
CAPoW: Context-Aware AI-Assisted Proof of Work Based DDoS Defense

Trisha Chakraborty, Shaswata Mitra and Sudip Mittal
Department of Computer Science & Engineering, Mississippi State University, Starkville, MS, U.S.A.

Keywords: Distibuted Denial of Service Attacks, Proof of Work, Artificial Intelligence.

Abstract: Critical servers can be secured against distributed denial of service (DDoS) attacks using proof of work (PoW)
systems assisted by an Artificial Intelligence (AI) that learns contextual network request patterns. In this
work, we introduce CAPOW, a context-aware anti-DDoS framework that injects latency adaptively during
communication by utilizing context-aware PoW puzzles. In CAPOW, a security professional can define rele-
vant request context attributes which can be learned by the AI system. These contextual attributes can include
information about the user request, such as IP address, time, flow-level information, etc., and are utilized to
generate a contextual score for incoming requests that influence the hardness of a PoW puzzle. These puzzles
need to be solved by a user before the server begins to process their request. Solving puzzles slows down the
volume of incoming adversarial requests. Additionally, the framework compels the adversary to incur a cost
per request, hence making it expensive for an adversary to prolong a DDoS attack. We include the theoretical
foundations of the CAPOW framework along with a description of its implementation and evaluation.

1 INTRODUCTION

An organization protects its critical servers from dis-
tributed denial of service (DDoS), which may con-
tain valuable information, such as intellectual prop-
erty, trade secrets, employee personally identifiable
information (PII), etc. To launch a volumetric DDoS
attack, the malicious users send a flood of requests
to these servers. As a result, requests from legiti-
mate users either experience delays or their requests
are dropped. For more than two decades, DDoS at-
tacks have been a prominent issue and even today it
is far from being solved as these attacks are cheaper
to launch than to defend, especially with the rise of
DoS-as-a-Service (Orlowski, 2016).

Proof of work (PoW) system works by requir-
ing incoming requests to expend resources solving
an computational puzzles to prove one’s legitimacy.
The general system consists of two parts: prover and
verifier. The prover finds the solution to the compu-
tational puzzles, when solved, sends the solution to
the verifier. In a simple networked client-server en-
vironment, the user-side contains the prover compo-
nent, and the server-side contains the verifier compo-
nents. Researchers have proposed PoW-based solu-
tions for DDoS which makes the attack expensive to
launch (Aura et al., 2000; Waters et al., 2004; Mank-
ins et al., 2001). Although, these solutions suffer from

a lack of intuition on how to set puzzle difficulty and
adaptability in different settings.

In this paper, we develop a defensive framework
that emphasizes learning the normal activity patterns
of legitimate users. The idea behind the framework
is to penalize the users that deviates from normal
activity patterns by issuing them hard puzzles and
at the same time issuing easy puzzles to users who
follow the pattern. We leverage a context-aware AI
model that can learn these normal activity patterns by
contextual information. The term context within the
scope of legitimate activity patterns can be defined
as request attributes, such as IP address, time, flow-
level information, etc. When the context is IP ad-
dress, network activity is considered deviated if the
source IP address is part of a known blocked IP list.
Whereas, when the context is time, network activ-
ity is considered deviated if it arrives at an unusual
time compared to the normal activity pattern. Secu-
rity professionals can select relevant request context
attributes which can be learned by the AI models.
The concept of context-aware AI models is derived
from context-aware computing introduced by Dey et.
al (Dey, 2001).

We introduce CAPOW framework, a context-
aware AI-assisted PoW system that improves the de-
fensive posture of critical servers against DDoS at-
tacks. Our framework utilizes context-aware AI mod-

62
Chakraborty, T., Mitra, S. and Mittal, S.
CAPoW: Context-Aware AI-Assisted Proof of Work Based DDoS Defense.
DOI: 10.5220/0012069000003555
In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 62-72
ISBN: 978-989-758-666-8; ISSN: 2184-7711
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

els that learn the expected context pattern from server-
side activity-logs. The activity-logs are stored and
managed by the server which contains user activity
(IP address, timestamp, flow-level data, etc). The
deviation from the learned pattern is then leveraged
to generate a contextual score for incoming requests
which tune the difficulty level of the PoW puzzle to
be solved. The underlying defensive strategy ensures
that the rate of incoming malicious users is throttled
by adaptively introducing latency through PoW puz-
zles and compelling malicious users to expend more
resources to complete an attack. The main contribu-
tions of this paper are as follows.

Contribution 1: We introduce CAPOW, an anti-
DDoS framework that injects latency adaptively, i.e.,
the framework ensures that malicious users incur
higher latency than legitimate users based on the de-
viation in context pattern. We discuss the process
of context score calculation from deviation in Sec-
tion 3.2.

Contribution 2: We propose a policy component that
is created by security personnel to incorporate server-
specific security demands. We provide intuition for
policy construction in Section 3.3.

Contribution 3: We discuss an instance of CAPOW
implementation and perform a preliminary evaluation
to illustrate the effectiveness of CAPOW. The imple-
mentation details are discussed in Section 4. The code
is released on GitHuB (Chakraborty, 2022).

The rest of the paper is structured as follows. In
Section 2, we discuss our threat model and attack
definitions. We discuss the theoretical foundation of
CAPOW in Section 3 and CAPOW implementation
and preliminary evaluation in Section 4. Section 5
provides a discussion on common questions and lim-
itations of the PoW framework. We discuss related
works of the PoW system and DoS defense in Sec-
tion 6, followed by the conclusion in Section 7.

2 THREAT MODEL

In this section, we present a series of assumptions
associated with the adversary’s abilities. An adver-
sary A initiates a DDoS attack by sending a flood
of requests to the server. The adversary’s intention
is to overwhelm the server’s computational resources
and disrupt legitimate user communication with the
server. Note that the server disregards any requests
that do not solve the assigned puzzle and such re-
quests are dropped. In Section 5, we underline com-
mon questions related to the use of proof of work as a

DDoS defense. The assumptions described below are
similar to previous literature on DDoS defense using
proof of work (Juels and Brainard, 1999) and in some
sense, we consider a stronger adversary.
Assumption 1. Adversary A can eavesdrop on the
communication channel of the server. A cannot mod-
ify any user request and cannot read any request pay-
load data.

Assume a secure network communication chan-
nel is used by the user to send request packets to the
server. The user performs encryption on the pay-
load data, including the puzzle solution, and sends
the packet to the server. When an adversary eaves-
drops on the channel, they can read the source and
destination IP of the packet, but they cannot read the
encrypted payload consisting of the puzzle parame-
ters. Additionally, the adversary cannot flip bits of
the packet and pollute the puzzle solution included in
the payload. Hence, we assume that the adversary has
no knowledge of the puzzle parameters used by a user
nor can it deny service to a user who has correctly
solved the puzzle. In Section 4, we utilize assumption
1 to claim that the adversary cannot reverse engineer
the base AI models to receive easier PoW puzzles by
mere eavesdropping on the communication channel .
Assumption 2. Adversary A can appear as legiti-
mate users by spoofing user identifiers, such as IP ad-
dresses, and deceive a subset of underlying AI mod-
els.

CAPOW uses AI models to learn normal network
activity patterns and the deviation from the pattern is
directly proportional to the difficulty of PoW puzzles
to be solved by the user. A can spoof a legitimate
user identifier (e.g. IP address, user token, etc.) and
send requests to the server. An intelligent adversary
would send probe packets to the server using a set of
spoofed users and only utilize user identifiers that re-
quire easier puzzles to be solved. This way, the ad-
versary is able to deceive the AI model and reduce
the latency introduced. In Section 4, we discuss that
due to the usage of more than one AI model, send-
ing probe packets becomes costly for an adversary to
deceive multiple base AI models.
Assumption 3. Adversary A cannot pollute the train-
ing data of the AI models.

The AI model used by CAPOW learns normal
activity patterns and calculates a deviation which di-
rectly influences the hardness of the puzzle. Hence, it
is essential that the AI learns normal activity patterns
from an unpolluted activity-log to maximize the effec-
tiveness of CAPOW. In Section 4.2, we describe the
training process of a context-aware AI model where a
security professional is deployed to select secure data
to train the base AI models.

CAPoW: Context-Aware AI-Assisted Proof of Work Based DDoS Defense

63

Src IP Dst IP Payload

Context-Aware AI Model

f

Incoming Packet

Activity

Logs

Context Score

Range

Difficulty

Range

Policy File(s)

Solution = func (puzzle parameter)

Security

Professional

Policy

d-constrained
solution found?

func (solution parameter)

Proof-of-work

Server Queue

Packet n Packet n-1 Packet n-2

Context C1

Model

Context Score (Φ)

W1
W2

Wn

d1
d2
d3
d4
…

Φ1
Φ2
Φ3
Φ4
…

Calculated
context
score

forwarded
to policy
module

Puzzle Verifier

Puzzle Solver

Mapped
puzzle

difficulty
level

forwarded
to puzzle

solver

Packets with correct puzzle
solution placed in server

queue to process.

Send solution

1

2

3 4

5

Request Context Extraction

C1 C2

Context C2

Model

Context Ck

Model

Puzzle Parameters

Model Parameters

…

Ck

6

Figure 1: The figure illustrates the architecture of CAPOW framework. CAPOW consists of four core components: request
context extractor, context-aware AI model, policy, and proof of work. The AI model learns context patterns from previous
activity-logs selected by security personnel and calculates a context score based on the deviation of the incoming packet. The
calculated score is mapped to the PoW puzzle difficulty level as defined by the security professional in policy files. The proof
of work component performs evaluations to find the constrained solution. The request with a correct solution is placed on the
server queue to process.

3 CAPOW ARCHITECTURAL
DESIGN AND THEORETICAL
FOUNDATIONS

In this section, we describe the high-level architec-
ture of the core components and their inner workings
that molds the CAPOW framework. As shown in Fig-
ure 1, CAPOW consists of four core components: re-
quest context extractor, context-aware AI models, pol-
icy, and proof-of-work.

The AI models learn the normal activity pattern
from previous activity-logs. When an incoming re-
quest packet is seen, first the context attributes are ex-
tracted from the new request packet (see Section 3.1).
Then, the deviation between the learned normal con-
text pattern and new request contexts is computed to
calculate context score. We elaborate on AI model
training and score calculation in Section 3.2. The pol-
icy component of CAPOW provides security profes-
sionals with certain abilities that strengthen the effec-
tiveness of CAPOW in various security settings (see
Section 3.3). The context score influences the diffi-
culty of the PoW puzzle. In Section 3.4, we discuss
the proof-of-work component and how the PoW puz-
zles can curtail the volume of malicious user requests
by adaptively introducing latency.
Data Flow. In Figure 1, the flow of data between
different components of CAPOW is described below.
(1) When a new incoming packet is seen, the request
packet is forwarded to the request context extractor.
(2) The extracted request context attributes are passed

to context-aware AI models which learned expected
context patterns from activity logs. The context score
generated by individual AI models is combined using
a function f to produce the final context score (Φ).
(3) The context score is forwarded to the policy com-
ponent which sets certain parameters, such as it maps
the context score to a puzzle difficulty level. (4) The
difficulty level is passed to the puzzle solver which
solves a puzzle of the defined difficulty level using a
function func. (5) The computed solution is sent to the
verifier. (6) When the solution is correct, the request
packet is placed on the server queue for processing.

3.1 Context Extraction from Request
Packet

The concept of context-aware computing was intro-
duced by Dey et. al (Dey, 2001), where the proposed
mechanism improved human-to-computer interaction
by delivering contextually relevant data. In the pa-
per, the author proposed an abstract definition of con-
text, which is a piece of information that clarifies the
characteristics of an entity. When a system contains
contextual data about a situation or entity, the system
can take context-aware decisions which improve the
overall quality of any general decision-making.

In a security setting, a certain request is deemed
suspicious if the associated request attributes deviate
from the usual network activity pattern. For instance,
a request packet of payload size 65500 bytes is con-
sidered suspicious due to deviation when the expected

SECRYPT 2023 - 20th International Conference on Security and Cryptography

64

normal payload size pattern is in the order of a few
hundred bytes. To this end, we define context of a
request packet as request attributes, such as source
IP address, time of arrival, port address, time to live
(TTL), and other flow-level attributes. The context
attributes to be extracted are selected by security per-
sonnel via the policy component. The list of selected
context attributes is reformed periodically to update
the defensive posture of the organization deployed.
When a new request packet is seen, the request con-
text extractor component extracts the selected context
attributes from the request packet and feeds it to the
context-aware AI models.

3.2 Context-Aware AI Model

The framework component consumes activity-logs
supplied by security personnel as input to generate a
context-aware AI model. The model is generated by
considering a set of request packets from the activity-
log λ = {λ0,λ1,λ2, ...,λi}. Each request packet λi
consists of a set of request context attributes,

Cλi = {C0λi ,C1λi ,C2λi , ...,Ckλi} (1)
where k is the number of request context attributes.
Ck is represented as n-dimensional vector. When an
n-dimensional vector of a single context for λ requests
is projected in Euclidean space, such relative position-
ing produces a cluster. For k context attributes, k clus-
ters are generated. The clusters represent the normal
activity pattern. To evaluate a new incoming request,
the request context extractor from Section 3.1, feeds
the context attributes which are then projected in Eu-
clidean space. The deviation ∆(p,q) of context Ck
is calculated as the Euclidean distance between the
corresponding normal activity cluster and the new re-
quest projection,

∆(p,q) =

√
n

∑
j=1

(q j − p j)2 (2)

where p is the projected single context attribute of the
new request and q is the center of a normal cluster of
the same context. Consequently, the context score Φ

for Ck is calculated as,

Φ(Ck) =

(
∆(p,q)
∆max

)
× I (3)

where ∆max is the maximum possible deviation for
Ck. The score is in the range of [0, I], where I ∈
Z+. In Section 4.2, we discuss the implementation
of context-aware AI models.

3.3 Policy

The policy component is a rule-based strategy that fa-
cilitates the adaptive security guarantees of CAPOW.

The rules are set in policy files that determine cer-
tain CAPOW characteristics. These characteristics
include context-aware AI model specifications, such
as, which activity-logs are supplied to train the AI
models, which context attributes hold more signifi-
cance over the others, etc. Additionally, these pa-
rameters include proof-of-work components specifi-
cations, such as, what is the rule to translate context
score to puzzle difficulty, which variant of PoW puz-
zle to be used, etc. Hence, it is evident that policy
construction is a non-trivial task and requires consid-
eration of various facets of the deployed server to bol-
ster the effectiveness of CAPOW in different security
settings. To perform the convoluted task of policy de-
signing, security professionals are deployed to design
server-specific policies.

Intuition for AI Model Parameters. From Sec-
tion 3.1, a request packet consists of several context
attributes. The significance of some contexts holds
more importance over others depending on the type
of attack defense. For instance, payload size is an im-
portant context attribute to protect against large pay-
load DDoS attacks (Ozdel et al., 2022), but less im-
portant to defend against volumetric DDoS attacks.
The policy includes the weight associated with con-
text attributes to provide an attack-specific defense.
Additionally, a policy includes the source of data to
train the AI models to avoid model data pollution at-
tacks (Assumption 3).

Intuition for Proof-of-Work Parameters. The con-
text score produced by the context-aware AI model
is translated to the PoW difficulty level. The policy
includes the rules to translate context scores to puz-
zle difficulty. In Section 4.3, we implemented three
rules to show that the translation leads to adaptive la-
tency injected. As stated by Green et. al (Green et al.,
2011), amongst groups of users, the CPU capacity
of each device can vary 10x times, whereas mem-
ory capacity may only vary 4x times. Hence, when
a memory-bound PoW puzzle is used, it is less likely
for the adversary to have an edge over a legitimate
user as the discrepancy in memory power as the re-
source is less compared to CPU-bound puzzles. The
policy includes the means to set variants of puzzles
depending on the expected user base.

3.4 Proof of Work

Classical proof of work systems (Dwork and Naor,
1992; Waters et al., 2004; Aura et al., 2000) con-
sists of two main components – prover and verifier.
The prover provides verifiable evidence of expand-
ing computational resources by solving puzzles as as-

CAPoW: Context-Aware AI-Assisted Proof of Work Based DDoS Defense

65

signed by the server. On the other hand, the veri-
fier validates whether the solved puzzle yielded the
desired solution. When PoW systems are used as
DoS defense (Aura et al., 2000; Wood et al., 2015;
Parno et al., 2007), a user commits some computa-
tion resources (CPU cycle, bandwidth, etc.) and burns
one of these resources for solving the PoW puzzle to
prove their legitimacy.

In CAPOW, when a user deviates from a normal
activity pattern, the PoW component issues a PoW
puzzle to request proof of legitimacy. The difficulty
level of the PoW puzzle is a function of the context
score. The rule to translate to context score to dif-
ficulty level is defined under the policy component
(Section 3.3). PoW solver uses a function func to
solve the assigned difficulty puzzle (see Figure 1).
In general terms, this function injects two types of
cost: (1) direct cost of resource burning (Gupta et al.,
2020), and (2) indirect cost of latency. The notion
of resource burning cost represents the resource con-
sumption of a user, where the resource could be com-
putational power, memory, network bandwidth, or
human capital (Gupta et al., 2020). This cost di-
rectly impacts the ability of the adversary to conduct
a DDoS attack as every request requires the adversary
to spend real-life resources. The notion of latency
cost captures the delay in time introduced in commu-
nication due to the act of puzzle solving. This cost in-
directly impacts the adversarial intent by throttling the
rate of adversarial requests reaching the server queue.
Both costs ultimately cripple the adversarial capabil-
ity to prolong an ongoing DDoS attack.

4 CAPOW IMPLEMENTATION,
FRAMEWORK INSTANCE
DEPLOYMENT, AND
EVALUATION

In this section, we present a deployment of the
CAPOW framework by implementing a single in-
stance of each core component: context extractor,
context-aware AI models, policy, and proof-of-work.
Our code is written in Python 3.7 and available on-
line in Github (Chakraborty, 2022). First, the context
extractor instance extracts selected request context at-
tributes. Second, the extracted contexts are relayed
to context-aware AI model instances where each base
AI model is generated using server-side activity-logs.
Then, the trained AI models calculate the deviation of
selected contexts to produce a context score. Third,
we provide three policy designs that map the context
score to the difficulty of the PoW puzzle. Finally,

we implemented a hash-based PoW puzzle instance
which, over repeated trials, finds the constrained so-
lution of the assigned difficulty level. The costs in-
flicted due to our puzzle instance are CPU cycles (re-
source burning) and time spent (latency). For the pur-
poses of validating our contribution via evaluation, we
consider that the main cost injected is latency which,
when injected, slows down the rate of adversarial re-
quests.

Now, we will describe our preliminary
evaluation setup. We split the CIC-IDS2017
dataset (of New Brunswick, 2017) into test and train
files where day 1 to day 4 (Monday - Thursday)
is used to train the models and day 5 (Friday) is
used to evaluate CAPOW. From day 1 to day 5,
we deleted the attack traffic to learn the normal
activity pattern. Consider five users sending re-
quests to the server U1,U2,U3,U4, and U5. We
fixed four user identifiers from day 5 to map the
four above-mentioned users. Let the fifth user
U5, be mapped to the user identifier that performs
DoS on the day 6. Since, the user identifier in
CIC-IDS2017 is IP address, let the mapped IP
of user U1,U2,U3,U4, and U5 is represented by
104.20.30.120, 83.66.160.22, 37.59.195.0,
104.16.84.55, and 205.174.165.73 respectively.
Through our evaluation scenario, we provided evi-
dence that CAPOW injects latency adaptively based
on the calculated context score of user U5 which
slows down the adversarial requests and makes it
expensive for an adversary to prolong a DDoS attack.

4.1 Context Extraction Instance

The context extraction instance consumes the request
packet and extracts context attributes from the request
packet. For our implementation, we select three con-
text attributes: (1) IP address, (2) temporal activity,
and (3) flow-level data. For evaluation, we used fea-
ture attributes of the CIC-IDS2017 dataset to serve as
context attributes. The source IP feature becomes the
IP address context, the timestamp feature becomes the
temporal activity context, and the remaining features
become the flow-level context.

4.2 Context-Aware AI Model Instance

We propose an ensemble learner that consists of ded-
icated base AI models to learn individual contex-
tual patterns. The base AI model receives the con-
text attributes from the context extractor as inputs.
The model that (1) learns the IP address pattern is
called dynamic attribute-based reputation (DAbR),
(2) learns the temporal activity pattern is called tem-

SECRYPT 2023 - 20th International Conference on Security and Cryptography

66

User Temporal Activity

User 1 [[500, 501, …,600], [800,
801, …,900]]

User 2 [[770, 771, …,800], [850,
851, …,860], …]

User 3 [[100, 101, …,110], [300,
301, …, 315]]

User 4 [[550, 551, …,560]]

User Temporal Activity

User 1 [[100, 102, …,220],
[500,501,…,510]]

User 2 [[200, 201,…, 230],]

User 3 [[190, 191, …, 200], [630,
…690]]

User 4 [[100, 101, …,250], [260,
261, … 410]]

User 1

Time (seconds)
100 200 400300 500 600 700

User 2

User 3

User 4User Temporal Activity

User 1 [[650, 651, …, 700], [760,
761, …, 800]]

User 2 [[175, 176, …,190], [790,
791, …,800]]

User 3 [[530, 531, …,602], [740,
741, …, 750]]

User 4 [[350, 351, …,440], [690,
691, …, 701]]

User Temporal Activity

User 1 [[300, 301, …,405],
[500,501,…,510]]

User 2 [[505, 540], [640, 641, …
680]]

User 3 [[190,…200], [410, 530]]

User 4 [[100, 101, …, 250],
[260, 261, …, 410], [500,

501, …, 515]]

Activity log on t-3 day Activity log t-1 day Activity log t dayActivity log on t-2 day

Aged Activity Logs

User Activity Cluster

Current Activity Logs

Figure 2: The figure shows that selected activity-logs (left) are used to generate a temporal activity model (TAM) (right). The
illustration shows that out of four activity logs, currently only two activity logs are used to form the model (blue box). The
remaining activity-logs are aged in an attempt to keep the model up-to-date.

poral activity model (TAM), and (3) learns the flow-
level data pattern is called flow-level model (FLOW).
Each model computes a context score in the range be-
tween [0,10]. Context scores from three AI models
are combined using the argmax function. Next, we
discuss three base models where the subsections are
divided into model generation, context score calcula-
tion, and evaluation.

Dynamic Attribute-Based Reputation (DAbR): We
utilize DAbR (Renjan et al., 2018) as the base AI
model that learns context patterns for IP attributes.
The AI model is generated by projecting malicious IP
attributes from the Cisco Talos dataset (Talos, 2022)
into Euclidean space. The dataset contains a list of
malicious IP addresses and IP-related attributes. The
red dots in Figure 3(A) represent the projected ma-
licious IP attributes that form a cluster in Euclidean
space. When a new request is evaluated, the IP at-
tributes of the new request are projected in Euclidean
space and a deviation is calculated as Euclidean dis-
tance to the malicious cluster center. The distance
calculated produces the context score for DAbR (α).
The multi-colored stars represent U1,U2,U3,U4, and
U5. User U1,U2,U3,U4, and U5 receives 2.87, 1.16,
3.15, 2.18, and 2.98 reputation score respectively.

Temporal Activity Model (TAM): We propose a
temporal activity model (TAM) that learns the pattern
of user request activity based on time of arrival from
activity-logs. The model is generated using previous
t-days server activity-logs. The selected activity-logs
can be either previous t consecutive days, or t specific
days (as defined in the policy). The temporal model
can be updated by aging the older activity models (see
Figure 2). The red rectangular blocks in Figure 3(B)
represent an activity cluster per user. The term ac-
tive in practice can represent a user session or con-
current requests. When a user request U arrives at
the server, the server finds the corresponding user ac-
tivity cluster (UCLS) formed by the temporal activity
model. The user activity cluster (UCLS) is a list of

time intervals that represents the user’s historical ac-
tivity times. The deviation in time is calculated as
the distance between the two nearest clusters. From
CIC-IDS2017 dataset, the cluster formed for user U1
shows that the user was active between 130 − 140
minutes, 160− 170 minutes, 600− 670 minutes, and
720 − 760 minutes. When user U1 arrived at time
700 minutes on day 6, the two nearest clusters are
600− 670 and 720− 760 (see Figure 3(B)). This de-
viation is called ∆local which is the distance between
the two nearest clusters. Finally, the context score for
TAM is calculated as,

β =
∆local

∆max
×10 (4)

where, ∆max represents the maximum deviation
possible which in our implementation is 720 minutes.
Note that no cluster is found for U5, hence the context
score calculates is the highest in range.

Flow-level Model (FLOW): Flow-level Model
(FLOW) learns network flow context patterns from
activity-logs. The network flow attributes of a re-
quest packet are flow-related data, such as TTL, flow
duration, payload size, protocol, etc. To generate
the model, the n-dimensional flow attribute vectors
are projected in Euclidean space. In Figure 3(C),
the green dots represent projected network flow at-
tributes of legitimate requests, and the red dots rep-
resent projected network flow attributes of malicious
requests. When a new request is seen, its flow-level
attributes are projected and the Euclidean distance to
malicious and legitimate clusters is computed. The
context score is calculated as,

γ =
∆l,m

∆max
×10 (5)

where, ∆l,m is the deviation from malicious and le-
gitimate clusters and ∆max is the maximum deviation
possible in flow-level context.

CAPoW: Context-Aware AI-Assisted Proof of Work Based DDoS Defense

67

0.2

0.4

0.6

0.8

1.0

Malicious cluster centre

User 1
User 2
User 3
User 4
User 5

Malicious IP

0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

Time (minutes)

C
on

te
xt

 S
co

re

100 200 400300 500 600 700 800 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1.0

1.0

Iu87
Malicious

User 1
User 2

User 3
User 4

User 5

Benign

User 1

C
on

te
xt

 S
co

re

User 4User 3User 2 User 5

Model B
Model C

Model A

2

4

6

10

8

(A) (B) (C) (D)

Δ(p,q)

Figure 3: The figure contains four sub-figures. (A) Representation of trained DAbR in the 2-D plot. The red dot cluster
represents malicious IP attributes. (B) Representation of trained TAM. The stars represent the current time of arrival. (C)
Representation of FLOW. The green cluster represents legitimate flow-level attributes and the red cluster represents malicious
ones. (D) Represents the calculated context score after combining scores from Model A is DAbR, Model B is TAM, and
Model C is FLOW.

0 1 2 3 4 5 6 7 8 9 10
Context Score ()

0

200

400

600

800

La
te

nc
y

(m
ill

is
ec

on
d)

Policy 1
Policy 2
Policy 3

Figure 4: An evaluation of our three implemented policies.
The median of 30 trials is reported for each reputation score.

4.3 Policy Component Instance

We constructed three policy instances, policy 1, policy
2, and policy 3. These policies only set the mapping
function between context scores to the PoW puzzle
difficulty level. Context score is directly proportional
to the difficulty of the PoW puzzle, such as the in-
crease in contextual deviation leads to a higher diffi-
culty puzzle and more latency injected.

Policies 1 and 2: Linear Mapping. Assume a lin-
ear map function. Policy 1 maps f (Φ) → d, where
Φ∈ [0,10] is the range of context score and d ∈ [0,10]
is the difficulty levels of the PoW puzzle. Similar to
policy 1, policy 2 maps f (Φ)→ d, where Φ ∈ [0,10]
and d ∈ [10,20]. Note that, the error bar in Figure 4
shows the discrepancy in time to solve d-level PoW
puzzle. As discussed in Section 3.3, this discrepancy
in time to solve can be avoided by using memory-
bound PoW puzzles.

Policy 3: Error Range Mapping. For policy 3,
we incorporated the error ε of the context-aware AI
model. Assume a linear map function. Policy 3 maps
f (Φ) → d, where Φ ∈ [0,10] and d ∈ [0,10]. The
final difficulty level assigned is a difficulty value cho-

sen at random in the interval [⌈di−ε⌉,⌈di+ε⌉], where
ε = 0.2. Figure 4 shows that as contextual deviation
increases, the amount of injected latency increases.

4.4 PoW Instance – Hash Function

We discuss two sub-components of CAPOW that
mimic proof-of-work system: puzzle solver, and puz-
zle verifier.

Puzzle Solver. The puzzle solver takes user identi-
fiers as input, such as the timestamp of the arrival of
the request packet (t), and the user IP address (u). Ad-
ditionally, the solver takes a server seed value (ρ) to
protect against pre-computational attacks. To this, a
n-bit string is added, which the client modifies upon
each hash function evaluation. We call this string
nonce denoted by η.

The user evaluates this input until it finds an out-
put string Y where Y = H(u||t||ρ||η) with d leading
zeroes, where d is the difficulty level assigned to the
request packet. The puzzle solver is a user-end com-
ponent that is installed either in the browser (Le et al.,
2012) or kernel-level. After solving, the user sends
the nonce back to the server for verification.

Puzzle Verifier. Puzzle verification is a server-side
component that performs straightforward verification
of the puzzle solution by performing one hash evalua-
tion, i.e., Y ′ = H(u||t||ρ||η). If the sent η value leads
to the desired number of leading 0’s, then the solution
is verified.

Summary of CAPOW implementation Evaluation.
The context scores produced by DAbR, TAM, and
FLOW models are combined to produce the final con-
text score (Φ). As discussed in Section 3.3, some con-
texts might be more relevant than others to provide an
attack-specific defense. We denote weight w as the
significance of each context in the final context score.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

68

The weights for each AI model are fixed through the
policy instance as discussed in Section 4.3.

Φ = argmax(w1α,w2β,w3γ) (6)

where w1,w2, and w3 represent weights associ-
ated with DAbR, TAM, and FLOW respectively. Fig-
ure 3(D) illustrates the combined context score where
w1,w2, and w3 is set to 1. User U1 and U2 show that
the final context score is decided by FLOW model.
Similarly, U3,U4, and U5 the final score is decided
by TAM model. Using policy 2, user U5 incurs
≈ 300ms latency for a context score of 8, which is
the highest latency amongst other users introduced by
CAPOW.

Notably, the evaluation performed using a sim-
ulated dataset might not reflect the worst case effi-
ciency of CAPOW as in practice, user U5 might not
have deviated in a temporal activity context. In this
section, we discuss that the cost of deceiving multi-
ple AI models is expensive for the adversary. In our
implementation, user U5 has to deceive three AI mod-
els to receive an easy PoW puzzle by receiving lower
context scores. User U5 can receive a lower context
score for DAbR by trivially spoofing the IP address
(Assumption 2). To deceive TAM, the user can en-
gineer the requests around the same time as noticed
during eavesdropping (Assumption 1). As reading or
tracking flow-level data embedded in request payload
data while eavesdropping is not possible (Assumption
1), the only way to deceive FLOW is by sending multi-
ple probe packets to land on a low context score. This
is an extensive approach as security personnel may
select new contexts to improve the defensive posture
of the organization periodically. Therefore, deceiving
all AI models becomes expensive for the adversary.
To validate contribution 3, we designed and evaluated
an implementation instance on CAPOW and provided
policy designs to validate contribution 2. Finally,
CAPOW ensures that malicious users incur higher
latency than legitimate users based on the deviation
in context pattern. Hence, we validate contribution 1
(see Section 1).

5 DISCUSSION AND LIMITATION

In this section, we discuss some concerns regarding
the use of proof of work in non-blockchain networks.
In our framework, we assume that user behavior is
defined as a range, instead of a binary demarcation
of legitimate and malicious behavior. This assump-
tion provides a “metaphorical knob” to tune the la-
tency introduced as dictated by the range of behav-
ior. One may claim that a straightforward solution

to DDoS should be to detect an abnormally behaved
user packet and drop it. There exist state-of-the-art in-
trusion detection systems (IDS) and packet classifica-
tion algorithms (Doriguzzi-Corin et al., 2020; Ndib-
wile et al., 2015a; Yuan et al., 2017) that work by
identifying malicious signatures. However, the classi-
fication task becomes challenging in scenarios where
packets are encrypted or when an evolving adversary
carefully crafts the packet to appear legitimate. Dif-
ferentiating legitimate and malicious user is challeng-
ing since the clientele often enjoys a large degree of
anonymity, and face little-to-no admission control for
using a service. This paper aims to build and design a
DDoS defense framework that adaptively introduces
latency as complementary to a range of user behavior.

Building an effective PoW framework for DDoS
defense is a non-trivial task due to the following rea-
sons: (1) implementation of user and server processes
that can be integrated at browser-level or OS-level; (2)
building and training an appropriate AI model specific
to our context; and (3) evaluate the framework against
faithful to real-world DDoS attacks. Through our
work, we provide (1) design principles and prelimi-
nary implementation of client and server processes in-
tegrable at the browser-level, (2) we utilized three AI
models for detecting deviation as defined in our con-
text, and (3) we provide preliminary evaluation using
CICIDS-2017 dataset. We see our preliminary evalu-
ation as a step towards extensive real-time extensive
evaluation.

Here, we provide justification to common ques-
tions regarding CAPOW framework.

Question 1: Can an adversary DDoS the CAPOW
framework itself by sending exorbitant amount of re-
quest?
Answer: It is possible that the adversary arbitrarily
sends numerous requests to CAPOW, without intend-
ing to solve the puzzle. In Section 2, we stated that
the CAPOW disregards any users that do not solve
the assigned puzzle. Hence, it is not possible for an
adversary to DDoS the framework itself.

Question 2: Can the adversary drive up the puzzle
difficulty for the legitimate user through spoofing?
Answer: The puzzle difficulty is issued as compli-
mentary to the deviation in context. The deviation in
context is calculated through AI models. As stated in
Section 2 assumption 3, the models are trained using
unpolluted activity logs. Hence, it is not possible for
the adversary to affect the puzzle difficulty for legiti-
mate users.

CAPoW: Context-Aware AI-Assisted Proof of Work Based DDoS Defense

69

6 RELATED WORKS

In this section, we discuss the overview of proof-
of-work (PoW) literature in DDoS. Relevant to our
work, we will also discuss the current advances in AI-
assisted cybersecurity.

6.1 Classical Proof-of-Work

Dwork et. al (Dwork and Naor, 1992) coined the term
proof-of-work (PoW) when they proposed the use of
cryptographic hash functions (also known as client
puzzles) to combat unsolicited bulk emails (junk
emails). Following that, Franklin et. al (Franklin
and Malkhi, 1997) proposed a lightweight website
metering scheme in 1997 to prevent fraudulent web
server owners from inflating their website’s popular-
ity. In 1999, Jakobsson et. al (Jakobsson and Juels,
1999) proposed MicroMinting (originally proposed
by Rivest et. al (Rivest and Shamir, 1996) as a dig-
ital payment scheme) as a candidate problem that can
reuse the computational effort of solving the POW
puzzle. Later that year, Laurie et. al (Laurie and Clay-
ton, 2004) proposed that proof of work does not work
in a spam setting.

6.2 Proof-of-Work as DoS Defense

Similar to spam emails, in DDoS, it is significantly
cheaper for the attacking party to launch a DDoS at-
tack than to defend an infrastructure with the defend-
ing party. According to Arbor network, launching a
DoS attack costs an average of $66 per attack and
can cause damage to the victim of around $500 per
minute (Lynch, 2017). Aura et. al (Aura et al.,
2000) proposed the first client puzzle authentication
protocol for a DoS resilient system. Mankins et. al
(Mankins et al., 2001) investigated methods for tun-
ing the amount of resource consumption to access
server resources based on client behavior, where the
costs imposed can be either monetary or computa-
tional. In a similar vein, Wang and Reiter (Wang
and Reiter, 2003) investigate how clients can bid on
puzzles through auctions. Ndibwile et. al (Ndibwile
et al., 2015b) proposed web traffic authentication as
a replacement for CAPTCHA-based defenses. Wu
et. al (Wu et al., 2015) proposed a software puzzle
framework that disqualifies the adversary’s ability to
gain an advantage by using a GPU to solve puzzles.
A framework was put forth by Dean et. al (Dean and
Stubblefield, 2001) to reduce DoS in TLS servers. A
DoS variant was introduced by Wood et. al (Wood
et al., 2015). Certain PoW defenses against DoS
are layer-specific. The network layer of the proof-

of-work system used by Parno et. al (Parno et al.,
2007) prioritizes users who use more CPU time to
solve puzzles. The Heimdall architecture, which can
detect any change in network flow in routers, was in-
troduced by Chen et. al (Chen et al., 2010). When
a change in network flow is identified for any new
connection, a puzzle is generated and sent to the new
user. The difficulty of the computational challenges
used in the context of DoS attacks on the transport
layer was recently assessed using game theory by
Noureddine et. al (Noureddine et al., 2019). Wal-
fish et. al (Walfish et al., 2006) propose an alterna-
tive resource called communication capacity as a de-
fense against application-layer flood attacks. Other
research has concentrated on incorporating PoW puz-
zles into practical browsing experiences (Le et al.,
2012; Kaiser and Feng, 2008; Pandey and Pandu Ran-
gan, 2011; Chakraborty et al., 2022b; Chakraborty
et al., 2022a).

6.3 Automated DoS Defense

In this section, we revisit the literature on ensem-
ble learning techniques for network traffic classifi-
cation problems. Ensemble learning is a branch of
supervised ML technique that aggregates the learn-
ing of multiple known or new ML algorithms to im-
prove overall prediction accuracy (Polikar, 2006). In
ensemble learning literature, each ML model is re-
ferred to as base learners (Mienye and Sun, 2022).
Each base learner is trained to become an expert in
the local area of the total feature space. Gaikwad
et al. (Gaikwad and Thool, 2015) proposed a bag-
ging ensemble approach using REPTree (Elomaa and
Kaariainen, 2001) base learner to improve classifi-
cation over weaker AI models. Gupta et al. (Gupta
et al., 2022) suggested an IDS system that uses en-
semble learning to address a class imbalance problem.
The ensemble learner uses three base learners, (1) the
deep neural network (Gupta et al., 2022) classifies
normal and suspicious traffic, (2) extreme gradient
boosting (Chen and Guestrin, 2016) is used to iden-
tify major attacks, (3) random forest (Breiman, 2001)
is used to classify minor attacks. Zhou et al. (zho,
2020) proposed a feature selection process using en-
semble learning in two stages. The first stage involves
feature reduction using the heuristic method CFS and
the bat algorithm (Yang, 2010). The second stage in-
volves aggregating C4.5 and Random Forest (RF) al-
gorithms. Jabbar et al. (Jabbar et al., 2017) suggested
an ensemble classifier that uses Alternating Decision
Tree (ADTree) and the k-Nearest Neighbor algorithm
(kNN) as base AI models. Paulauskas and Auskal-
nis (Paulauskas and Auskalnis, 2017) proposed an en-

SECRYPT 2023 - 20th International Conference on Security and Cryptography

70

semble learner that employs four base classifiers: J48,
C5.0, Naive Bayes, and Partial Decision List (PART)
to improve classification results over individual AI
models.

7 CONCLUSION AND FUTURE
WORK

In this paper, we design and evaluate CAPOW a
context-aware AI-assisted PoW framework that pro-
tects critical servers against DDoS. The underlying
defensive strategy involves adaptively introducing la-
tency on malicious users. To achieve this function-
ality, our framework employs an AI model that takes
the context attributes from the incoming user request
packet as input. The AI model computes devia-
tion from normal activity patterns to output a con-
text score. This score influences the difficulty level
of a PoW puzzle that injects latency adaptively during
communication. CAPOW ensures that the ability of
a malicious user to prolong the attack is constrained
by adaptively introducing latency through PoW puz-
zles and compelling malicious users to expend more
resources to complete an attack.

For future work, different design variants of
CAPOW can be configured to combat different DDoS
attack types. It will be interesting to see when the
PoW component is replaced by the proof of stake
(PoS) component to circumvent the inherent pitfalls
of the former. Additionally, an alternate design can
include an enhanced human-in-loop strategy which
provides control of the framework to the security per-
sonnel deploying the framework.

ACKNOWLEDGEMENT

We would like to thank Dr. Milan Parmar for his
review and suggestions to improve this paper. This
work was supported in part by the National Science
Foundation (NSF) grant CNS-2210300.

REFERENCES

(2020). Building an efficient intrusion detection system
based on feature selection and ensemble classifier.
Computer Networks, 174:107247.

Aura, T., Nikander, P., and Leiwo, J. (2000). Dos resis-
tant authentication with client puzzles. In Revised Pa-
pers from the 8th International Workshop on Security
Protocols, page 170177, Berlin, Heidelberg. Springer-
Verlag.

Breiman, L. (2001). Random forests. Machine learning,
45:5–32.

Chakraborty, S. M. . T. (2022). Github. Online Website.
https://github.com/trishac97/CAPoW.

Chakraborty, T., Mitra, S., Mittal, S., and Young, M.
(2022a). Ai adaptive pow: An ai assisted proof of
work (pow) framework for ddos defense. Software Im-
pacts, 13:100335.

Chakraborty, T., Mitra, S., Mittal, S., and Young, M.
(2022b). A policy driven ai-assisted pow framework.
2022 52nd Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks - Supple-
mental Volume (DSN-S), pages 37–38.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree
boosting system. KDD ’16. Association for Comput-
ing Machinery.

Chen, Y., Ku, W., Sakai, K., and DeCruze, C. (2010). A
novel ddos attack defending framework with mini-
mized bilateral damages. In 2010 7th IEEE Consumer
Communications and Networking Conference, pages
1–5.

Dean, D. and Stubblefield, A. (2001). Using client puzzles
to protect TLS. In 10th USENIX Security Symposium
(USENIX Security 01), Washington, D.C. USENIX
Association.

Dey, A. K. (2001). Understanding and using context. page
47.

Doriguzzi-Corin, R., Millar, S., Scott-Hayward, S.,
Martinez-del Rincon, J., and Siracusa, D. (2020). LU-
CID: A practical, lightweight deep learning solution
for DDoS attack detection. IEEE Transactions on Net-
work and Service Management, 17(2):876–889.

Dwork, C. and Naor, M. (1992). Pricing via processing or
combatting junk mail. CRYPTO ’92, page 139147,
Berlin, Heidelberg. Springer-Verlag.

Elomaa, T. and Kaariainen, M. (2001). An analysis of re-
duced error pruning. Journal of Artificial Intelligence
Research, 15:163–187.

Franklin, M. K. and Malkhi, D. (1997). Auditable metering
with lightweight security. In Proceedings of the First
International Conference on Financial Cryptography,
FC ’97, page 151160, Berlin, Heidelberg. Springer-
Verlag.

Gaikwad, D. and Thool, R. C. (2015). Intrusion detec-
tion system using bagging ensemble method of ma-
chine learning. In 2015 International Conference on
Computing Communication Control and Automation,
pages 291–295.

Green, J., Juen, J., Fatemieh, O., Shankesi, R., Jin, D., and
Gunter, C. A. (2011). Reconstructing hash reversal
based proof of work schemes. USA. USENIX Asso-
ciation.

Gupta, D., Saia, J., and Young, M. (2020). Resource burn-
ing for permissionless systems. In International Col-
loquium on Structural Information and Communica-
tion Complexity, pages 19–44. Springer.

Gupta, N., Jindal, V., and Bedi, P. (2022). Cse-ids: Us-
ing cost-sensitive deep learning and ensemble algo-
rithms to handle class imbalance in network-based
intrusion detection systems. Computers & Security,
112:102499.

CAPoW: Context-Aware AI-Assisted Proof of Work Based DDoS Defense

71

Jabbar, M. A., Aluvalu, R., and Reddy, S. S. S. (2017).
Cluster based ensemble classification for intrusion de-
tection system. New York, NY, USA. Association for
Computing Machinery.

Jakobsson, M. and Juels, A. (1999). Proofs of work and
bread pudding protocols (extended abstract).

Juels, A. and Brainard, J. (1999). Client puzzles: A cryp-
tographic countermeasure against connection deple-
tion attacks. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), pages
151–165.

Kaiser, E. and Feng, W.-c. (2008). mod kapow: Protect-
ing the web with transparent proof-of-work. In IEEE
INFOCOM Workshops 2008, pages 1–6. IEEE.

Laurie, B. and Clayton, R. (2004). Proof-of-work” proves
not to work.

Le, T., Dua, A., and Feng, W.-c. (2012). kapow plu-
gins: protecting web applications using reputation-
based proof-of-work. In 2nd Joint WICOW/AIRWeb
Workshop on Web Quality, pages 60–63.

Lynch, V. (2017). Everything you ever
wanted to know about dos/ddos attacks.
https://www.thesslstore.com/blog/everything-you-
ever-wanted-to-know-about-dosddos-attacks/.

Mankins, D., Krishnan, R., Boyd, C., Zao, J., and Frentz,
M. (2001). Mitigating distributed denial of service at-
tacks with dynamic resource pricing. In Proceedings
of the Seventeenth Annual Computer Security Appli-
cations Conference, pages 411–421. IEEE.

Mienye, I. D. and Sun, Y. (2022). A survey of ensem-
ble learning: Concepts, algorithms, applications, and
prospects. IEEE Access, 10:99129–99149.

Ndibwile, J. D., Govardhan, A., Okada, K., and
Kadobayashi, Y. (2015a). Web server protection
against application layer DDoS attacks using machine
learning and traffic authentication. In Proceedings of
the 39th IEEE Annual Computer Software and Appli-
cations Conference, pages 261–267.

Ndibwile, J. D., Govardhan, A., Okada, K., and
Kadobayashi, Y. (2015b). Web server protection
against application layer ddos attacks using machine
learning and traffic authentication. In 2015 IEEE 39th
Annual Computer Software and Applications Confer-
ence, volume 3, pages 261–267.

Noureddine, M. A., Fawaz, A. M., Hsu, A., Guldner,
C., Vijay, S., Başar, T., and Sanders, W. H. (2019).
Revisiting client puzzles for state exhaustion at-
tacks resilience. In Proceedings of the 49th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 617–629.

of New Brunswick, U. (2017). Intrusion detection evalu-
ation dataset (cic-ids2017). Online Website. https:
//www.unb.ca/cic/datasets/ids-2017.html.

Orlowski, A. (2016). Meet ddosaas: Distributed
denial of service-as-a-service. Online Web-
site. https://www.theregister.com/2016/09/12/
denial of service as a service/.

Ozdel, S., Damla Ates, P., Ates, C., Koca, M., and An-
arm, E. (2022). Network anomaly detection with
payload-based analysis. In 2022 30th Signal Pro-

cessing and Communications Applications Confer-
ence (SIU), pages 1–4.

Pandey, A. K. and Pandu Rangan, C. (2011). Mitigating
denial of service attack using proof of work and to-
ken bucket algorithm. In IEEE Technology Students’
Symposium, pages 43–47.

Parno, B., Wendlandt, D., Shi, E., Perrig, A., Maggs, B.,
and Hu, Y.-C. (2007). Portcullis: Protecting con-
nection setup from denial-of-capability attacks. SIG-
COMM ’07, page 289300, New York, NY, USA. As-
sociation for Computing Machinery.

Paulauskas, N. and Auskalnis, J. (2017). Analysis of data
pre-processing influence on intrusion detection using
nsl-kdd dataset. In 2017 Open Conference of Electri-
cal, Electronic and Information Sciences (eStream),
pages 1–5.

Polikar, R. (2006). Ensemble based systems in deci-
sion making. IEEE Circuits and Systems Magazine,
6(3):21–45.

Renjan, A., Joshi, K. P., Narayanan, S. N., and Joshi, A.
(2018). Dabr: Dynamic attribute-based reputation
scoring for malicious ip address detection. In 2018
IEEE International Conference on Intelligence and
Security Informatics (ISI), pages 64–69. IEEE.

Rivest, R. L. and Shamir, A. (1996). Payword and mi-
cromint: Two simple micropayment schemes. In Se-
curity Protocols Workshop.

Talos, C. (2022). Talos threat source. https://www.
talosintelligence.com/.

Walfish, M., Vutukuru, M., Balakrishnan, H., Karger, D.,
and Shenker, S. (2006). DDoS Defense by Offense.
In Proceedings of the 2006 Conference on Applica-
tions, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM), pages 303–
314.

Wang, X. and Reiter, M. K. (2003). Defending against
denial-of-service attacks with puzzle auctions. In Pro-
ceedings of the 2003 IEEE Symposium on Security
and Privacy, pages 78–92.

Waters, B., Juels, A., Halderman, A., and Felten, E. (2004).
New client puzzle outsourcing techniques for DoS re-
sistance. In Proceedings of the 11th ACM Conference
on Computer and Communications Security (CCS),
pages 246–256.

Wood, P., Gutierrez, C., and Bagchi, S. (2015). Denial of
service elusion (dose): Keeping clients connected for
less. In 2015 IEEE 34th Symposium on Reliable Dis-
tributed Systems (SRDS), pages 94–103.

Wu, Y., Zhao, Z., Bao, F., and Deng, R. H. (2015). Software
puzzle: A countermeasure to resource-inflated denial-
of-service attacks. IEEE Transactions on Information
Forensics and Security, 10(1):168–177.

Yang, X.-S. (2010). A new metaheuristic bat-inspired algo-
rithm.

Yuan, X., Li, C., and Li, X. (2017). DeepDefense: Identi-
fying DDoS attack via deep learning. In Proceedings
of the IEEE International Conference on Smart Com-
puting (SMARTCOMP), pages 1–8.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

72

