Exploring Functional Patterns of Driving Records by Interacting with Major Classes and Territory Using Generalized Additive Models

Shengkun Xie¹, Anna T. Lawniczak² and Clare Chua-Chow¹

¹Global Management Studies, Ted Rogers School of Management, Toronto Metropolitan University, Toronto, Canada
²Department of Mathematics and Statistics, University of Guelph, Guelph, Canada

Keywords: Generalized Additive Models, Rate-Making, Insurance Rate Regulation, Business Data Analytics.

Abstract: Studying the safe driver index, such as Driving Records (DR), is essential to auto insurance regulation. Part of the auto insurance regulation aims to estimate the relativity of major risk factors, including DR, to provide some benchmark values for auto insurance companies. The risk relativity estimate of DR is often through either an assessment via empirical loss cost or a statistical modelling approach such as using generalized linear models. However, these methods are only able to give an estimate on an integer level of DR. This work proposes a novel approach to estimating the risk relativity of DR via generalized additive models (GAM). This method makes the integer level of DR continuous, making it more flexible and practical. Extending the generalized linear model to GAM is critical as investigating this new method could enhance applications of advanced statistical methods to the actuarial practice. Thus, making the proposed methodology of analyzing the safe driver index more statistically sound. Furthermore, exploring functional patterns by interacting with major classes or territories allows us to find statistical evidence to justify the existence of correlations between risk factors. This may help address the issue of potential double penalties in insurance pricing and call for a solution to overcome this problem from a statistical perspective.

1 INTRODUCTION

Risk factors play a major role in both auto insurance pricing and rate regulation (Xie, 2021). Major risk factors used in rate regulation may include Driving Record (DR), Territory, and Type of Use (i.e., Class) (Xie and Lawniczak, 2018). The major risk factors are critical variables that can be used for this purpose, and investigating these factors allows us to better understand their key characteristics. From a regulation perspective, it is important to ensure that the used model, the modelling process and their validation processes meet the requirements of regulatory rules. It is also crucial for transparency that the public know what driving characteristics affect the premiums they pay. Although not always possible, insurance companies try to set premiums based on risk factors and they may adjust premiums based on the loss cost from preceding years after the review by regulators. Changes in risk affect the premiums that auto insurance companies charge and they are reflected in the premiums drivers pay. However, drivers may see these changes in premiums as discriminatory or unfair because they need to be made aware of the insurers’ perception of risk variation. On the other hand, examining certain risk factors’ roles in affecting relativity also helps improve auto insurance fairness. This is because risk classification of these factors needs to be accurate for insurers to properly charge the insured; otherwise, some will be overcharged, and others will be undercharged. Identifying how auto insurance companies classify risk by examining how relativity changes when we include certain risk factors such as Type of Use gives the public more information about how premiums are set (Abraham, 1985). This increase in awareness allows more drivers to perceive premiums as being fair from actuarial perspectives (Meyers and Van Hoyweghen, 2018; Landes, 2015; Frezal and Barry, 2020).

Many factors directly cause car accidents, such as cell phone use, drug use, or alcohol use (Rolison et al., 2018). They are considered as impaired driving when a car accident happens, and there is a strong cause-and-effect relationship between these factors and car accidents. In auto insurance, a Driving Record (DR) is created to represent a given driver’s accident history and this record is indicative of causing the insurance losses. Therefore, DR as a safe driver index...
plays a crucial role in auto insurance pricing. In Canada, DR has 7 levels corresponding to how many years a driver has not been involved in a car accident. For example, when DR equals zero, there are zero years that this driver has had no accident. This may imply that this driver recently had a car accident or is a new driver with zero years of driving history. Because of this implication, for drivers with a low driving record and no accident history, the insurance premium may be double-penalized as other risk factors are used to indicate a similar level of risk, such as young driver class or a low number of years of having a driver’s license. This may call for application of statistical methods that can help to reveal the potential interactions among risk factors more accurately. From the statistical modelling point of view, this may imply that modelling or analysis of loss data may need to be conditioned on a certain level of another risk factor. For example, the DR pattern may depend on a level of Class (i.e., Type of Use) or a territory level.

To better understand the relationship between insurance loss and considered risk factors, first, we examine the functional pattern of DR using generalized additive models (GAM) (Hastie, 2017; Wood, 2006). The GAM is an extension of generalized linear models (GLM) that allows for flexibility by having the response variable to be linear but explained using functions that can uncover non-linear relationships between the independent variables and its response variable. GAM has been recently applied to auto insurance pricing, particularly for modelling telematics data (Huang and Meng, 2019; Boucher et al., 2017; Meng et al., 2022). The GAM constructed by us in this paper was then extended by adding the Class factor of the driver and the Territory factor. The Class factor has 14 different categorical levels and the Territory factor has 2 different levels, rural or urban. Class and Territory are model factors in GAM which produce a separate smooth term for each level of Class and Territory. Within this GAM modelling framework, we combine two separate models that use loss cost and premium as response variables into one. This combination is possible because, when modelling loss cost and premium, they are assumed to have the same set of predictors. This combination of loss cost and premium as a model response is particularly novel in actuarial data analysis and it allows an overall better estimate of risk factor relativities.

Furthermore, in this work, we propose using GAM as an alternative approach to estimating DR relativities, often derived from GLM in current actuarial practice (Ohlsson and Johansson, 2010). This new method can help to de-couple the correlation between different risk factors and to avoid the double penalty in auto insurance pricing when using multiplicative pricing algorithms. The obtained functional patterns from GAM lead to a better understanding of DR characteristics and how they are affected by other major risk factors. The proposed method maintains the model interpretability while sharing some power from the machine learning approaches (Burka et al., 2021; Denuit et al., 2021) by providing us with an estimate of non-linear functional patterns of DR.

2 MATERIALS AND METHODS

2.1 Data

The data used in this paper comes from the Insurance Bureau of Canada (IBC). The data sets consist of aggregated loss costs, premiums, and exposures used to calculate risk relativity for each driving record level, class and other major risk factors. Loss cost is defined as total losses (claim amount and expenses used for settling claims) divided by the total number of exposures. The premiums are the average earned premiums. To systematically analyze loss cost and premium, we define a dummy variable to indicate whether the value for a particular combination of driving record and class is the average loss cost (pure premium) or average premium (rate). The value 1 indicates that it is loss cost, and 0 means it is premium. The response variable is denoted by LOSSPREM, and its observation consists of loss cost or premium, depending on which case. The data also are separated by territory, rural or urban, where 1 indicates that it corresponds to urban and 0 represents the rural area. There are 3 major coverages that we focus on, Accident Benefit (AB), Collision (COL), and Third Party Liability (TPL). Each coverage has three years of data from 2009 to 2011, and we also include a summarized data set that combines all three years. Exposures are taken as weights for DR and Class to produce accurate confidence intervals.

2.2 Extending GLM to GAM

As we mentioned earlier, the traditional approach to estimating the risk relativity of each level of a given risk factor is either through empirical measures based on the relative level of loss costs or via a modelling approach that includes a set of risk factors as independent variables and the loss cost as the response for some statistical models such as generalized linear models. However, the empirical measures of the relative loss cost level for each combination of fac-
Table 1: Definitions of four major classes used in this work. Note, the risk exposures for these four classes account for 92% of the total risk exposures (i.e., the total number of vehicles per accident year).

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>Principal operator is 25 years of age or over. No male driver under is 25 years of age; no female drivers are under 25 years of age; without driver training.</td>
</tr>
<tr>
<td>Class 2</td>
<td>Principal operator is 25 years of age or over. No male driver under 25 years of age; no female drivers are under 25 years of age (not having a spouse or same-sex partner), without driver training.</td>
</tr>
<tr>
<td>Class 3</td>
<td>Principal operator is 25 years of age or over. No male drivers are under 25 years of age. Automobile is used for business. Maximum 25% is used for business.</td>
</tr>
<tr>
<td>Class 7</td>
<td>No male drivers are under 25 years of age.</td>
</tr>
</tbody>
</table>

The R package used was “mgcv”, and the monotonic cubic spline was used to estimate the functional patterns. This is considered a constrained spline for regression problems. The log link function was used to transform the response, and for all models, the error ϵ in (1) is assumed to be Gamma distributed, the most common distribution for auto insurance loss.

Another important aspect of estimating relativities for risk factors is to consider the interaction between different risk factors. For instance, in Figure 1, we show how loss cost patterns by DR interact with Class and Territory variables. The curves interact among levels of territory, particularly for Rural. This may suggest that DR patterns depend on the levels of Class and Territory. On the other hand, DR patterns measured by premiums show that the interaction has been eliminated to some extent. Therefore, including premium data in modelling will help guide the estimate of relativity in the desired direction to reduce the variability associated with the estimate. However, in actuarial practice, it is not easy to incorporate excessive interactions to the model as considering too many interactions among different factors will significantly decrease the number of exposures associated with each interaction. This may further cause the credibility of the estimated coefficient in the model. To overcome this difficulty and improve the interpretability of the model, we modified the model in Equation (1) by introducing the interaction with other major risks once at a time. This work considers the interactions between DR and Class and between DR and Territory. To do so, we further investigated the functional patterns of DR, separated by a different level of Class or a different Territory level, which are given respectively as follows:

$$Y^k_{lm} = \gamma^0_{k}lm + s(DR | Class) + \gamma^1_{l}Territory_j + \gamma^2_{lm}Source_m + \epsilon^k_{lm}, \quad (2)$$
In both Models (2) and (3), model variables and parameters remain the same as in Model (1), but the spline function is conditioned on Class and Territory, respectively. This implies that estimated functional patterns of DR are either by Class or Territory, which allows considering different levels of Class or Territory; thus resulting in different estimated curves. The distributional assumption on ϵ and the link function remains the same as in Model (1).

2.3 Estimating Risk Relativity for DR Using GAM

Suppose the estimated functional pattern is denoted by $f(x)$, where x represents the DR level which is considered a continuous variable and takes values from 0 to the maximum level of DR allowed (in this work, it is 6). The risk relativity of DR is then constructed using the following equation, where $r(x)$ is the estimated risk relativity of DR at level x.

$$r(x) = f(x) - f(6) + 1.$$ \hspace{1cm} (4)

This proposed method takes the relative difference between the values of the functions f obtained from GAM for two different levels of DR, i.e., level x and 6, assuming the risk relativity at the highest level to be one. This approach differs from the traditional approach, which focuses on the ratio of estimated values relative to the basis. On the other hand, the GAM method ensures the estimate of DR by Class and by Territory, which overcomes the unreasonable assumption of a relationship among risk factors assumed to be mutually independent.

3 RESULTS

Empirically, a monotonic decreasing pattern should be observed as risk relativity should decrease when the DR level increases. This is because drivers with long records without getting into accidents should be deemed less risky and thus they are charged lower premiums. As a preliminary study we focus on the investigation using yearly data for two reasons. The first one is to illustrate how risk relativity can be estimated using the results from GAMs. The second one is to compare the DR patterns by accident year and to show the variability of DR estimates due to different accident year data. Since DR patterns are estimated simultaneously by using loss costs and premiums, these functional patterns of DR are considered as an overall effect that better reflects their ground truth.

Figure 2 displays the functional patterns of DR for four major classes. The obtained results correspond to the AB coverage and the 2009 accident year data.
Table 2: Comparison of relativities of DR, separated by coverages. The relativities are obtained from modelling using GLM and GAM and from empirical loss costs and premiums for the accident year 2009.

<table>
<thead>
<tr>
<th>DR</th>
<th>AB</th>
<th>GAM</th>
<th>Loss Cost</th>
<th>Premium</th>
<th>COL</th>
<th>GAM</th>
<th>Loss Cost</th>
<th>Premium</th>
<th>TPL</th>
<th>GAM</th>
<th>Loss Cost</th>
<th>Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.64</td>
<td>2.27</td>
<td>3.99</td>
<td>2.33</td>
<td>3.73</td>
<td>1.85</td>
<td>2.31</td>
<td>2.36</td>
<td>2.31</td>
<td>3.13</td>
<td>2.11</td>
<td>2.21</td>
</tr>
<tr>
<td>1</td>
<td>2.73</td>
<td>2.07</td>
<td>2.85</td>
<td>2.15</td>
<td>2.71</td>
<td>1.76</td>
<td>2.31</td>
<td>2.01</td>
<td>2.38</td>
<td>1.94</td>
<td>2.31</td>
<td>2.49</td>
</tr>
<tr>
<td>2</td>
<td>2.54</td>
<td>1.80</td>
<td>2.43</td>
<td>2.63</td>
<td>2.33</td>
<td>1.61</td>
<td>1.90</td>
<td>1.92</td>
<td>2.36</td>
<td>1.77</td>
<td>2.29</td>
<td>2.43</td>
</tr>
<tr>
<td>3</td>
<td>1.74</td>
<td>1.65</td>
<td>1.74</td>
<td>1.80</td>
<td>1.65</td>
<td>1.54</td>
<td>1.81</td>
<td>1.51</td>
<td>1.80</td>
<td>1.67</td>
<td>1.82</td>
<td>1.79</td>
</tr>
<tr>
<td>4</td>
<td>2.10</td>
<td>1.64</td>
<td>2.14</td>
<td>2.10</td>
<td>1.79</td>
<td>1.54</td>
<td>1.82</td>
<td>1.78</td>
<td>2.09</td>
<td>1.60</td>
<td>2.16</td>
<td>1.87</td>
</tr>
<tr>
<td>5</td>
<td>1.63</td>
<td>1.48</td>
<td>1.78</td>
<td>1.65</td>
<td>1.51</td>
<td>1.40</td>
<td>1.58</td>
<td>1.48</td>
<td>1.48</td>
<td>1.40</td>
<td>1.58</td>
<td>1.47</td>
</tr>
<tr>
<td>6</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure 2: Functional patterns of DR for Class 1, Class 2, Class 3 and Class 7 for AB coverage for 2009 accident year data. The total risk exposures for these four classes account for 92% of the vehicles.

We focus on the DR by major classes as the estimated functional patterns are relatively stable. These four major classes account for about 92% of risk exposures. The definitions of these classes are given in Table 1. The study based on the consideration of major classes is more conclusive and may provide more insights into DR. Thus, the results can serve as an important reference and be more beneficial for auto insurance companies. From these results, we observe that the variability of estimates for smaller DR are higher than for the larger DR levels. This is generally true for all cases and will be discussed later. The main reason for this high variability is the smaller amounts of risk exposure for lower levels of DR, which corresponds to the drivers who have had accidents in recent years. Also, from the obtained results, we observe that the functional patterns of DR are decreasing with the increase of DR levels for all major Classes. However, the function patterns are different from Class to Class, which implies the interaction of Class and DR. These findings confirm our expectations on the relationship between Class and DR, which is not independent. Therefore, modelling loss cost or premium using Class and DR one may has to further consider such interaction, which may be extended to other factors if one has to consider.

The results obtained from COL and TPL are displayed in Figures 3 and 4, respectively. For these results, we observe that the functional patterns for Class 1 and 2 from the two considered coverages, COL and TPL, do not appear to differ from those obtained from the AB coverage. However, for Class 3 and Class 7,
especially for Class 7, the difference among the functional patterns of DR for different coverages seems to be large. This provides strong evidence of how the DR functional pattern depends on or interacts with the Class factor. This tells us that the assumption of independence between DR and Class appears to be problematic when it comes to auto insurance policy pricing. As the insurance pricing is done by coverage, because of this interaction, it makes sense to model the loss cost by estimating the relativity of DR, conditioned on the Class factor. This may potentially eliminate the double penalty coming from the high-risk groups, which is jointly determined by a set of highly dependent factors.

To further investigate the functional patterns of DR within a coverage but with a different level of territory, i.e. Urban or Rural, we fitted our data to GAM with the DR conditioned on the Territory variable. The obtained results are reported in Figure 5. The results show that the functional pattern of DR for coverages of AB and COL does not deviate much between Urban and Rural, but the patterns are significantly changed for TPL coverage. This may suggest a low dependency between DR and Territory for AB and COL coverage but a strong dependence between them for TPL.

The above analysis demonstrates the potential interaction between DR and other risk factors, i.e. Class and Territory, used in rate regulation practice. Furthermore, the decreasing patterns reasonably explain how risk relativities will behave when derived using the estimated function employing GAM. This may suggest that a new risk measure of DR risk relativity can be computed based on the functional pattern results obtained from GAMs, unlike the traditional approach of deriving risk relativity either empirically, based on the loss cost, or by modelling based on GLM. For the illustration purpose of using GAM, we have computed the risk relativities and compared these results with the relativities obtained from loss cost, premium and GLM modelling. They are reported in Table 2. For the relativity of DR at the whole number scale, only the results obtained from GAM meet the requirement of being monotonic. Also, the results from GAM lower the relative difference
CONCLUDING REMARKS

Studying the safe driver index and other risk factors in auto insurance rate regulation has been of an ongoing interest. Research on this topic has shown the need for the development and application of advanced statistical techniques to obtain an improved insights into loss and premium data. By modelling the interaction between DR and Class using loss cost and premium data, while including other explanatory variables such as territory, we can uncover the different patterns when looking at DR alone could not uncover them. This work focused on using GAM to model the functional relationship between DR and the response variable with the inclusion of interaction factors, Class and Territory. We used GAMS to model non-linear relationships captured by additive components of splines. We further proposed to use the obtained smooth functions of DR to derive its risk relativity.

Despite GAM requiring more computational power due to its higher complexity than linear or generalized linear models, GAMs balance linear models and black box machine learning models in terms of interpretability and flexibility of the model used. Examining how specific risk factors predict the outcome of risk relativities can give a better understanding of what factors auto insurance companies find significant. Extension of this work could investigate the relationships of other risk factors that influence auto insurance pricing, such as the interaction of gender and age with driving records using GAMs. The flexibility of GAM models can help uncover hidden patterns between risk factors and risk relativity. The proposed method can also be applied to other types of economic and business data where the functional relationship between independent variables and the dependent variable need to be captured, and functionality of some independent variables need to be embedded.

ACKNOWLEDGEMENT

ATL acknowledges partial support from Natural Sciences and Engineering Research Council of Canada.

REFERENCES

