gbID∗

x hID∗)
τ,g

t ′′2
y

)
,

=e(gbτ
x ,gy1+ac

y ) ·mc · e
(
(gbID∗

x hID∗)
τ,gt ′′2

y

)
,

=e(gx,gy)
bτ(y1+ac) ·mc · e(g

t ′′2
y ,gbτID∗

x ).e(hID∗ ,g
t ′′2
y )

τ,

=e(gx,gy)
bτ(y1+ac) ·mc · e(gx,gy)

bτID∗t ′′2 .e(hID∗ ,gy)
t ′′2 τ.

Therefore, C∗A and C∗I for the message mc are cor-
rect from the point of view of A .
Phase 2: Here, A is allowed to make queries similar
as in the Phase 1 with following restrictions:

• No private key queries are allowed on any access
structure (M,ρ)∗ or identity matching ID∗ in the
key query phase.

• No decryption queries are allowed on
((M,ρ)∗,C∗A), (ID∗,C∗I ), or ((M,ρ)∗, ID∗,C∗A,C

∗
I ).

The challenge C∗I can be computed from C∗A or ran-
domly chosen ABE ciphertext using rk∗A→L and rk∗L→I .
Guess: A outputs a guess c′ of c and wins the game
if c′ = c. Otherwise, it outputs ⊥.

According to the simulation, B can compute pri-
vate keys and re-encryption keys for (M,ρ) and ID.
Then, B performs the decryption simulation correctly.
For the hash queries to hi and hID, B randomly selects
a hash value from the hash list as the challenge hash.
B can use the hash query to solve the CBDH problem.

According to the simulation, given the decryption
query for the challenge CA = (C,C′,Ci,Di), the sim-
ulator B can perform correct decryption simulation if
(M,ρ) ̸= (M,ρ)∗ and ID ̸= ID∗. If (M,ρ) = (M,ρ)∗

and ID = ID∗, we have following cases:

• For the access structure (M,ρ), if ∑i∈I ωiλi = s, B
can compute d and perform decryption.
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• If ∑i∈I ωiλi ̸= s, B return the invalid d.

If A has no advantage in computing d and d′, B
will perform decryption simulation successfully with
negligible probability. The random and independent
numbers used in the generation of master keys, pri-
vate keys, re-encryption keys, and challenge cipher-
texts are:

master keys: x1 +ab,x2 +a,y1 +ac, {hi}l
i=1,hID,

private keys: t ′, t ′′, t ′′1 ,τ,

s :ωi satisfying ∑
i∈I

ωiλi = s.

This illustrates that the randomness property holds
and x1,x2,x3, t ′, t ′′, t ′′1 ,τ are randomly chosen by the
simulator. Therefore, the simulation is indistinguish-
able from the real attack.

The simulation is successful if no abort occurs in
the query or challenge phase. If the challenge access
structure (M,ρ)∗ and the identity ID∗ are the i-th ac-
cess structure and j-th identity queried to the hi and
hID respectively, the adversary cannot query private
keys and re-encryption keys, so that simulation will
be successful in the query phase and the challenge
phase. The success probability is 1(qk1qk2), where
qk1 are the queries for an access structure and qk2 are
the queries for an identity.

Moreover, if the adversary A makes decryption
queries for randomly selected CA with success proba-
bility 1/p of breaking CA, second time it is 1/(1− p),
and qd1/(p−qd1) for qd1 queries of CA. Similarly,
the success probability for the adaptive choice of CI
is qd2/(p−qd2) for qd2 queries. Therefore, A has
success probability at most (1/2)+ (qd1/p−qd1) of
guessing the encrypted message in CA and 1

4 +
qd2

p−qd2
in CI .

In simulation, if e(gx,gy)
(x2+a)ωiλ

∗
i t ′ from d and

e(gx,gy)
abcτ · e(gx,gy)

bID∗t ′′2 τ · e(hID∗ ,gy)
t ′′2 τ from d′

has not been queried, the adversary has no advan-
tage in correctly guessing the c except the probabil-
ity 1/2 for the challenge ciphertext CA and probabil-
ity of 1/4 for the challenge ciphertext CI . A makes
qd queries to e(gx,gy)

(x2+a)ωiλit ′ and qd′ queries to
e(gx,gy)

abcτ · e(gx,gy)
bIDt ′′2 τ · e(hID,gy)

t ′′2 τ with proba-
bility ε. Therefore, the probability of correctly finding
the solution is ε

qdqd′
.

Let Ts denote the time cost of the simulation.
We have Ts = O(qk + qd), which is mainly dom-
inated by the key generation and the decryption.
Therefore, B can solve the CBDH problem with(

t +Ts,
ε

qd1 qd2 qdqd′

)
.

Thus, PPT A has no advantage except given above
in solving the underlying CBDH hard problem and A

cannot break the challenge ciphertexts. Therefore, our
proposed L ABE-IBE PRE scheme is provably IND-
sCCA secure as per (Guo et al., 2018). □

Note 1: Collusion resistance restricts A from ob-
taining more knowledge about C∗A and C∗I even when
A queries the decryption keys associated with differ-
ent attribute sets and identities. Moreover, the chal-
lenge C∗A and C∗I are generated by B using random
and independent numbers and A has no knowledge of
(M,ρ)∗ and ID∗ or any random number used in gen-
erating the challenge ciphertexts.

Using the following theorem and its brief proof,
we analyze L ABE-IBE PRE scheme is quantum se-
lectively IND-qsCCA secure:

THEOREM 3. Given a L ABE-IBE PRE scheme.
Assuming the LWE problem is intractable, then the
scheme is IND-qsCCA secure.

Brief Proof. The quantum security of the pro-
posed scheme is shown as a game played between
the quantum adversary AL and challenger C . Assume
there exists an quantum adversary AL that can break
the L ABE-IBE PRE with non-negligible probability.
We construct a quantum simulator Bq that can solve a
LWE problem with non-negligible probability. Given
a LWE problem instance, Bq runs AL as follows:
Init: AL outputs a noise set X ∗, a uniform matrix A∗0,
a basis T ∗A and a short vector γ∗.
Setup: Bq randomly selects a uniform random matrix
A0 and a basis TA to generate A = [A0| −A0TA +G].
The master public key mpkL = A and master secret key
is mskL = TA.
Phase 1: In this phase, AL make private key and de-
cryption queries. For the private key queries, AL se-
lects A0 ̸=A∗0 and TA ̸=T ∗A . For the decryption queries,
AL selects γ ̸= γ∗.
Challenge: AL adaptively chooses two distant ABE
ciphertexts c1

A and c2
A. Bq randomly selects one of

the ciphertext cc
A, random secret s∗, and random errors

{e∗1,e∗2} ∈ X ∗ as input and generates a challenge post-
quantum ciphertext C∗L as

C∗L = (A∗T s∗+ e∗1, β
∗T s∗+ e∗2 + ⌈q/2⌉ · cc

A).

Bq returns C∗L to AL.
Phase 2: In this phase, AL makes queries similar to
Phase 1 with restriction that AL can not make private
key queries for A∗0 and T ∗A . Similarly, AL can not make
decryption queries for γ∗.
Guess: AL guess the encrypted ABE ciphertext c′ of
cc

A and wins if c′ = cc
A. Otherwise, it returns ⊥.

Here we analyze the probability of a success-
ful simulation. Consider AL makes qH1 and qH2
queries in Phase 1 and Challenge phase respec-
tively. The success probability of the simulation is
1− 1/(qH1qH2). Therefore, AL has advantage ε, and
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Table 1: Comparative Analysis of our L ABE-IBE with naive ABE-Decrypt & IBE-ReEncrypt and Encryption Switching
(ES) ABE-IBE schemes.

Schemes
Theoretical Analysis

Computation Communication Storage

Naive ABE-Dec & ABE.Dec + IBE.Enc: (3+2l)Ep +(6+4l)Ee ABE.CT.Size+IBE.CT.Size: ABE.CT+IBE.CT:
IBE-ReEnc IBE.Dec: 2Ep 2|GT |+(3+2l)|G1| 2|GT |+(3+2l)|G1|

ES.ABE-IBE
ES.ReKey: Ep +(5+3l)Ee ES.ReKey.Size: ES.Enc.CT:
ABE.Enc: Ep +(2+3l)Ee |GT |+(4+ l)|G1| |GT |+(1+2l)|G1|

He et al. (2019) ES.ReEnc: (2l +1)Ep +(3+ l)Ee ES.ReEnc.CT:
IBE.Dec: 2Ep +3Ee |GT |+2|G1|

L ABE-IBE

L ReKey: Ep +4Ee +Ev L ReKey.Size: L Enc.CT:
L ABE.Enc: Ep +(2+ l)Ee |GT |+3|G1|+Vn |GT |+(1+ l)|G1|
L ReEnc: 2Ep + lEe L ReEnc.CT: |GT |+ |G1|+ |Cl |
L ReDec: Ep, L IBE.Dec: Ep +2Ee L ReDec.CT: |GT |

Enc: Encryption, Dec: Decryption, ReKey: Re-encryption Key, ReEnc: Re-Encryption, ReDec: Re-Decryption, CT : Ciphertext, Ep: Number of bilinear
pairing operation, Ee: Number of exponentiation operations, Ev: Vector multiplication operations, l: Number of attributes, Vn: Size of n-dimensional
vector, Cl : post-quantum ciphertext

probability |Pr[c′ = cc
A]| ≥

1
2 + ε. Thus, Bq has ad-

vantage 1
2 (1− 1/(qH1qH2)) · ε in solving hard LWE

assumption.
Conclude that the quantum adversary AL has no

advantage in solving underlying LWE hard problem,
and AL can not break challenge ciphertext. This im-
plies that the proposed scheme is quantum secure in
the IND-qsCCA model since the quantum attacker
trying to break the proposed scheme must solve the
lattice problem, which is known to be hard. □

7 DISCUSSION

In this section, we discuss a theoretical and experi-
mental analysis of our scheme in comparison with the
existing classical ABE-IBE scheme (He et al., 2019).

7.1 Theoretical Analysis

We consider communication, computation, and stor-
age complexities to perform the theoretical analysis
of our proposed scheme. For this purpose, we take
the expensive set of operations for analysis as given
at the bottom of Table 1.

The comparative analysis of our L ABE-IBE
scheme with a naive decrypt-and-reencrypt scheme
and the ES.ABE-IBE (He et al., 2019) scheme is
shown in Table 1. In the naive solution, the client
downloads the ABE ciphertext from the Cloud, de-
crypts it and then encrypts it to IBE ciphertext before
sharing. ES.ABE-IBE improves efficiency by auto-
matically transforming ABE to IBE ciphertext with-
out downloading and decrypting it. The computa-
tional complexity (Column 2, Table 1) shows that the
naive solution requires linear cost of (3 + 2l)Ep +
(6+4l)Ee and ES.ABE-IBE requires Ep+(2+3l)Ee.

L ABE-IBE significantly reduces to Ep + (2 + l)Ee
reduce. Similarly, computational complexity for re-
encryption in ES.ABE-IBE is (2l +1)Ep +(3+ l)Ee,
while L ABE-IBE reduces it to 2Ep + lEe. Moreover,
computational complexity for IBE.Dec in ES.ABE-
IBE is 2Ep+3Ee, while in L ABE-IBE it is Ep+2Ee.

The communication complexity (Column 3, Ta-
ble 1) illustrates the size of communication packets
between the communicating parties. The communica-
tion cost of the naive solution is 2|GT |+(3+2l)|G1|
and ES.ABE-IBE scheme is |GT |+(4+ l)|G1|. How-
ever, L ABE-IBE reduces it to |GT |+3|G1|+Vn.

Similarly, ES.ABE-IBE reduces storage complex-
ity (Column 4, Table 1) by splitting the storage re-
quirements between sender and Cloud, while L ABE-
IBE scheme takes advantage of local edge nodes (as
shown in Fig. 3) to make it more storage efficient.
L ABE-IBE reduces the storage complexity suffi-
ciently for end nodes (sender and receiver) by moving
the complex re-encryption operations to edge nodes.
Thus, the L ABE-IBE proxy re-encryption scheme
designed in this paper can surpass existing solutions
in terms of security as well as complexity.

7.2 Experimental Analysis

Our implementation of the L ABE-IBE scheme is
written in C-language using the PBC library (pairing-
based cryptography) (Lynn, 2007). The simulations
were tested on a Linux virtual machine with 1 GB
RAM over the host system with Intel(R) Core(TM)
i5-7200U processor with CPU of 2.50 GHz - 2.71
GHz. We implemented ES.ABE-IBE (He et al.,
2019) for comparative analysis along with our pro-
posed scheme. For this purpose, we used the bilin-
ear pairings (Definition 4.1) and LWE. We simulated
the worst-case scenario by generating access policies
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(a) (b) (c)

(d) (e)

Figure 4: Experimental Analysis of L ABE-IBE scheme with ES.ABE-IBE scheme where (a) illustrates the Re-Encryption
Key Generation Time, (b) ABE Encryption Time, (c) Re-encryption Time of ABE-quantum and ES.ABE-IBE, (d) Re-
decryption Time of quantum-IBE, and (e) IBE Decryption Time.

(U1, · · · ,Ul) from 10 to 100 and tested corresponding
algorithms (ES.ABE-IBE and L ABE-IBE) 20 times
for each set of attributes to take the best results.

Fig. 4 (including Figures 4a, 4b, 4c, 4d and 4e)
illustrates the experimental analysis of our proposed
L ABE-IBE proxy re-encryption scheme compared
to the classical ES.ABE-IBE (He et al., 2019) scheme.

Fig. 4a shows that L ABE-IBE takes almost con-
stant re-encryption key generation time (approxi-
mately 13 ms) with the increase in the number of at-
tributes as compared to ES.ABE-IBE. Fig. 4b shows
both ES.ABE-IBE and L ABE-IBE perform identi-
cally for a small number of attributes, but L ABE-IBE
encryption scheme performs more efficiently as the
number of attributes grows. Fig. 4c shows that both
schemes take almost equivalent re-encryption time
for a smaller set of attributes, but with the increase
in the number of attributes, L ABE-IBE outperforms
ES.ABE-IBE. Note, re-encryption in ES.ABE-IBE is
performed in the Cloud, while in L ABE-IBE, the
re-encryption is performed at the local edge nodes.
Fig. 4d shows that the re-decryption time of L ABE-
IBE is constant (approx 6 ms) when decoding post-
quantum secure ciphertext to IBE ciphertext. Finally,
Fig. 4e gives the decryption time of IBE ciphertext for
both ES.ABE-IBE and L ABE-IBE schemes. The de-
cryption function in both schemes takes almost con-
stant time but L ABE-IBE decryption consumes 2 ms
less than ES.ABE-IBE.

In general, the results of the experimental and se-
curity analysis both show that our L ABE-IBE is ef-
ficient and secure against quantum adversaries.

8 CONCLUSIONS

In this paper, we proposed a classical to post-
quantum-safe ABE-IBE proxy re-encryption scheme,
which allows the conversion of ABE to IBE via
post-quantum secure lattice-based encryption. The
proposed L ABE-IBE PRE allows secure conversion
of ABE ciphertext to post-quantum secure cipher-
text at the sender-side local Edge node and then
post-quantum secure ciphertext to IBE ciphertext at
receiver-side local Edge node to deal with the asym-
metric resources of devices. We used the game-based
framework to illustrate the selectively IND-sCCA and
selectively quantum IND-qsCCA security of the pro-
posed L ABE-IBE PRE scheme. The theoretical
analysis and experimental results highlighted that the
proposed scheme improved efficiency as well as se-
curity in comparison to both the naive solution and
classical ES.ABE-IBE proxy re-encryption scheme.
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