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Abstract: Recent developments in educational data mining and learning analytics have increased the need for 
explainable artificial intelligence to interpret the decisions or predictions made by the algorithms. In order to 
analyse the impact of students' learning input on their learning effectiveness, an innovative responsible and 
trusted AI framework was developed and implemented as three separate modules that covered five different 
stages in this study. The first module developed various explainable artificial intelligence (XAI) models based 
on the model grafting and model fusion techniques that concatenated or synergized a global model with 
different local models. In addition, the local models were also supplemented by several explanation methods 
to provide additional explanatory information for the explainable XAI hybrid model. The second module 
constructed three different safeguard and auditing models to provide complementary predictions for students 
being misidentified as normal students and discovered the students at risk of failing a course. The adversarial 
training models developed in the third module applied AI generated synthetic data to train the proposed 
models and evaluate their performance with an attempt to search for any possible competent models that 
performed better. The framework was implemented by using Microsoft Power BI tools to create various 
visualized and interactive dashboards to demonstrate the analysis outcomes.   

1 INTRODUCTION 

For educational institutions, they are currently facing 
the era of AI and big data challenges, as the amount 
of data generated has grown significantly. In addition 
to increasing the complexity of data processing and 
analysis, it also prevents school teachers from 
analysing useful information in real time to improve 
teaching effectiveness. However, data mining 
technology and machine learning algorithms can help 
teachers quickly and effectively explore meaningful 
patterns and trends from a large amount of data, and 
help them solve assessment problems of student 
learning effectiveness. In particular, the rapid 
progress of artificial intelligence and deep learning 
technology has had a great impact on the entire 
educational industry. Both the artificial intelligence 
(AI) and machine learning (ML) provide innovative 
solutions for learning effectiveness analysis. With the 
advancement of information technology and the 
diversification of teaching materials, teachers can use 
the learning management systems (LMS) to provide 
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presentations, videos, online discussions, or Internet 
resources to prevent students from getting boredom 
and distress in learning. These platforms or systems 
can not only collect and record students' learning 
history and learning statistical information, but also 
can use various models of educational data mining 
and recently developed explainable artificial 
intelligence (XAI) techniques to provide diagnosis, 
prediction, and early warning analysis to improve 
student learning outcomes.  

To address the need of XAI and its importance in 
education, the XAI-ED framework based on six key 
aspects was carried out explicitly by Khosravi et al. 
(2022), and their case studies demonstrated how to 
develop more effective educational XAI systems by 
implementing the framework with four different 
educational AI tools. Alamri and Alharbi (2021) 
conducted a systematic review in existing work of 
explainable models for student grade prediction based 
on five research questions covering four main aspects 
of the models. Their results indicated the need of 
evaluation metrics for comparing the explainability of 
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models, and both accuracy and explainability were 
equally important to the prediction of student 
performance. As the prediction outcomes of a black-
box model could be interpreted by both global and 
local approaches, a number of previous studies in this 
area of research have demonstrated how the 
predictions can be explained both globally and 
locally. For example, Nagy and Molontay (2023) 
applied interpretable machine learning (IML) such as 
permutation importance (PI), partial dependence plot 
(PDP), LIME, and SHAP values to provide 
explainability for dropout prediction. The LIME and 
SHAP explainable methods were also examined and 
validated across various course pairs by Swamy et al. 
(2023). In order to construct a teaching support 
system based on ML and AI algorithms to predict 
student performance and identify whether the 
students suffer from a learning difficulty, a 
responsible and trusted AI framework shown in 
Figure 1 was developed and implemented with three 
main modules including explainable artificial 
intelligence, safeguard and auditing, and adversarial 
training.  

 

Figure 1: The responsible and trusted AI framework. 

2 RESEARCH FRAMEWORK  

As the development of explainable artificial 
intelligence has gained much importance in recent 
years, this research expanded the previous XAI model 
(Chou, 2021) into a responsible and trusted AI 
framework that used data collected from an online 
learning platform to analyse the impact of students' 
learning input on their learning effectiveness. The 
innovative framework covers five major stages and its 
detailed structure is illustrated in Figure 2. The first 
stage of the framework applied decision tree (DT), 
deep neural network (DNN), K-nearest neighbour 
algorithm (KNN) and grey relational analysis (GRA) 
as the global models to predict the learning effect of 

students. Although DT, KNN and GRA provided 
decision rules, case similarity and variable 
importance rankings that humans could easily 
understand, their prediction accuracies were still 
underperforming if compared to the DNN model. 
However, the network structure and weights of a 
DNN model were usually regarded as black-box 
operations, and the model was difficult to confirm 
whether its prediction result was reasonable.  

 

Figure 2: Structure of the research framework. 

Therefore, the second stage used a model grafting 
technique to concatenate the DT model as a global 
model with the DNNs as local models to create an 
explainable artificial intelligence (XAI-1) hybrid 
model, where the local models were used to improve 
the accuracy of prediction for each individual student. 
Besides that, the partial dependence plots (PDP), 
local interpretable model-agnostic explanations 
(LIME) and Shapley values (SHAP) were also used 
to provide additional supplementary interpretation for 
the deep-learning based DNN model. The dedicated 
XAI models might enable users to obtain an optimal 
compromise between accuracy and interpretability. 
Moreover, another model fusion technique was also 
used to integrate the explainable GRA model with the 
DT, DNN and KNN models to construct three hybrid 
models, which were denoted as XAI-2, XAI-3 and 
XAI-4, respectively.  In the third stage, both the GRA 
and KNN models, or either of them was employed as 
three different safeguard models in an auditing 
module to provide complementary predictions for 
identifying whether students with poor learning 
performance were misidentified as normal students 
during the processes of the previous stages and 
provided early warning to discover at-risk students. 
Recent developments in adversarial training have 
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increased the need for synthetic data, as the 
adversarial training is a technique that attempts to 
train models with various deceptive data in AI and 
machine learning. Because of this, the synthetic data 
were used as adversarial examples to test a machine 
learning model and cause the model to make a 
mistake in its predictions. By emulating the technique 
in a different way, the adversarial training models 
developed at the fourth stage intended to apply 
various AI generated synthetic data to train the 
proposed machine learning models, and their 
performance were evaluated with an attempt to search 
for any possible competent models that performed 
better. To be specific, the synthetic data were used as 
adversarial examples for training the proposed XAI 
models, and seeking for the chance to improve them 
based on the comparison of their performance with 
the original models trained with the real data. Both 
the CTGAN (Xu et al., 2019) and Synthpop (Nowok 
et al., 2016) methods were applied to generate 
synthetic data for training the XAI models and 
searching the optimal models. Essentially, the 
proposed XAI models attempted to use these 
generated synthetic data to explore the limitation of 
their predictive ability. 

During the last stage of the system development, 
the entire framework was implemented by using 
Microsoft Power BI tools to develop visualized and 
interactive dashboards to deliver effective analysis 
and decision-making information for the performance 
evaluation of each individual student. As a matter of 
fact, the interactive interface made it easier to provide 
explainable reasons acquired from the global and 
local models for the performance evaluation of 
students. The methodologies used in this study are 
briefly described in the following sections. 

2.1 Model Grafting and Model Fusion  

To optimize the trade-off between accuracy and 
interpretability in machine learning, a practical model 
grafting method developed in previous work (Chou, 
2021) was applied in this study to combine the DT 
model with several DNN models, and the resulting 
model is denoted as the XAI-1 model. The DT model 
was assigned as a global model due to its explainable 
ability, while the DNN models were chosen as local 
models to increase the accuracy. The DT global 
model mainly provided interpretable rules and 
variable importance, while local models were 
designed to improve forecast accuracy or provide 
other additional explanatory information. 

Normally, the DT, KNN, GRA models could be 
referred as interpretable models. In contrast to the DT 

model, the KNN and GRA models were employed as 
a counterpart to examine whether the non-tree-based 
models could improve the system performance or 
interpretability. Both models were capable of 
working as either a global or local model to increase 
the transparency and interpretability rather than 
accuracy by seeking students with the similar risk of 
failing a course. However, as the accuracy of a model 
increased, the model became more complexity in 
exchange for the cost of interpretability. On the other 
hand, as both the GRA and KNN models could 
supplement human decisions by identifying 
meaningful case similarity from data and support 
explain ability in the decision-making process. Both 
models were used for model fusion to provide 
synergy of models. The model fusion was performed 
by extracting the top-500 similarity rankings from the 
training cases based on the degree of grey incidence 
in GRA model for training with the DT, DNN and 
KNN models to construct three hybrid models, which 
were denoted as XAI-2, XAI-3 and XAI-4 models, 
respectively. 

2.2 Models Explanation Methods 

As the DNN models applied a black-box deep 
learning algorithm, the model could be further 
interpreted by the model explanation methods such as 
partial dependence plots (PDP), local interpretable 
model-agnostic explanations (LIME) and Shapley 
values (SHAP) to increase its interpretability. In 
addition, both the KNN, GRA models could also be 
directly used to replace the DNN model during model 
grafting to increase the interpretability. In general, the 
PDP method (Berk & Bleich, 2013) changed the 
value of a certain explanatory variable one by one 
while controlling other variables and interprets the 
relationship between the explanatory variable and the 
target variable by a line graph. Comparatively, the 
SHAP method applies the Shapley value to explain 
the importance of feature variables. The LIME 
method needed a small number of regional samples to 
construct a simple local model as a proxy model to 
interpret the original black-box model (Ribeiro et al., 
2016). Since the LIME algorithm was model-
agnostic, the global model could employ any machine 
learning or deep learning model, while the local 
model simply applied a regularized regression to fit 
the target values predicted by the original global 
model. 

The fundamental idea for the grey relational 
analysis was to measure the closeness of two data 
sequences based on the similarity and nearness level 
of the geometrical curves formed by the sequences. 
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Therefore, the relational degree was calculated by 
comparing the geometrical similarity between two 
corresponding sequences. In grey relational analysis, 
the more similar in the geometrical shape of 
compared curves meant the higher grey relational 
degree for the sequences. The GRA approach 
transformed the data sequence into normalized 
sequence in order to generate the so-called grey 
sequence, and all values in the sequence originally 
measured on different scales were required to be 
converted to a common scale. After that, both the grey 
relational coefficient and the degree of grey relation 
were calculated for an individual element within the 
data sequence and the entire sequence, respectively. 
Although previous studies (Liu et al., 2016) in this 
area of research reported different methods to 
calculate the grey relational coefficient, the results of 
these methods could lead to inconsistency in ranking 
order and require further synthesis for the outcomes. 
The grey relational analysis employed in this study is 
categorized as absolute incidence approach because 
all the sequences in training data were compared to a 
specified target sequence rather than been compared 
with each other in the relative incidence approach. 

2.3 Safeguard and Auditing Models  

Since the type I and II errors of a predictive model 
caused the students with poor learning outcomes 
being misjudged as normal, the students at risk of 
failing a course could therefore lost the chance to 
participate after-school tutoring or remedial teaching 
provided by the school. Based on the artificial 
intelligence and machine learning, a safeguard and 
auditing mechanism could find out those students 
with learning difficulties through the process of 
evaluating learning effectiveness and provide after-
school tutoring and remedial teaching opportunities 
in a timely manner. In this study, the students 
achieved good to excellent performance and received 
a final score above 80% were classified as “Good”. 
On the other hand, the students demonstrated 
generally weak to satisfactory performance and 
received a final score between 60% and 80% were 
classified as “Average”. If the students received a 
final score below 60%, they were regarded as 
unacceptable performance and classified as “Bad”. 
Despite the fact that students achieved marginal 
performance and were at higher risk of academic 
failure, they could be incorrectly predicted as 
“Average”. Accordingly, both GRA and KNN 
models were used to establish a safeguards module. 
The empirical results indicated that these models 
found 8 out of 10 cases in which students with “Bad” 

learning performance were misjudged as “Average”. 
As a result, the early warning mechanism should be 
enabled, and both the remedial program and after-
school tutoring should also be provided to those 
students. On the contrary, there were 10 students 
whose actual rating was “Average” and accompanied 
by another student’s actual rating was “Good” in the 
confusion matrix. This meant that a total of 11 
students were incorrectly predicted as “Bad” and 
enlisted in an early warning program. However, it 
will not lead to the deterioration of students' learning 
effect because their final grade could still benefit 
from the additional after-school tutoring. 

2.4 Adversarial Training Models 

The synthetic data is an important component in AI 
and also plays a key role in educational data mining, 
because it can help to solve the privacy and 
confidentiality issues and apply to specific conditions 
and needs where real data does not exist or are hard 
to obtain. For that reason, the cost of developing and 
testing an educational data mining or learning 
analytics model can be reduced. Although synthetic 
data is not real data, it has the same statistical 
characteristics as the real data, and will not be 
affected by data protection regulations promulgated 
by different countries. Since the data quality is a 
major concern for training a machine learning model, 
the synthetic data containing the binary, numerical, 
categorical data can capture the basic structure and 
statistical distribution as the real data while maintain 
the full range of data diversity. In addition to 
protecting the privacy and confidentiality of data, the 
synthetic data can also be used in the training and 
testing of machine learning systems, such as fraud 
detection systems or adversarial training models. The 
underlying concept of the adversarial training is to 
train models with various deceptive data in machine 
learning tasks. Basically, the synthetic data can be 
used as adversarial examples to intrude a machine 
learning model and cause the model to make a 
mistake in its predictions. Therefore, the adversarial 
training models in this study intended to apply 
various AI generated synthetic data to train the 
proposed machine learning models, and evaluated 
their performance with an attempt to search for any 
possible competent models that perform better. 

Unlike the deceptive data used for adversarial 
training, the synthetic data was applied as adversarial 
examples to train the proposed XAI models, and 
seeking for the chance to improve model performance 
by comparing with the original models using real 
data. Both the CTGAN and Synthpop methods were 
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used to generate adversarial examples for training the 
XAI models rather than deceiving them. In fact, the 
XAI models attempted to use these synthetic data to 
explore the limitation of their predictive ability. As 
the student data collected from the online learning 
platform was organized in a table with various 
variables, therefore, the tabular synthetic data was 
generated to carry out adversarial training to test and 
compare the impacts on the proposed models under 
diversified data. Through training with a large 
amount of synthetic data, it was possible to assess the 
relationship between the students' learning input and 
their corresponding learning effectiveness. More 
importantly, the adversarial training allowed us to 
understand whether the synthetic data could improve 
the generalization ability of the models.  

The Synthpop (CART) model generated three 
times and five times the number of training samples 
for the adversarial training with the DT global model 
were denoted as ATM-1 and ATM-2 models, 
respectively. Similarly, the CTGAN model was 
configured to generate the same amount of training 
samples as the Synthpop model for training with the 
DT model and denoted as ATM-3, ATM-4 models. 
As the training samples might contain imbalanced 
data in student rating where the number of students 
being rated as ‘Good’ had a much larger percentage 
than the minor ‘Bad’, the majority class was 
decreased to closely match the size of the minority 
class. The downsampled dataset was used to train the 
DT model again and denoted as the ATM-5 model. 

3 EXPERIMENT RESULTS 

The experimental data collected from the LMS 
system contained 1040 anonymized students across 
different study-level regarding their online activities 
and academic performances. The experimental results 
for the three stages were summarized in the following 
sections. 

3.1 The Experimental Results of XAI 
and ML Models 

In the first stage, the DT, DNN, GRA and KNN 
models were employed as a single individual model 
to predict the risk of student failure. The DNN model 
was constructed with five different layers, including 
a fully connected last layer, and the dropout layers 
with a cutoff value of 0.1 were used to reduce the 
overfitting problem. The activation functions such as 
Sigmoid, Tanh and ReLU were assessed in different 
hidden layers and another Softmax function was used 

in the last fully connected layer. The DT model was 
pruned according to the best complexity parameter 
(CP), which controlled the number of splits in a 
decision tree by examining the misclassification error 
for each branch and was evaluated between 0.01 and 
0.001. This study also implemented various XAI 
models that could enable users to obtain an optimal 
trade-off between the accuracy and interpretability. In 
addition to create an XAI-1 model using model 
grafting to concatenate DT model with DNN models, 
the explainable GRA model was also fused with the 
DT, DNN and KNN models to construct the XAI-2, 
XAI-3 and XAI-4 hybrid models. 

Although DT, GRA and KNN models were able 
to provide the transparency and interpretability for 
users to better understand the analysed results, their 
prediction accuracies were unsatisfactory. Table 1 
indicates that the deep-learning based DNN model 
achieved the highest accuracy of 0.814. However, the 
DNN model was regarded as a black box operation 
due to its network architecture and weights. Table 1 
also shows that all XAI models, except for XAI-3, 
reported the predictive accuracy over 0.770. 
Applying XAI models to predict student performance 
could improve the interpretation while maintain the 
performance of the prediction. For example, the XAI-
1 model integrating the DT and DNN models 
achieved the highest accuracy at 0.785 among all XAI 
models. Despite the accuracy being inferior to the 
DNN model, the outperformance of XAI-1 over the 
other models was also noticeable because it provided 
explainable decision rules and variable importance 
for users. On the other hand, the XAI-3 model gave 
worse accuracy than any other XAI models, even 
though it combined the explainable GRA model with 
the more accurate DNN model. Interestingly, the 
XAI-2 and XAI-4 models that GRA integrated with 
DT and KNN models respectively were shown to 
have the similar accuracies. 

Table 1: Prediction result of XAI and ML models. 

Models Accuracy Kappa 
DT 0.734 0.536 

GRA 0.740 0.538 
KNN 0.772 0.596 
DNN 0.814 0.676 

XAI-1 (DT-DNN ) 0.785 0.630 
XAI-2 (GRA-DT) 0.772 0.611 

XAI-3 (GRA-DNN) 0.734 0.520 
XAI-4 (GRA-KNN) 0.779 0.615 

Since the GRA model was applied as the primary 
model to filter the training samples with a higher 
degree of relational analysis in model fusion, 
different sizes of training samples were evaluated to 
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account for whether the XAI models could improve 
their accuracy with more training samples. Hence, the 
resulting XAI-2, XAI-3 and XAI-4 models were 
evaluated with the top-400 and top-500 similarity 
rankings of all training samples. The results, as shown 
in Table 2, indicated that the XAI-2 model using the 
top-500 ranking data in the model fusion of GRA and 
DT gave the best accuracy of 0.772. The XAI-2 also 
achieved a better performance than the XAI-3 and 
XAI-4 models by using the same amount of training 
samples. 

Table 2: Prediction result of XAI model fusion. 

Sample Size (GRA) Accuracy Kappa 
XAI-2 (400) 0.728 0.530 
XAI-2 (500) 0.772 0.611 
XAI-3 (400) 0.734 0.520 
XAI-3 (500) 0.721 0.499 
XAI-4 (400) 0.708 0.497 
XAI-4 (500) 0.740 0.550 

 
Figure 3: Analysis results of XAI-1 and LIME models. 

In addition to the decision rule generated for the 
XAI-1 model, the model could also be interpreted by 
the explanation methods such as PDP, LIME and 
SHAP to increase its interpretability. The importance 
ranking of variables calculated for each of the three 
performance ratings, including Bad, Average, Good, 
and their corresponding positive or negative effects, 
were shown in the bottom of Figure 3. The Final 
Exam, Second Exam, Material File Downloading, 
Course Completion and Rollcall were the top-5 
important learning activities that affect the student 

being classified as “Average” by the LIME 
explanation method. 

3.2 The Experimental Results of 
Safeguard Models 

In order to discover the students with poor learning 
performance being misidentified as normal in the first 
stage, the safeguard models performed an audit 
mechanism to search for the misjudged students and 
support early warning.  

Table 3: Prediction result of safeguard models. 

Models Bad Average Good 
Safeguard (KNN - GRA) 0.825 0.175 0 

Safeguard (KNN) 0.600 0.400 0 
Safeguard (GRA) 0.820 0.180 0 

DT 0.232 0.737 0.032 
DNN 0.4673 0.516 0.0174 

 
Figure 4: Top-5 similarity cases of safeguard models. 

As shown in Table 3, the DT and DNN models 
predicted that the rating of a student was “Average” 
with a probability of 0.737 and 0.516, respectively. In 
fact, the student's actual rating is “Bad”, and all the 
three safeguard models, including KNN-GRA, KNN 
and GRA, predicted that student’s rating was “Bad” 
with the probability of 0.825, 0.600 and 0.820, 
respectively. Although both the DT and DNN models 
failed to recognize the actual rating, the safeguard 
models found that the student with “Bad” rating was 
misjudged as “Average”, and the early warning 
mechanism including both the remedial program and 
after-school tutoring should be enabled to assist that 
student. The KNN-GRA model shown in Figure 4 
also found 3 out of its top-5 nearest neighbours 
predicted “Bad” for that student, and all the three 
safeguard models suggested that the student was most 
likely to demonstrate unsatisfactory performance. 
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3.3 The Experimental Results of 
Adversarial Training Models 

For validation of adversarial training models, both the 
Synthpop (CART) and CTGAN models were applied 
to generate synthetic data for training the original DT 
model. Therefore, totally five different ATM models 
were constructed to evaluate whether the synthetic 
data could improve the performance the interpretable 
DT model. As shown in Table 4, the empirical results 
showed that the Synthpop (CART) based ATM-1 and 
ATM-2 models trained with three-fold and five-fold 
synthetic data outperformed the CTGAN based ATM 
models. The accuracy and kappa values of ATM-1 
were found at 0.756 and 0.578, respectively, while the 
ATM-2 achieved similar results. The McNemar’s test 
results using the ATM-1 and ATM-3 in Table 5 also 
confirmed that the accuracy of Synthpop based ATM 
model was statistically higher than that of CTGAN 
based ATM models (p = 6.98E-08).  

By comparison with the Synthpop based models 
that generated three times and five times the number 
of synthetic data for the adversarial training with the 
ATM-1 and ATM-2 models, the CTGAN model were 
configured with three different network architectures 
including various combinations of the fully connected 
layer, batch normalization, Leaky ReLU, dropout 
layer to generate the same amount of synthetic data 
for training ATM-3 and ATM-4 models. Another 
downsampled synthetic dataset was also created to 
train the ATM-5 model. The impact of the 
aforementioned synthetic data for the adversarial 
training was summarized in Table 4.  

Table 4: Prediction result of ATM Models. 

ATM Models Accuracy Kappa 
ATM-1 0.756 0.578 
ATM-2 0.750 0.565 
ATM-3 0.715 0.502 
ATM-4 0.644 0.423 
ATM-5 0. 647 0.470 

Since the Synthpop model applied the CART 
decision tree algorithm to generate synthetic data, no 
matter it generated three times or five times the 
number of synthetic data, their prediction 
performance surpassed 0.75 accuracy. However, even 
though the CTGAN used three different amounts of 
synthetic data for ATM-3, ATM-4 and ATM-5, the 
highest model accuracy was 0.715, while the highest 
accuracy of Synthpop was 0.756. Despite the 
CTGAN based ATM models performing lower 
accuracy, they could still generate a large amount of 

diverse synthetic data to explore whether the models 
were overfitting or underfitting. 

3.4 Statistical Comparison of Models 

In the previous section, the experimental results were 
evaluated with accuracy, kappa metrics in comparing 
the performance of models. To evaluate if the 
performance of the one model was significantly better 
than that of the other model, several statistical 
comparison of models based on accuracy, kappa, 
macro-averaged sensitivity and specificity metrics 
were conducted to provide information on the 
certainty of the differences between the models.  

Table 5: Results of McNemar test. 

Model Comparison Statistic p-value 
XAI-3 vs XAI-4 0.52174 0.47010 
XAI-2 vs XAI-3 0.01020 0.91954 
XAI-2 vs XAI-4 0.63366 0.42601 
XAI-4 vs ATM-1 0.25510 0.61351 
ATM-3 vs ATM-1 29.0703 6.98E-08 

With the intention of comparing the predictive 
accuracy of the XAI and ATM models, the 
McNemar's test for pairwise model comparison with 
a significance level of α=0.05 was conducted to 
determine whether the use of these ATM models 
improved the accuracy of the XAI models. As shown 
in Table 5, the McNemar test rejected the null-
hypothesis that the performance of both the ATM-3 
and ATM-1 models was equal, as the p-value was 
lower than the chosen significance level. The 
remaining contrasts for other models were not 
significant (p > 0:05). 

On the other hand, Friedman's test and the post-
hoc statistical analyses were also employed for model 
comparisons based on the classification metrics, 
including accuracy, kappa, macro-averaged 
sensitivity and specificity. Since the statistic value for 
Friedman's test was 84.27 and the corresponding p-
value was 5.88E-06, the result rejected the null 
hypothesis and indicated significant differences 
among the compared models, with a p-value < 0.05. 
Therefore, the Nemenyi post-hoc test was required 
for all models to compare with each other. In addition, 
both the Bonferroni–Dunn and Holm tests were also 
carried out to identify significant differences among 
a control DNN approach and the other models. 
According to the Nemenyi post-hoc test where all 
models were compared to each other, the DNN model 
differed significantly (p < 0.05) compared to DT and 
GRA models in Table 6, and the XAI-3 also differed 
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significantly (p < 0.05) to DNN and XAI-1 models. 
Other contrasts were not significant. 

Table 6: Results of Nemenyi test. 

Comparison Statistic Adj. p-value 
XAI-3 vs DNN 4.06663 0.00172 
XAI-1 vs XAI-3 3.55023 0.01386 

DNN vs DT 3.48569 0.01767 
DNN vs GRA 3.29204 0.03581 

To test whether the performance of the black-box 
DNN model was better than that of the other models, 
the adjust p-values from both the Bonferroni and 
Holm corrections were applied to compare all models 
based on using the DNN model as a control model. 
As shown in Table 7, the post hoc tests indicated that 
the DNN model produced a significantly concrete 
differences (p<0.01) to XAI-3, DT and GRA models, 
and no evidences were found that DNN model 
performed better than the remaining models. 

Table 7: Results of Bonferroni-Dunn and Holm tests. 

Approach Bonf.  
Adj. p-value 

Holm 
Adj. p-value 

DNN vs XAI-3 0.00038 0.00038 
DNN vs DT 0.00393 0.00344 

DNN vs GRA 0.00796 0.00597 
DNN vs ATM-1 0.11337 0.07086 
DNN vs KNN 0.26528 0.13264 
DNN vs XAI-2 1.00000 0.52573 
DNN vs XAI-4 1.00000 0.52573 
DNN vs XAI-1 1.00000 0.60558 

4 CONCLUSIONS 

This study established an innovative responsible and 
trusted AI framework to analyse and predict the 
learning effectiveness of students based on their 
online learning activities. Various explainable 
artificial intelligence (XAI) models were developed 
to provide interpretable and explainable information, 
such as decision rules, variable importance rankings 
and case similarity for the evaluation of student 
learning performance. The XAI models achieved an 
overall accuracy between 0.734 and 0.785 in 
predicting learning rating for students. Another three 
safeguard and auditing models were built to 
complement the XAI models for retrieving the at-risk 
students being misidentified as normal and providing 
them the after-school tutoring or remedial teaching. 
The adversarial training models applied AI generated 
synthetic data to train the proposed models and 
explored any possible improvement for the original 

models by using the diversified synthetic data. The 
experimental results implied that the diversified 
synthetic data was unable to increase the accuracy of 
models, and led us to a deeper understanding of how 
the real data and synthetic data differed in exploring 
the performance limitation of models. The framework 
was finally implemented by the Microsoft Power BI 
tools to create various visualized and interactive 
dashboards to demonstrate and deliver effective 
analysis. 
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