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Abstract: The large scale proliferation of IoT devices has necessitated the requirement of securing these devices from
a massive spectrum of cyber security threats. IoT device fingerprinting is a defense strategy that can help to
detect unauthorized device subversion and the consequent anomalous activities by identifying device behavior
and characteristics. Device fingerprinting can be done by analyzing the network traffic features of the IoT
devices present in a network, thereby creating a blueprint of normal device behavior and clearly distinguishing
it from any kind of abnormal behavior. Since IoT devices operate under varying dynamic conditions, it is
implicit that a single device exhibits different behavioral patterns under different contexts and operating modes.
In this paper, we propose a context-aware behavioral fingerprinting of IoT devices that takes into account the
circumstances or contexts under which the devices are operating. Each context results in a fingerprint and the
complete behavioral fingerprint of an IoT device is the combination of all such fingerprints. We perform packet
level feature engineering for finding the best possible set of features for performing device fingerprinting. Our
fingerprinting strategy uses supervised learning for classifying the IoT devices. We have created an IoT test
bed setup consisting of a gateway and several IoT devices. We have collected network traffic data of these IoT
devices and have tested the efficacy of our proposed approach on these real data. Experimental results show
that our fingerprinting technique is quite effective and is capable of identifying IoT devices with more than
94% accuracy.

1 INTRODUCTION

The Internet-of-Things (IoT) comprises of a collec-
tion of devices with network interfaces that can com-
municate with each other over a communication net-
work, wired or wireless. This allows a variety of
low cost, low processing power, energy efficient de-
vices to be used to monitor various systems and en-
vironmental parameters, thereby improving the over-
all quality of human life. Today, IoT has found wide
ranging applications in smart home devices, smart
appliances, smart cities, smart transportation, con-
nected cars etc. The recent diversification in the types
and manufacturers of IoT devices has led to a large
amount of data being exchanged over the network.
With the personalization of these IoT devices, the net-
work traffic, sometimes, carries private and sensitive
user information. As a result, this wide array of de-
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vices become easy targets for intruders to gain ac-
cess to user networks and perpetrate different types
of attacks. Every year numerous attacks are detected
against IoT devices. These attacks compromise user
privacy by exposing sensitive information to mali-
cious individuals and at times, are capable of disrupt-
ing social harmony.

Securing IoT devices using traditional security so-
lutions like cryptographic techniques is impractical
due to their limited capabilities in terms of memory
capacity, processing power, battery etc. To compound
these issues, users of IoT devices include people from
varying demographics, not all of whom are aware of
the risks associated with the IoT applications. Thus,
IoT device security is often overlooked in the net-
works where they reside. In certain cases, the device
firmware and software may not even be upgraded and
the default access credentials are not changed by the
users due to lack of awareness about the security con-
cerns and their implications. Moreover, due to the in-
crease in the number of IoT device manufacturers and
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the huge device count involved, manufacturers them-
selves may at times overlook security concerns, even
if unintentionally, leading to vulnerabilities in the de-
vices that can be exploited.

To prevent subversion and exploitation of IoT de-
vices, continuous monitoring of IoT devices and their
network traffic using an automated device identifica-
tion strategy is needed. Such a system creates a digi-
tal footprint of the IoT devices by determining their
normal network behavior. Any deviation from this
normal behavior is flagged as an anomaly. A sys-
tem supporting IoT device fingerprinting can detect
and identify any misbehaving or malfunctioning de-
vice and isolate it from the network, thereby limiting
the potential of causing damage for any attack. More-
over, this requires minimal to no intervention from the
user. The user may subsequently be alerted using a
notification system to check the device and update or
remove it from the network.

Identification of IoT devices can be realized using
Behavioral Device Fingerprinting. This refers to cre-
ating unique device fingerprints for every device us-
ing its network traffic data, which can be either pack-
ets or flows. Once a set of fingerprints has been es-
tablished, the network activity of the device can be
monitored to ensure that it matches the device finger-
print. Any deviation from this behaviour can be clas-
sified as suspicious for that device. Such a scheme
allows for the creation of a low energy, efficient and
secret free security mechanism that can run even on
resource-constrained IoT gateways and edge devices.

The creation of unique device fingerprints poses
its own challenges due to the diversity of devices
and protocols used in the IoT environment. The IoT
devices also communicate with their manufacturers’
servers using various encryption schemes and pro-
tocols. The IP address of a device may vary over
time due to dynamic assignment and leasing using
protocols such as DHCP. Additionally, an IP Address
may easily be spoofed by a maliciously acting device.
Thus, identities such as IP Address and packet data
parsing schemes for creating fingerprints are not suit-
able in an IoT environment.

The device fingerprint needs to be created using
the network data characteristics i.e., the characteris-
tics and types of messages that the device exchanges
over the network. The fingerprints must be automat-
ically and remotely created by an entity that moni-
tors the network traffic, such as a gateway or an edge
device. These fingerprints must also be unique to a
device and must not be masqueraded easily by an at-
tacker. However, the fingerprints need to take into
account that IoT devices operate under ever-changing
dynamic conditions which in turn affect the device be-

haviors. Consequently, an IoT device functions differ-
ently under different operating conditions and there-
fore, exhibits different network traffic characteristics
under these conditions. Thus, the fingerprinting tech-
nique should account for the difference in behavior
for a particular device under different circumstances
and should appropriately consider all the behavioral
patterns. To address the aforementioned aspects re-
lated to security of IoT devices, we propose a Context-
Aware Behavioral Fingerprinting technique for these
devices.

The contributions of the paper are as follows:
• We propose a Context-Aware IoT Device Fin-

gerprinting strategy that takes into consideration
varied behavioral characteristics exhibited by the
IoT devices under different functioning contexts.
Each context generates a distinct fingerprint for
a device. The overall behavioral fingerprint of
the IoT device is the collection of all the context-
specific fingerprints. Thus, our technique employs
hierarchical approach for device fingerprint cre-
ation.

• Our proposed technique analyzes the network
traffic characteristics of the IoT devices and uses
several packet level features of the network traffic
data. In this work, we use supervised learning for
performing IoT device fingerprinting.

• The behavioral fingerprints are created consider-
ing a collection of packets rather than individual
packets. For this, we employ a method called
packet level aggregation.

• We have created an IoT test bed setup using a
Raspberry Pi acting as an IoT gateway and 8 IoT
devices. We have collected network traffic of each
IoT device over a certain time window. These net-
work data have been used for performing experi-
ments to evaluate our proposed fingerprinting ap-
proach.

• Experimental results on the data collected from
our test bed setup show that our proposed context-
aware behavioral fingerprinting method is capa-
ble of effectively identifying different IoT devices
and achieves an accuracy of more than 94%.

2 RELATED WORK

This section presents a survey of the existing liter-
ature on IoT device fingerprinting. In (Miettinen
et al., 2017), the authors propose IoT Sentinel, a
two step classification system to identify IoT de-
vices. They also propose a Software Defined Net-
working (SDN) based policy enforcement strategy to
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isolate compromised or malicious devices. The au-
thors in (Sivanathan et al., 2017) propose a traffic ac-
tivity based model for device fingerprinting. They
use various network traffic attributes such as sleep
time, active volume, average size of packet, peak
rate, mean rate, active time, total number of servers
contacted, total number of protocols used, DNS in-
terval and NTP interval. Bezawada et al. (Beza-
wada et al., 2018) provide an approach that creates
a behavioural profile for quantifying the various be-
haviours of devices belonging to a particular device
type. They create initial device-specific behavioural
profiles and continuously and automatically validate
the device behaviours against the profiles. (Hamad
et al., 2019) present a behavioral IoT device finger-
printing technique that extracts features from network
flows. Sivanathan et al. (Sivanathan et al., 2019)
propose a flow-based classification and device finger-
printing model. They created a test bed setup con-
sisting of 28 different IoT devices along with several
other non-IoT devices, all connected to a gateway.
The work in (Thangavelu et al., 2019) presents DEFT,
a supervised learning based technique for IoT device
fingerprinting and identification of new devices.

Lorenz et al. (Lorenz et al., 2020) propose a hard-
ware fingerprinting model based on PUF (Physically
Unclonable Functions) based authentication. The au-
thors in (Aftab et al., 2020) propose a clustering based
tracking and categorization of online streaming ap-
plicable for embedded systems. Yadav et al. (Ya-
dav et al., 2020), analyze the performance of sev-
eral existing IoT fingerprinting methods to identify
the most optimal factors and determine the machine
learning models most suitable for fingerprinting. The
authors in (Khandait et al., 2021) propose a flow-
based classification technique called Deep Packet In-
spection (DPI) that uses keywords related to names
of devices, domain names, etc. Chakraborty et al.
(Chakraborty et al., 2021) attempt to reduce the cost
associated with the feature vector selected for device
fingerprinting by presenting a cost-based feature se-
lection strategy.

An IoT device identification model that uses 111
network packet based features to model device be-
haviour is presented in (Kostas et al., 2022). Thom
et al. (Thom et al., 2022) propose a real-time IoT de-
vice identification strategy. Wan et al. in (Wan et al.,
2022) present DevTag, a network packet based IoT
device fingerprinting technique. DevTag incorporates
both model-based and rule-based methods of finger-
printing. The authors in (Kuzniar et al., 2022) pro-
pose PoirIoT, a fast system capable of detecting and
identifying IoT devices. IoTXray (Yan et al., 2022) is
a device fingerprinting method that takes into account

the reuse and re-branding of IoT devices. Aramini
et al. (Aramini et al., 2022) propose a distributed
on-device IoT fingerprinting technique. Kurmi and
Matam in (Kurmi and Matam, 2022) focus on creat-
ing IoT device fingerprints from the network traffic
traces. In (Abdallah et al., 2022), a method for iden-
tifying IoT and LoRa devices based on radio features
is presented. Another radio frequency based device
fingerprinting technique has been presented in (Ren
et al., 2022) that makes use of semi-supervised deep
learning models. Li et al. (Li and Cetin, 2021) pro-
pose a neural network based radio frequency oriented
device fingerprinting method for IoT devices. In (Ma
et al., 2022), Ma et al. have designed a spatial and
temporal fingerprinting method that can handle large
IoT networks. The authors in (He et al., 2022) put
forth a network traffic analysis based fingerprinting
for IoT platforms and have built IoTPF, a network
traffic analysis tool. Other works related to IoT device
fingerprinting include (Jiao et al., 2021) and (Wanode
et al., 2022).

To the best of our knowledge, few works in the
existing literature incorporate the notion of separate
device fingerprints for different operating conditions
and thus focus on context-specific behavioral finger-
printing of IoT devices. Hence, in this paper, we
present a context-aware fingerprinting technique that
considers the operating contexts of IoT devices and
the resultant behaviors.

3 PROPOSED METHODOLOGY

In this section, we present our proposed behavioral
fingerprinting method. We also discuss about the fea-
ture set extracted from the network traffic packets that
are used for identifying the IoT devices.

3.1 Context-Aware Behavioral
Fingerprinting

IoT networks are ever-changing and are quite dy-
namic in nature. Hence, the devices functioning
in such networks operate under dynamic conditions.
The behavior of an IoT device is determined by the
condition as well as the context in which it functions.
Every IoT device goes through different phases in its
entire operating life cycle. Initially, when a device
is introduced in the network for the very first time,
it goes through a setup phase. After this, the device
transitions to the functioning phase in which it per-
forms its usual activities. This phase can also be con-
sidered as the transmission or sensing phase. In this
phase, an IoT device can exhibit different behavior
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depending on the operation it is performing and the
type of data it is sensing. This in turn is guided by
the type of device. Moreover, the nature of trans-
mission can also vary across devices, like it can be
broadcast, multicast, etc. Apart from these, a device
can also be doing maintenance related activities in
its operating life cycle. Thus, based on the context
and the activities an IoT device carries out, it exhibits
distinct behavioral characteristics. The incorporation
of the context-specific behavioral characteristics in
the device fingerprints helps to create unique finger-
prints leading to more accurate device identification
and distinction between normal and abnormal activi-
ties. For this reason, we present a context-aware be-
havioral fingerprinting technique for IoT devices that
uses packet-level features. The details of the tech-
nique are presented below.

Let I be an IoT network that consists of m de-
vices D1, D2, . . . , Dm. Let Di be one such device
of the network (1 ≤ i ≤ m). Each IoT device per-
forms specific network activities during a particular
behavior phase and hence a distinct fingerprint is as-
sociated with each such phase. Suppose the number
of possible behavior phases of device Di is k. Let P
denote the set of all such behavior phases of Di. Thus,
P = {P1, P2, . . . , Pk}. Assume that device Di per-
forms a set of n network activities during a particular
behavior phase Pj. It is to be noted here that we do
not simply associate a single network activity with a
particular behavior phase. Suppose N is the set of all
such network activities of Di for phase Pj. Thus, N =
{ac1, ac2, . . . , acn} where each ac denotes a single
network activity. Let FP j

i be the fingerprint associ-
ated with behavior phase Pj (and hence the set N of
network activities) of device Di. We call such a fin-
gerprint as phase fingerprint. If Di goes through k
phases, then there are k such phase fingerprints for
Di. Here, we assume that k is the maximum possible
number of phases for any device in the IoT network I.
Some of the devices may go through lesser number of
phases. We assume that each phase fingerprint cou-
pled with the corresponding phase constitute a phase
identifier. We represent each phase identifier as a tu-
ple ⟨FP j

i , Pj⟩ for Di. Each such phase identifier con-
tributes to the behavioral fingerprint of Di. Thus, the
behavioral fingerprint BPi of device Di is the set of all
the individual phase identifiers. Hence,

BPi = {⟨FP1
i , P1⟩, ⟨FP2

i , P2⟩, . . . , ⟨FPk
i ,Pk⟩} (1)

The behavioral fingerprint BPi serves as the network-
wide unique identifier for Di. We denote the behav-
ioral identifier of Di as a tuple ⟨Di, BPi⟩. We define
the behavioral profile of the entire IoT network I con-
sisting of m devices as Network Profile and denote it

as NPF . NPF is given as:

NPF = {⟨D1, BP1⟩, ⟨D2, BP2⟩, . . . , ⟨Dm, BPm⟩}
(2)

The problem of IoT device fingerprinting can now
be defined as: Given a network activity ac and the
corresponding fingerprint Fac of a yet unidentified
IoT device Dl , determine the behavioral identifier
⟨Dl , BPl⟩ ∈ NPF such that Fac corresponds to some
phase identifier ⟨FP j

l , Pj⟩ ∈ BPl and consequently,
Fac ∈ ⟨Dl , BPl⟩. If Fac /∈ ⟨Dl , BPl⟩ ∀ l, 1 ≤ l ≤ m
(m = number of IoT devices), then classify Fac to be
the fingerprint of a new device Dm+1.
This implies that we need to classify the given net-
work traffic activity and the corresponding fingerprint
into a particular device’s behavior. It is to be noted
here that if Dl is one of the devices present in I, then
at the time of fingerprinting it is unknown that Fac cor-
responds to the behavioral identifier of Dl . If Fac does
not correspond to the behavioral profile of any of the
existing devices, then Fac is identified as the finger-
print (possibly partial) of a new device. Subsequently,
the behavioral identifier of the new device need to be
created and Dl is added to the list of devices of I.

In this work, we have essentially designed a hi-
erarchical fingerprinting approach where every oper-
ating phase generates a phase identifier and all such
phase identifiers cumulatively constitute the behav-
ioral identifier of a device. In this regard, our tech-
nique is different from the one presented in (Beza-
wada et al., 2018). The duration of operation of IoT
devices is not fixed in a network. Hence, it may so
happen that an IoT device remains operational for a
short period of time and in that time window operates
in a single behavior phase and thus exhibits a single
phase-level fingerprint. In such a scenario, the phase
identifier as well as the behavioral identifier of the de-
vice will consist of the single fingerprint. Irrespective
of the number of individual fingerprints present in the
behavioral fingerprint, a fingerprinting method should
be capable of identifying the IoT devices.

3.2 Feature Selection

Feature selection is an important step in IoT device
fingerprinting since the selected feature set affects the
accuracy with which the devices are identified. In this
work, we consider packet-level features for context-
aware behavioral fingerprinting. Our objective is to
select an optimal yet small sized feature set that is
capable of accurately classifying IoT devices in a net-
work.

We have selected features pertaining to packet
header as well as packet payload. We have taken
into account a total of 10 packet-level features, out
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Table 1: Packet Header Features and their Values.

Feature Possible Values
Data Link Layer Protocol ARP
Network Layer Protocol IP, ICMPv6
Port Identifiers Source Port Type,

Destination Port Type
Transport Layer Protocol TCP, UDP
Application Layer Protocol HTTP, DNS, MDNS, SSDP,

BOOTPROTOCOL, DHCP

of which 5 are packet header features and the remain-
ing are packet payload features. The packet header
features selected for fingerprinting include, (i) Data
Link Layer protocol, (ii) Network Layer protocol,
(iii) Port Identifiers, (iv) Transport Layer protocol and
(v) Application Layer protocol. Table 1 summarizes
the possible values for the above mentioned features.
These features can be considered as static features and
have been considered in (Miettinen et al., 2017). The
packet header features are binary in nature, implying
that each one of them is either present (represented
using a 1) or absent (represented using a 0).

We have also considered a set of 5 packet payload
based features. These include (i) TCP Receive Win-
dow Size, (ii) TCP Payload Length, (iii) Packet Size,
(iv) Packet Rawdata and (v) Payload Entropy. These
features can be considered as dynamic features. Next,
we discuss the intuition behind the inclusion of vari-
ous payload based features in the feature vector used
for device classification.

Payload Entropy provides information about the
contents of a packet. Entropy is low for well-
structured plaintext data and high for encoded (JSON,
XML etc.) or encrypted (SSL/TLS) data. The packet
payload is parsed as bytes, each byte taking a value
between 0 and 255). Entropy E is then calculated as
(Bezawada et al., 2018) - E = −∑

255
i=0 pri ∗ log(pri),

where pri is the probability of the ith byte value occur-
ring in the payload and log denotes base-2 logarithm.

TCP Receive Window Size has been proposed
as a device fingerprinting feature by the authors in
(Sivanathan et al., 2019). It encapsulates the mem-
ory limits of the device. IoT devices are generally re-
stricted in terms of memory and processing resources.
Due to this, the authors use a smaller TCP Receive
Window Size. Moreover, this feature has been shown
to be highly variable in various device classes by
Bezawada et al. (Bezawada et al., 2018) and hence
contribute considerably towards the behavioral finger-
prints of the devices. Packet Size and TCP Payload
length represent the length of the messages sent by
the IoT devices. This can also be highly variable de-
pending on the processing and memory capabilities of
the devices. This kind of variability is key to a good
discrimination of devices (Bezawada et al., 2018).

4 TEST BED SETUP

In this section, we describe in detail the IoT test bed
setup that we have created and the procedure using
which we have collected network traffic traces of the
IoT devices included in the setup.

4.1 Hardware Architecture

We designed an IoT network consisting of 8 IoT de-
vices and a gateway. Each IoT device was created
by connecting a sensor to a micro-controller board
(NodeMCU) that reads the sensor data and broadcasts
it over WiFi. We used the following 8 sensors to cre-
ate our IoT devices - (i) Raindrop sensor, (ii) Vibra-
tion sensor, (iii) IR sensor, (iv) IR distance sensor, (v)
Smoke sensor, (vi) Sound sensor, (vii) Photo sensor
and (viii) Tilt sensor. Each IoT device was connected
to a Raspberry Pi that acted as a gateway. The Rasp-
berry Pi was operated using a set of peripherals that
included a monitor, a mouse and a keyboard. Fig.
1 depicts the graphical representation of the overall
setup architecture and the associated legends. Two
USB hubs were also used for having the requisite
number of USB ports for the connections.

We connected a sensor to a micro-controller board
via the appropriate wiring. The board was powered
via USB, and we powered the sensor from the board
itself via jumper wires. The actual hardware compo-
nents and the interconnections among them are shown
in Fig. 2. In this figure, the 8 sensors constituting
the 8 IoT devices, the Raspberry Pi along with the
NodeMCUs and the USB hubs have been labelled.

4.2 Data Collection

After completing the hardware setup, we collected
network traffic data for each of the IoT devices. For
data collection, each NodeMCU (micro-controller
board) was programmed using the Arduino IDE. The
NodeMCU read the data from the sensor as pro-
grammed, and broadcasted it after connecting to the
WiFi network. The code snippet running on the
NodeMCU read the data from the sensor and then
embedded it into an HTML webpage, along with the
up time of the NodeMCU for debugging purposes.
The HTML was then sent by the NodeMCU to the
gateway device (Raspberry Pi). The webpage was
refreshed automatically, getting new data every few
seconds from the NodeMCU. This webpage was kept
open in the browser of the Raspberry Pi.

We captured the packets transmitted by the IoT
devices in a format that we can process and use for
training machine learning models. We used the Pi for
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Figure 1: Graphical Representation of the IoT Test Bed Architecture.

Figure 2: IoT Test Bed Setup consisting of 8 IoT devices and Raspberry Pi.

this, setting it up to capture packets from multiple de-
vices using Wireshark. We kept the auto-refreshing
website open and captured packets over a 6 hours time
window for each device, and saved it as a .pcap file for
further processing. We collected a total of 6,00,000
packets from the entire setup across all devices. How-
ever, some of these packets are the ones that were sent
by the Raspberry Pi back to the devices and hence do
not contribute to any device fingerprint. Table 2 lists
the number of packets captured for each individual
device that can be used for fingerprint generation. We
name our devices as D1, D2 and so on. Henceforth,
will refer to the devices using this naming scheme.
We extract the features mentioned in Sub-section 3.2
from these data packets.

Table 2: Packet Count for Individual IoT Device.

Device Name D1 D2 D3 D4
Packet Count 18,427 15,543 73,497 25,320
Device Name D5 D6 D7 D8
Packet Count 72,751 19,064 11,273 23,574

5 PERFORMANCE EVALUATION

In this section, we discuss how we have prepared
our captured dataset for running experiments and also
present the results of our experimental evaluation. We
conclude this section by analyzing the results and the
overall performance of our proposed fingerprinting
approach.
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5.1 Dataset Preparation

The number of packets captured per device is not uni-
form for all the devices as can be observed from Table
2. Hence, we performed random sampling to ensure
a balanced class distribution and prevent any sort of
bias in model training which in turn can affect the per-
formance of behavioral fingerprinting. We randomly
sampled 10,000 packets for each IoT device and thus
created the experimental data corpus consisting of a
total of 80,000 packets for all the 8 devices.

Existing literature shows that creating fingerprints
for IoT devices on a collection of data packets is
more effective than a fingerprint created with a sin-
gle packet. The cumulative pattern exhibited by a set
of packets encapsulates a more distinguishing device
behavior rather than a single packet. Some works
highlighting this aspect include (Miettinen et al.,
2017), (Bezawada et al., 2018), (Hamad et al., 2019),
(Sivanathan et al., 2019). Hence, we have performed
packet level aggregation by sorting the packets of
each device as per their timestamps. It is to be noted
here that packet aggregation was done after random
sampling the data for each device. As a result of
packet aggregation, we obtained an aggregated behav-
ioral fingerprint for each device, i.e., an aggregation
of say x packets contributing to a phase-level finger-
print of a device. We refer to x as Packet Aggregation
Count (PAC). In fact, PAC seamlessly fits into our hi-
erarchical fingerprinting strategy. One or more sets
of aggregated packets create a phase identifier for a
device. The value of PAC plays a crucial role in the
overall fingerprinting accuracy.

5.2 Experimental Results

We have used supervised learning for performing
context-aware behavioral fingerprinting. The dataset
obtained after random sampling and packet aggrega-
tion was split into 80% and 20%, 80% of the data was
used for model training and 20% was used for test-
ing. Our fingerprinting approach used Decision Tree
(Quinlan, 1987) and Random Forest (Breiman, 2001)
for identifying the 8 IoT devices. We have used the
features mentioned in Sub-section 3.2. We have em-
ployed one-hot encoding for creating the feature vec-
tor. As a result, the size of our final feature vector is
18. It can be noted here that apart from the packet
header features listed in Table 1, other features were
also captured in the traffic packets. However, these
features were largely non-existent, as exhibited by the
presence of 0s corresponding to those features in the
feature vector. Hence, these features were dropped
from the final feature vector. The implementation was

carried out using the scikit-learn library and the ex-
periments were executed on a laptop with Intel Core
i7 processor, 16 GB RAM and running Windows 11
as the operating system.

We have experimented with different values of
PAC (like 1, 5 and 10) and found that a PAC value
of 5 gives the best results. Therefore, we present the
results for this value of PAC. Each phase-level fin-
gerprint of a device consists of several sets of 5 con-
secutive packets of the device. We had 2,000 fin-
gerprints for each device and a total of 16,000 fin-
gerprints across all the devices. Thus, the complete
behavioral fingerprint of an IoT device consisted of
all the 2000 fingerprints. It is to be noted here that,
our devices were operational in two modes - sensing
mode in which the device captured data specific to its
type and passive mode in which the device was sim-
ply turned on but was not sensing anything. However,
this is applicable for a subset of the devices like de-
vices containing raindrop sensor, smoke sensor, tilt
sensor, etc. Other devices like the ones containing
sound sensor or photo sensor are capable of picking
up environmental data continuously as long as they
are powered on.

We evaluate the performance of our proposed fin-
gerprinting technique in terms of the following met-
rics:

Accuracy =
T P+T N

T P+FP+T N +FN
(3)

Precision =
T P

T P+FP
(4)

Recall =
T P

T P+FN
(5)

F1− score =
2∗Precision∗Recall

Precision+Recall
(6)

In Eqns. 3 - 6, T P, FP, T N and FN refer to True Pos-
itives, False Positives, True Negatives and False Neg-
atives respectively. We have computed the metric val-
ues for each of the 8 device classes. The overall met-
ric values for the proposed method have been calcu-
lated as macro averages of each of the corresponding
class specific values. Table 3 summarizes our exper-

Table 3: Experimental Results for Behavioral Fingerprint-
ing.

Metric Classifier
Decision Tree Random Forest

Accuracy 91.36% 94.66%
Precision 91.64% 94.68%
Recall 91.38% 94.65%
F1-Score 91.50% 94.66%

imental results. The results show that Random For-
est gives better performance for device fingerprinting
than Decision Tree. For Random Forest, we are able
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Figure 3: Confusion Matrix depicting Classification Issue for D2 and D6 for Random Forest.

Figure 4: Feature Vectors of 2 Typical Packets of D2 and D6.

to obtain more than 94% Accuracy, Precision, Recall
and F1-score. In this regard, our proposed technique
is capable of accurately identifying the IoT devices.
Moreover, the packet-level features that we have se-
lected is quite effective in terms of device identifica-
tion. In the next sub-section, we provide an insight
into the analysis of the experimental results.

5.3 Discussion

We analyze the results in order to determine the fac-
tors that affect the performance of our behavioral fin-
gerprinting approach. We find that our technique is
facing the issue of poor discrimination of 2 device
classes, D2 and D6. This is also evident from the
confusion matrix of Fig. 3 for Random Forest clas-
sifier. The labels along the horizontal and the vertical
axes are the device labels, given as their MAC ad-
dresses. The yellow colored rectangle corresponds to
the devices D2 and D6. For each of these 2 classes,
the lowest device classification accuracies of 83% (for
D2) and 88% (for D6) are observed. Moreover, 8.6%
of the total number of packets of D2 are predicted as
D6 and 11% of the total number of packets of D6 are
predicted as D2. Thus, the classifier is not always able
to distinguish correctly between the packets generated

from these 2 devices. This, however, does not occur
for the remaining 6 device classes.

In order to figure out the reason behind the poor
classification performance for D2 and D6, we exam-
ine the packets from these devices. It is interesting to
note that one device consists of a smoke sensor and
another one consists of a sound sensor. The feature
vectors of 2 typical packets of these two devices are
shown in Fig. 4. In this figure, the feature vector
in the first row is for D6 and the one in the second
row is for D2. As is evident from the figure, the fea-
ture vectors for the 2 sample packets are very similar.
The value of Entropy also varies by a small margin (≈
0.03) for these 2 devices. Fig. 5 shows a comparison
of several feature vectors of D2 and D6. From the fig-
ure, it can be seen that a large number of feature vec-
tors of these devices are similar implying that the fea-
ture vectors do not provide sufficient information to
properly distinguish between D2 and D6. This leads
to the relatively poor identification of these 2 classes.
Moreover, their reporting interval is also similar. Due
to these factors, the issue of device confusion occurs
resulting in poor classification performance.

Our proposed context-aware behavioral IoT de-
vice fingerprinting strategy uses simple tree-based
classifiers and is able to provide good performance
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Figure 5: Feature Vectors of Multiple Packets from D2 and D6 (Left Half: D2, Right Half: D6).

for device identification. Hence, our approach is quite
light-weight and can be run even on resource con-
strained gateways and edge devices. Moreover, we
have used only 10 features for classifying the IoT de-
vices. Even with one-hot encoding, the feature vector
is of size 18 which can be easily handled by systems
with low computational power. Our approach can also
be extended to identify new IoT devices introduced in
the network. Basically, any given fingerprint that can-
not be mapped to an existing behavioral identifier can
be considered as belonging to a new device. This will
be useful to detect the presence of any malicious IoT
device introduced in the network or any existing mal-
functioning device. In either case, the packets gener-
ated from such devices will be classified as anomalous
and malicious.

6 CONCLUSIONS

In this paper, we have proposed a machine learning
enabled context-aware behavioral fingerprinting tech-
nique for classifying IoT devices. The proposed strat-
egy takes into account the diverse phases encountered
by an IoT device in its operating life cycle which
result in the generation of distinct device fingerprint
corresponding to each phase for a single device. The
overall behavioral fingerprint is considered as the col-
lection of all such phase-specific fingerprints. Our
method analyzes the network traffic data from the IoT
devices to extract the best possible feature set for de-
vice identification and uses simple tree-based clas-

sifiers for performing fingerprinting. We have also
created an IoT test bed setup to collect network traf-
fic from actual IoT devices. Experimental results on
these real datasets show that we are able to achieve
good device classification performance.

In future, we plan to scale up the test bed setup
by adding more devices, maybe more complex ones
and enhancing our existing data corpus. We plan on
applying the proposed strategy for new as well as ma-
licious device identification. In the present work, we
have considered a packet feature based approach to-
wards fingerprinting using a multi-class classification
strategy. A future direction of work can be focused
towards the use of one-vs-all classification strategy
which can also include the distinction between IoT
and non-IoT devices, identification of new IoT de-
vices, exploring a packet flow-based approach and a
combination of packet-based and flow-based strate-
gies to solve the fingerprinting problem. We also in-
tend to experiment with other types of features related
to network traffic.
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