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Abstract: The wine industry has becoming increasingly important worldwide and is one of the most significant industries
in Portugal. In a previous paper, the problem of predicting how much a Portuguese consumer is willing to pay
for a bottle of wine was considered for the first time ever. The problem was treated as a multi-class ordinal
classification task. Although we achieved good prediction results, globally speaking, it was difficult to identify
rare cases of consumers who are interested in paying for more expensive wines. We found that this was a direct
consequence of data imbalance. Therefore, here, we present a first attempt to deal with this issue, based on
the use of re-sampling strategies to balance the training data, namely random under-sampling, random over-
sampling with replacement and the synthetic minority over-sampling technique. We consider several learning
methods and develop various predictive models. A comparative study is carried out and its results highlight
the importance of a careful choice of the re-sampling strategy and the learning method in order to get the best
possible prediction results.

1 INTRODUCTION

Wine market became more demanding with the grow-
ing number of new global players and a changing con-
sumer behavior. With the heterogeneity of wine mar-
kets, several studies suggested the use of segmenta-
tion methodologies to understand wine consumer be-
havior (Bruwer et al., 2002; Thach and Olsen, 2006;
Kolyesnikova et al., 2008; Koksal, 2021; Payini et al.,
2022). With thousands of wine brands, styles and re-
gions, consumers are frequently confused when pur-
chasing wine. According to (Rouzet and Seguin,
2004), in order to match wine consumers’ preferences
with wine characteristics, segmentation divides mar-
kets that can be reach with different marketing instru-
ments. Usually, the marketing segmentation variables
are geographic, demographic, psychographic and be-
havioral (Kotler and Keller, 2006). Segmentation
based on lifestyle has also been applied in the US, al-
though with the purpose to underline motivations and
occasions of consumption (Thach and Olsen, 2005).
Overall, an effective marketing strategy is required
and, in this context, understanding wine consumers’
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needs and buying habits plays an important role in
market segmentation.

In a previous paper (Alonso and Candeias, 2022),
the problem of predicting how much a Portuguese
consumer is willing to pay for a bottle of wine was
considered for the first time ever. More precisely,
given information about an individual, such as his/her
age and income, we were interested in predicting how
much he/she is willing to spend in a bottle: less than
EUR 2.99; between EUR 3 and 4.99; between EUR
5 and 9.99; EUR 10 or more. Since these intervals
can be viewed as ordered classes, the prediction prob-
lem was treated as a multi-class ordinal classification
task. Using several types of predictive models and
learning methods, we achieved good results in terms
of the overall accuracy and rint (a measure of asso-
ciation between the ordinal variables true class and
predicted class) (Pinto da Costa et al., 2008; Pinto
da Costa et al., 2014). However, we found that all
classifiers had more difficulty in correctly predicting
cases from higher classes and that this was related to
our data imbalance. Note that, since most people are
willing to pay less and only a small number of peo-
ple are willing to pay more for a bottle of wine, lower
classes are much more frequent than higher ones. In
this context, identifying consumers who are willing to
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pay more for a bottle of wine corresponds to predict-
ing rare events. Here, we present our first attempt to
deal with this issue. Our goal is to obtain more bal-
anced classifiers, i.e., with an improved ability to pre-
dict infrequent cases without seriously compromising
the prediction of frequent ones.

It is well known that the ability to predict rare
events remains one of the most challenging tasks to
solve in machine learning (Arafat et al., 2019). Ac-
cording to this reference and also to (Sun et al., 2009;
Haixiang et al., 2017; More and Rana, 2021), a com-
mon strategy to cope with this problem consists in
applying re-sampling methods to balance the train-
ing data. Another possibility consists, for instance,
in assigning different classification costs to different
classes, but deciding those costs is a difficult task and
incorporating them in some data mining algorithms
is not easy. In this paper, we apply three popular re-
sampling techniques: random under-sampling (RUS),
random over-sampling with replacement (ROSWR)
and the synthetic minority over-sampling technique
(SMOTE) (Ganganwar, 2012; Kotsiantis et al., 2006;
Chawla et al., 2002). RUS randomly removes exam-
ples from the most represented classes in the training
set, but, by doing so, it can discard potentially use-
ful data that could be important for the induction pro-
cess, thus leading to underfitting. In turn, ROSWR
and SMOTE randomly add examples to the least rep-
resented classes in the training set, though in dif-
ferent ways: while ROSWR repeats existing exam-
ples, SMOTE generates new artificial ones. The main
drawback of ROSWR is that it can increase the like-
lihood of occurring overfitting, because repeating ex-
amples makes them more important during the train-
ing phase. This problem is avoided by SMOTE.

Selecting proper evaluation metrics plays a key
role in the task of correctly handling data imbalance.
In (Branco et al., 2016), the authors survey several
metrics and discuss their advantages and disadvan-
tages. For a multi-class classification problem, like
ours, they conclude that the so-called MF1 score and
related measures are suitable for performance assess-
ment. Hence, we use them in this study.

In this work, we wish to compare our previous
results in (Alonso and Candeias, 2022) with news
ones we obtained by applying re-sampling strategies
to balance our data set. Therefore, the remainder of
the paper is organized as follows. The next section
describes the data we considered. The re-sampling
strategies are presented in Section 3 and the predic-
tive models and learning methods in Section 4. The
issue of how to assess performance in an imbalanced
problem is addressed in Section 5 and we define suit-
able metrics for that purpose. Finally, the results are

shown and compared in Section 6 and the conclusions
and future work are given in Section 7.

2 DATA

The data set considered in this study is the one we in-
troduced in our previous paper (Alonso and Candeias,
2022). It has a total of 228 instances and 9 attributes.
There are 8 predictive attributes or input variables,
nominal and ordinal, corresponding to consumers’
characteristics: gender, age, marital status, education
level, region of residence, income, wine knowledge
and consumption frequency. The target attribute or
output variable is ordinal and corresponds to the bottle
price class. The full data set is partitioned into train-
ing and test subsets, with 2/3 and 1/3 of all available
instances, respectively. The partitioning is stratified
and so the a priori class distribution is roughly the
same in the three sets. The classes are C1 = ]0, 2.99[
euros, C2 = [3, 4.99[ euros, C3 = [5, 9.99[ euros and
C4 = [10,+∞[ euros and their relative and absolute
frequencies in the three sets are given in Table 1. Re-
mark that the data are imbalanced: the distribution is
skewed to the right, with the two lower classes being
much more frequent than the two higher ones. The
reason is that most people are willing to pay less and
only a small number of people are willing to pay more
for a bottle of wine. Further details about the data can
be found in (Alonso and Candeias, 2022).

3 RE-SAMPLING STRATEGIES

Re-sampling strategies are used to balance an im-
balanced training set like ours. In the following,
we briefly describe three popular techniques: ran-
dom under-sampling, random over-sampling with re-
placement and the synthetic minority over-sampling
technique (Ganganwar, 2012; Kotsiantis et al., 2006;
Chawla et al., 2002).

Random under-sampling consists in withdrawing
from the training set instances randomly chosen from
the most frequent classes, potentially until all classes
have the same number of cases or roughly the same.

In turn, random over-sampling with replacement
consists in adding to the training set instances ran-
domly chosen from the least frequent classes, poten-
tially until all classes have the same number of cases
or roughly the same. Note that, when an instance
is added to the augmented training set, it is always
drawn with replacement from the initial training set.

Finally, just like random over-sampling with re-
placement, the synthetic minority over-sampling tech-

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

264



Table 1: Frequency distribution of the bottle price class variable in the full, training and test data sets.

Bottle price class TotalC1 C2 C3 C4
Percentage of instances 38% 42% 16% 4% 100%

Full set 86 95 37 10 228
Number of instances Training set 57 63 25 7 152

Test set 29 32 12 3 76

nique adds instances to the least frequent classes.
However, the way how it does it is different, as will
be explained later on. Meanwhile, it should be said
that the authors of the method proposed three ver-
sions of it: SMOTE, for the case where all predictive
attributes are (quantitative) continuous; SMOTE-NC,
for the case where there is a mixture of nominal and
continuous predictive attributes; SMOTE-N, for the
case where all predictive attributes are nominal. Here,
since our data set has a mixture of nominal and ordi-
nal predictive attributes, we treat ordinal variables as
if they were nominal and consider the SMOTE-N ver-
sion, which we describe next, as well as the way how
we applied it.

In SMOTE-N, in order to add a new instance x̃
to class C, we start by selecting an instance x in C
from the initial training set and determine its k nearest
neighbors x1, . . . ,xk in C from such set. The nearest
neighbors are computed using the modified version of
the Value Difference Metric (Stanfill and Waltz, 1986)
proposed by (Cost and Salzberg, 1993) and incorpo-
rating the suggestions in (Chawla et al., 2002). Then,
a new instance x̃ we add to the augmented training set
is given by a vector whose i-th component is the most
frequent value among the values of the i-th compo-
nents of x and k′ of the k neighbors x1, . . . ,xk, where
1 ≤ k′ ≤ k. In this paper, we take k = 5. Remark that
the value of k must be lower than the number of in-
stances in the least represented class in our case, i.e.,
7 (see Table 1). Then, for each possible choice of x in
a class C for which we want to add instances, we gen-
erate as many new instances as possible and necessary
in the following way: the neighbors x1, . . . ,xk are split
into two sets with ⌊k/2⌋ and k−⌊k/2⌋ elements; new
instances x̃1 and x̃2 are generated by combining x with
the neighbors in the first and second sets, respectively;
the process of splitting and generation is repeated for
all possible splits.

4 PREDICTIVE MODELS AND
LEARNING METHODS

As was mentioned earlier, we wish to compare our
previous results in (Alonso and Candeias, 2022) with

the news ones we obtained by applying re-sampling
strategies to balance our data set. For this reason,
we consider the same predictive models and learning
methods.

Hence, we consider here three types of predictive
models: artificial neural networks, support vector ma-
chines and decisions trees (Hastie et al., 2009). Two
advantages of decision trees are their interpretability
and the ease with which they deal with qualitative pre-
dictive variables. Artificial neural networks and sup-
port vector machines are not as easily interpretable,
but very often they have better generalization results.
Details about these models are given in the previous
reference.

Regarding the learning methods, we consider the
conventional approach to supervised classification,
where the order relation between the classes is not
taken into account (Hastie et al., 2009), and two ordi-
nal supervised classification approaches, namely the
so-called unimodal binomial model (Pinto da Costa
et al., 2008) and a modification of Frank and Hall’s
method (Frank and Hall, 2001), proposed in (Cardoso
and Pinto da Costa, 2007). These two ordinal learn-
ing methods and the way how they are applied to our
problem are briefly described next.

4.1 The Unimodal Binomial Model

The unimodal model is a machine learning paradigm
intended for supervised classification problems where
the classes are ordered. Introduced in (Pinto da Costa
et al., 2008), the main idea behind this model is that
the random variable class associated with a given
query should follow a unimodal distribution, so that
the order relation between the classes is respected.
In this context, the output of a classifier where the a
posteriori class probabilities are estimated is obliged
to be unimodal, i.e., to have only one local maxi-
mum. There are different ways to impose unimodality
and, in (Pinto da Costa et al., 2008), the authors sug-
gested two approaches. In the parametric approach, a
unimodal discrete distribution, like the binomial and
Poisson’s, is assumed and its parameters are estimated
by the classifier. In the non-parametric approach, no
distribution is assumed and the classifier is trained
so that its output becomes unimodal. In all practical
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experiments conducted by the authors, the paramet-
ric approach led to better results, in particular when
the binomial distribution was considered. The supe-
rior performance achieved with this distribution was
also justified in theoretical terms. For these reasons,
our focus here is on the binomial model. Further-
more, since the classifiers chosen by us are artificial
neural networks, support vector machines and deci-
sions trees, we refer hereafter to binomial networks,
binomial support vector machines and binomial tress,
respectively. For the sake of conciseness, next, we
only present a detailed description of the binomial
networks applied to our problem.

As mentioned before, given information about a
consumer, we are interested in predicting how much
he/she is willing to spend in a bottle: less than EUR
2.99; between EUR 3 and 4.99; between EUR 5 and
9.99; EUR 10 or more. Representing these K = 4 bot-
tle price classes by C1, . . . ,CK , respectively, and the
information given about the consumer by x, Bayes’
decision theory (Hastie et al., 2009) suggests classi-
fying the case in the class maximizing the a poste-
riori probability P(Ck|x). To that end, the a pos-
teriori probabilities P(C1|x) , . . . ,P(CK |x) need to
be estimated. In the binomial network, these prob-
abilities are calculated from the binomial distribution
B(K−1, p). As this distribution takes values in the set
{0,1, . . . ,K −1}, we take value 0 to represent class
C1, 1 to C2, and so on, until K −1 to CK . Now, since
K is known, the only unknown parameter is the prob-
ability of success p. Hence, we consider a network
architecture as in Figure 1 and train it to adjust all
connection weights from layer 1 to layer 3. Note that
the connections from layer 3 to layer 4 have a fixed
weight equal to 1 and serve only to forward the value
of p to the output layer of the network, where the
probabilities from the binomial distribution are cal-
culated. For a given query x = (x1, . . . ,xJ), the output
of layer 3 will be a single numerical value in [0,1],
denoted by px. Then, the probabilities in layer 4 are
calculated from the binomial distribution:

P(Ck|x) = Bk−1 (K −1, px) , k = 1, . . . ,K, (1)

where

Bk−1 (K −1, px) =
(K −1)! pk−1

x (1− px)K−k

(k−1)!(K − k)!
. (2)

When px is in
[
0, 1

K

[
, the highest a posteriori prob-

ability is P(C1|x), and, therefore, the predicted bot-
tle price class is C1. More generally, when px is in[ i−1

K , i
K

[
, for some i in {1, . . . ,K}, the highest a pos-

teriori probability is P(Ci|x), and, therefore, the pre-
dicted bottle price class is Ci. Hence, in order to train

the network on a training set T = {(xn,Cxn)}
N
n=1 ⊂

χ×{Ck}K
k=1, where χ is the feature space, we replace

Ck by the value of p corresponding to the midpoint
of

[ k−1
K , k

K

[
, i.e., pk = k−0.5

K , and apply a suitable
optimization algorithm, like the Marquardt’s method
(Rao, 2019), to find connection weights that minimize
the mean squared error

1
N

N

∑
n=1

(
ptarget
xn

− pnetwork
xn (w)

)2
, (3)

where ptarget
xn

is the value of p replacing Cxn and
pnetworkxn

(w) is the output of layer 3 given the query
xn and having the network the weights w.

4.2 Modified Frank and Hall’s Method

Frank and Hall’s method was originally introduced
in (Frank and Hall, 2001). Just like the unimodal
model approach previously presented, the method is
intended for supervised classification problems where
the classes are ordered. As before, suppose that the
K = 4 bottle price ordered classes are represented by
C1, . . . ,CK . Frank and Hall propose to use K − 1 bi-
nary classifiers to address the K-class ordinal prob-
lem. In order to train the classifiers, such as arti-
ficial neural networks, support vector machines and
decisions trees, K − 1 data sets are derived from
the original data set. The i-th classifier is trained
to discriminate C1, . . . ,Ci from Ci+1, . . . ,CK . Given
an unseen instance x = (x1, . . . ,xJ), i.e., information
about a new consumer, the a posteriori probabilities
P(C1|x) , . . . ,P(CK |x) of the original K classes can
be estimated by combining the outputs of the K − 1
binary classifiers for that instance. As noticed in
(Cardoso and Pinto da Costa, 2007), the combina-
tion scheme suggested by Frank and Hall may lead
to negative probabilities, but the problem can be over-
come in the following manner: identifying the output
pi of the i-th classifier with the conditional probabil-
ity P(Cx >Ci|Cx >Ci−1), the classes can be ranked
according to the following formulas:

P(Cx >C1) = p1
P(C1|x) = 1− p1

P(Cx >C j) = p jP(Cx >C j−1)
P
(

C j
∣∣x
)
= (1− p j)P(Cx >C j−1) , j = 2, . ,K −1,

P(CK |x) = P(Cx >CK−1) .
(4)

This is known as the modified Frank and Hall’s
method. Its implementation using networks is illus-
trated in Figure 2.
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Figure 1: Binomial network.

Figure 2: Implementation of the modified Frank and Hall’s method using networks.

5 PERFORMANCE ASSESSMENT

The use of traditional metrics, like the overall accu-
racy, to assess the performance of a classifier in an
imbalanced test set is not appropriate, because they
tend to focus the model evaluation in the most fre-
quent class(es) (Branco et al., 2016). In this sec-
tion, we present suitable metrics for an imbalanced
and multi-class problem like ours. For further details
about the metrics and performance assessment in im-
balanced domains, the reader should refer to (Branco
et al., 2016) and references therein.

Suppose that there are n test instances. For the
i-th test case, given the observed vector xi of the pre-
dictive attributes, a classifier makes a prediction Ĉxi
of the true class Cxi . Let I be the indicator function
that returns 1 if its argument is true and 0 otherwise.
Then, the classifier has an overall accuracy or simply

accuracy given by

accuracy =
∑

n
i=1 I

(
Ĉxi =Cxi

)
n

, (5)

which corresponds to the proportion of cases that are
correctly classified. As mentioned before, this is not
an appropriate metric for an imbalanced test set. In
an imbalanced and multi-class problem, if we focus
on a single class C, then we can introduce the recall
and precision for that class and the corresponding Fβ

score as

recall (C) =
∑

n
i=1 I (Cxi =C) I

(
Ĉxi =C

)
∑

n
i=1 I (Cxi =C)

(6)

precision(C) =
∑

n
i=1 I (Cxi =C) I

(
Ĉxi =C

)
∑

n
i=1 I

(
Ĉxi =C

) (7)

Fβ (C) =

(
1+β2

)
precision(C)recall (C)

β2 precision(C)+ recall (C)
. (8)
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Hence, recall (C) represents the proportion of cases
from class C that are correctly classified and
precision(C) the proportion of cases predicted as
being from class C that are correctly classified.
Moreover, Fβ (C) is a combination of recall (C) and
precision(C), where β is a parameter set by the
user to adjust the relative importance of the for-
mer with respect to the latter. Usually, β = 1 and
so the same importance is given to recall (C) and
precision(C). Remark that Fβ (C) has a high value
when both recall (C) and precision(C) are high.
If there are K classes, C1, . . . ,CK , one then aver-
ages Fβ (C1) , . . . ,Fβ (CK) to obtain the so-called MFβ

score:

MFβ =
∑

K
k=1 Fβ (Ck)

K
. (9)

This single scalar metric is considered suitable to
compare the performance of different classifiers in an
imbalanced test set. For this reason, we use it in the
next section to analyze the results we obtained in our
problem.

6 RESULTS

All computer experiments were carried out using
Matlab R2021a with the Statistics and Machine
Learning Toolbox. We fitted artificial neural net-
works (NNs), support vector machines (SVMs) and
decisions trees to perfectly balanced training data,
obtained by applying the three re-sampling strate-
gies previously described, namely random under sam-
pling (RUS), random over-sampling with replacement
(ROSWR) and the synthetic minority over-sampling
technique for nominal predictive attributes (SMOTE-
N). The models’ hyperparameters, such as a regular-
ization term strength in the case of NNs, the scale
and type of kernel (Gaussian, linear or polynomial)
in the case of SVMs and several parameters related
to tree depth control in the case of decision trees,
were chosen in order to obtain the best estimate of the
prediction error, calculated by applying stratified 5-
fold cross-validation to the training set (Hastie et al.,
2009). In this way, we avoided underfitting and over-
fitting. This was done in the conventional approach
to supervised classification, in the unimodal binomial
paradigm (binomial model, for short) and in the mod-
ified Frank and Hall’s method. The trained models
were then applied to the test data.

Table 2 presents the results we obtained using the
MF1 score to assess the performance, in our test set,
of different approaches to our problem of predicting
how much a consumer is willing to pay for a bottle of
wine. Remark that MF1 is given by (9) with β = 1,

i.e., when we average Fβ over all wine price classes to
obtain MFβ, we give the same importance to the com-
bination of recall (6) and precision (7) in Fβ (8). Note
that, the higher the value of these measures, the bet-
ter. In Table 2, if we consider the results we obtained
in (Alonso and Candeias, 2022) with the original im-
balanced training data set, it can be seen the best one,
MF1 = 0.4382, was achieved by a NN in the modified
Frank and Hall’s method (best imbalanced classifier).
If we look at the results we obtained in this paper by
applying re-sampling strategies to balance the origi-
nal training data set, it can be seen that, for each re-
sampling strategy, the best result was also achieved by
a NN in the modified Frank and Hall’s method, with
MF1 = 0.4836 for RUS, MF1 = 0.4614 for ROSWR
and MF1 = 0.5528 for SMOTE-N (best balanced clas-
sifier). Hence, we were able to increase the MF1 score
from 0.4382 in the imbalanced data approach to as
much as 0.5528 when we applied re-sampling strate-
gies.

Table 3 shows the F1 score per class, in the test
set, for the best imbalanced classifier and the best
balanced one, and it can be seen that the application
of the SMOTE-N re-sampling strategy led to an im-
provement of F1 in the least represented classes in the
test set (C1, C3 and C4) and didn’t decrease it signif-
icantly in the most represented one (C2). Therefore,
we achieved our goal of obtaining a more balanced
classifier, i.e., one with an improved ability to predict
infrequent cases without seriously compromising the
prediction of frequent ones.

The analysis we present next highlights the impor-
tance of a careful choice of the re-sampling strategy
and the learning method in our imbalanced problem.
From Table 2, remark that, in general, the use of RUS
and ROSWR didn’t improve the corresponding im-
balanced data results when we considered the conven-
tional and binomial learning methods; the only excep-
tion was in the conventional NN case, where the MF1
score was slightly better with ROSWR. However, the
use of RUS and ROSWR always improved the cor-
responding imbalanced data results when we consid-
ered the modified Frank and Hall’s method, regardless
of the type of classifier implemented; moreover, if we
compare RUS with ROSWR, we can say that the for-
mer is preferable in most cases. Now, if we focus on
the use of SMOTE-N, it is clear that, for all possibil-
ities of learning method and classifier considered, it
always led to results that are better than the ones ob-
tained by applying RUS and ROSWR. Furthermore,
if we compare it with the imbalance data approach, it
can be seen that the only case where the results didn’t
improve was the one corresponding to the binomial
NN. Finally, note that the best SMOTE-N results were
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Table 2: Performance assessment in the test set using the MF1 score.

MF1
Learning Classifier Imbalanced Re-sampling strategy
method data RUS ROSWR SMOTE-N

Tree 0.3142 0.2592 0.2584 0.3680
Conventional SVM 0.4355 0.4054 0.3411 0.4857

NN 0.4089 0.3949 0.4152 0.4550
Tree 0.3960 0.2107 0.3623 0.4236

Binomial SVM 0.3807 0.2772 0.3479 0.4184
NN 0.4141 0.2255 0.3527 0.3923

Modified Tree 0.3464 0.3965 0.4387 0.4888
Frank and SVM 0.3783 0.4756 0.3863 0.5386

Hall’s NN 0.4382 0.4836 0.4614 0.5528

Table 3: F1 score per class, in the test set, for the best classifier fitted to the imbalanced training data (best imbalanced) and for
the best classifier obtained by applying a re-sampling strategy to balance the training data, namely SMOTE-N (best balanced).
The best classifiers are those exhibiting a higher MF1.

Classifier F1 per class
C1 C2 C3 C4

Best imbalanced 0.6415 0.6667 0.4444 0.0000
Best balanced 0.7059 0.6269 0.5926 0.2857

always achieved when the modified Frank and Hall’s
method was set for learning algorithm. One differ-
ence between this method and the other ones lies in
the fact that it is the only algorithm that, given an in-
stance, combines the outputs of several classifiers in
order to produce a final prediction of the true instance
class; the other algorithms make the prediction based
on only one classifier. We believe that this may be a
reason for its success.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented a first approach to the issue
of dealing with data imbalance in the multi-class or-
dinal classification problem of predicting how much
a Portuguese consumer is willing to pay for a bot-
tle of wine. More precisely, we applied several re-
sampling strategies intended to balance the training
data to which various predictive models were fit under
different learning methods. In this context, we carried
out a comparative study using performance measures
adequate to the imbalance nature of the problem. We
were able to obtain more balanced classifiers, i.e.,
models with an improved ability to predict infrequent
cases without seriously compromising the prediction
of frequent ones. Furthermore, we concluded that the
best balanced classifiers were the ones associated to
the application of the SMOTE-N re-sampling strategy
and the modified Frank and Hall’s learning method.

Motivated by the good results of this method and the
fact that it was the only one we applied where the
outputs of several classifiers are combined in order
to produce a final prediction of the true class, in the
future, we plan to apply ensemble methods like bag-
ging and boosting, where a set of individual learners
are combined to create one learner with a better per-
formance than the individual ones (see, for instance,
(Galar et al., 2012; Tanha et al., 2020)). Moreover,
we may apply a combination of under-sampling and
over-sampling.

ACKNOWLEDGEMENTS

This work was partially supported by the Cen-
ter for Research and Development in Mathematics
and Applications (CIDMA) through the Portuguese
Foundation for Science and Technology (FCT –
Fundação para a Ciência e a Tecnologia), references
UIDB/04106/2020 and UIDP/04106/2020.

REFERENCES

Alonso, H. and Candeias, T. (2022). Predicting how much a
consumer is willing to pay for a bottle of wine: a pre-
liminary study. In Procedia Computer Science, vol-
ume 204, pages 836–843.

Arafat, M. Y., Hoque, S., Xu, S., and Farid, D. M. (2019).
Machine learning for mining imbalanced data. IAENG

Predicting How Much a Consumer Is Willing to Pay for a Bottle of Wine: Dealing With Data Imbalance

269



International Journal of Computer Science, 46:332–
348.

Branco, P., Torgo, L., and Ribeiro, R. P. (2016). A survey
of predictive modeling on imbalanced domains. ACM
Computing Surveys, 49:1–50.

Bruwer, J., Li, E., and Reid, M. (2002). Segmentation of the
australian wine market using a wine-related lifestyle
approach. Journal of Wine Research, 13:217–242.

Cardoso, J. S. and Pinto da Costa, J. F. (2007). Learning
to classify ordinal data: the data replication method.
Journal of Machine Learning Research, 8:1393–1429.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence
Research, 16:321–357.

Cost, S. and Salzberg, S. (1993). A weighted nearest neigh-
bor algorithm for learning with symbolic features.
Machine Learning, 10:57–78.

Frank, E. and Hall, M. (2001). A simple approach to or-
dinal classification. In Proceedings of the 12th Eu-
ropean Conference on Machine Learning, volume 1,
pages 145–156.

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H.,
and Herrera, F. (2012). A review on ensembles for the
class imbalance problem: Bagging-, boosting-, and
hybrid-based approaches. IEEE Transactions on Sys-
tems, Man and Cybernetics Part C: Applications and
Reviews, 42:463–484.

Ganganwar, V. (2012). An overview of classification algo-
rithms for imbalanced datasets. International Journal
of Emerging Technology and Advanced Engineering,
2:42–47.

Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue,
H., and Bing, G. (2017). Learning from class-
imbalanced data: Review of methods and applica-
tions. Expert Systems With Applications, 73:220–239.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The
Elements of Statistical Learning: Data Mining, In-
ference, and Prediction. Springer-Verlag, New York,
USA, 2nd edition.

Koksal, M. H. (2021). Segmentation of wine consumers
based on level of involvement: a case of Lebanon.
British Food Journal, 123:926–942.

Kolyesnikova, N., Dodd, T. H., and Duhan, D. F. (2008).
Consumer attitudes towards local wines in an emerg-
ing region: A segmentation approach. International
Journal of Wine Business Research, 20:321–334.

Kotler, P. and Keller, K. L. (2006). Marketing management.
Prentice Hall, Upper Saddle River, USA, 12th edition.

Kotsiantis, S., Kanellopoulos, D., and Pintelas, P. (2006).
Handling imbalanced datasets: A review. GESTS In-
ternational Transactions on Computer Science and
Engineering, 30:25–36.

More, A. S. and Rana, D. P. (2021). Review of imbalanced
data classification and approaches relating to real-time
applications. In Rana, D. and Mehta, R., editors, Data
Preprocessing, Active Learning, and Cost Perceptive
Approaches for Resolving Data Imbalance, chapter 1,
pages 1–22. IGI Global, Pennsylvania, United States.

Payini, V., Bolar, K., Mallya, J., and Kamath, V. (2022).
Modeling hedonic motive–based segments of wine
festival visitors using decision tree approach. Interna-
tional Journal of Wine Business Research, 34:19–36.

Pinto da Costa, F., J., Alonso, H., and Cardoso, J. S. (2008).
The unimodal model for the classification of ordinal
data. Neural Networks, 21:78–91.

Pinto da Costa, F., J., Alonso, H., and Cardoso, J. S. (2014).
Corrigendum to ‘The unimodal model for the classi-
fication of ordinal data’ [Neural Netw. 21 (2008) 78-
79]. Neural Networks, 59:73–75.

Rao, S. S. (2019). Engineering Optimization: Theory and
Practice. John Wiley & Sons, Inc, New Jersey, USA,
5th edition.

Rouzet, E. and Seguin, G. (2004). Il marketing del vino. Il
mercato. Le strategie commerciali. La distribuzione.
Il Sole 24 ORE Edagricole, Bologna, Italia.

Stanfill, C. and Waltz, D. (1986). Toward memory-based
reasoning. Communications of the ACM, 29:1213–
1228.

Sun, Y., Wong, A. K. C., and Kamel, M. S. (2009). Classi-
fication of imbalanced data: A review. International
Journal of Pattern Recognition and Artificial Intelli-
gence, 23:687–719.

Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N., and Asad-
pour, M. (2020). Boosting methods for multi-class im-
balanced data classification: an experimental review.
Journal of Big Data, 7:1–47.

Thach, E. C. and Olsen, J. E. (2005). The search for
new wine consumers: Marketing focus on consumer
lifestyle or lifecycle? International Journal of Wine
Marketing, 16:44–57.

Thach, E. C. and Olsen, J. E. (2006). Market segment anal-
ysis to target young adult wine drinkers. Agribusiness,
22:307–322.

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

270


