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Abstract: In this modern world of digitalization, abundant amount of data is being generated. This often leads to data of
high dimension, making data points far-away from each other. Such data may contain confidential information
and must be protected from disclosure. Preserving privacy of this high-dimensional data is still a challeng-
ing problem. This paper aims to provide a privacy preserving model to anonymize high-dimensional data
maintaining the manifold structure of the data. Manifold Learning hypothesize that real-world data lie on a
low-dimensional manifold embedded in a higher-dimensional space. This paper proposes a novel approach
that uses geodesic distance in manifold learning methods such as ISOMAP and LLE to preserve the manifold
structure on low-dimensional embedding. Later on, anonymization of such sensitive data is achieved by M-
MDAV, the manifold version of MDAV using geodesic distance. MDAV is a micro-aggregation privacy model.
Finally, to evaluate the efficiency of the proposed approach machine learning classification is performed on
the anonymized lower-embedding. To emphasize the importance of geodesic-manifold learning, we compared
our approach with a baseline method in which we try to anonymise high-dimensional data directly without re-
ducing it onto a lower-dimensional space. We evaluate the proposed approach over natural and synthetic data
such as tabular, image and textual data sets, and then empirically evaluate the performance of the proposed
approach using different evaluation metrics viz. accuracy, precision, recall and K-Stress. We show that our
proposed approach is providing accuracy up to 99% and thus, provides a novel contribution of analysing the
effects of K-anonymity in manifold learning.

1 INTRODUCTION

The amount of data produced every day is exponen-
tially increasing. Machine learning algorithms are
evolving day-by-day to provide useful information
from this data. With the generation of big data, there
also exist enormous high-dimensional data in which
the number of instances and attributes are relatively
very large, such that data-points become very far from
each other. This introduces significant challenges in
descriptive and exploratory data analysis. The high-
dimensional data in today’s world exist in many dif-
ferent forms: ranging from tabular data with higher
number of rows and columns, to image data, textual
data etc. When the data has two or three dimensions,
graphical plots helps in visualizing the local geome-
try of the data. But corresponding high-dimensional
graphs are less intuitive. Thus, to help the visualiza-
tion structure of such data, dimensions of the data
must be minimised. We are cursed by dimensional-

a https://orcid.org/0000-0002-7204-8228
b https://orcid.org/0000-0002-0368-8037

ity of the data. As the dimensionality increases, a
larger percentage of the training data resides in the
corners of the feature space (Spruyt, 2014). To con-
quer this problem of curse of dimensionality, dimen-
sion reduction can be helpful as it creates a reduced
set of linear or nonlinear transformations of the in-
put feature space. It also speeds up the computation
power by consuming less memory. The data in lower-
embedding space would require less trainable param-
eters, which leads to less chances of over fitting and
thus a more generalised model can be obtained.

Manifold Learning (Tenenbaum et al., 2000)
states that any real-world high-dimensional data set
lie on a low-dimensional manifold embedded in a
higher-dimensional space. Manifold learning meth-
ods are being commonly applied in various applica-
tions including financial markets (Huang et al., 2017)
and medical images (Seo et al., 2019) (Kadoury,
2018) to visualize high-dimensional data. However,
the main focus of these techniques is on preserving
the inherent structure of the data.

Consequently, when dimensionality of a feature
space moves towards infinity, distance measures (e.g.
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Euclidean distance, Manhattan distance, Mahalanobis
distance etc.) lose their effectiveness to measure simi-
larity in high-dimensional spaces. Euclidean distance
only considers numerical distance between two points
and calculates its shortest linear path. This distance
does not take into account where the actual data lies
because it contains no information about the shape of
the data. Manhattan and Mahalanobis distance have
similar properties. In contrast, Geodesics generalize
of the concept of distance for curved surfaces. The
geodesic distance considers neighbouring points and
finds actual graph-distance between them. It mea-
sures the shortest path length passing over the entire
data set.

Definition 1.1 (Geodesic Distance). Let M denote a
d-dimensional manifold. Consider two points m1, m2
∈M and a smooth path γ :[0,1] → M such that γ (0)
= m1 and γ (1) = m2. The derivative γ

′
(t) depicts the

velocity of γ since it passes through the point γ(t).
The length of the curve L(γ) is defined as :

L(γ) = ∫
1

0
⟨γ
′
(t),γ′(t)⟩ 1/2

γ(t)dt

The distance between points m1 and m2, i.e.,
ρ(m1,m2) is infimum over all possible paths con-
necting the two points m1 and m2. If this dis-
tance is achieved by a particular path γ, we say that
ρ(m1,m2) = γ is the geodesic distance between two
points on a manifold.

In Figure 1(a) Euclidean distance between points
A and B is calculated linearly in which the path rep-
resented by the Euclidean distance moves away from
the data points. But geodesic distance between A and
B is computed by joining all adjacent points in the
data set, preserving the inherent structure of the data,
as depicted in Figure 1(b). This situation may arise
more often in high-dimensional data when the data
points will be far-away from each other and not all re-
gions of the space are uniformly dense. Therefore, to
preserve the local geometry of the data, our approach
uses geodesic distance instead of Euclidean distance.

In recent years, the availability of personal data
has become an important concern with respect to
privacy-preserving data mining. We are intended
in producing valid data mining results without dis-
closing the underlying private information. Data
anonymisation is one of the privacy models, fun-
damentally used for Statistical Disclosure Control
(SDC) (Cox, 1980) that aims to minimise the iden-
tity disclosure. This aids the data controllers to re-
lease and process the public data without violating
the General Data Protection Regulation (GDPR) poli-
cies. A number of techniques have been proposed in
order to achieve data anonymisation with respect to

(a) Euclidean distance.

(b) Geodesic Distance.

Figure 1: Euclidean vs Geodesic Distance.

multidimensional records (Aggarwal, 2005). How-
ever, it is still a challenging task, as obtaining highly
accurate results requires looking at original values.
When dimensionality of data is high, it becomes even
more challenging to preserve privacy of records while
maintaining the local geometry of data. (Wang
et al., 2020) proposed privacy preserving solutions
for high-dimensional data, but it resulted in huge in-
formation loss. Therefore, our work aims to bridge
this gap and provide privacy preserving framework to
anonymize high-dimensional data so that high utility
is preserved.

This paper proposes a privacy preserving model to
anonymize high-dimensional data while maintaining
its manifold structure. Thus, we propose three differ-
ent approaches viz, M-MDAV, M-ISOMDAV and M-
LLEMDAV to transform high-dimensional space to
its low-dimensional embedding while preserving the
privacy. Algorithm 1 anonymises high-dimensional
data directly using M-MDAV. In contrast, Algorithms
2 and 3 use a modified version of manifold learning
techniques such as: ISOMAP and LLE, and later on
anonymize the obtained lower embedding using M-
MDAV micro aggregation method. This is performed
to study the effects of K-anonymity privacy model on
manifold learning, to provide a comparative analysis
and to emphasize the importance of manifold learn-
ing. As we will see below, the direct anonymization
of high-dimensional data does not lead to good per-
formance of machine learning algorithms. Because
of that, it is relevant to study approaches that are ap-
propriate for manifold learning structures. This is a
problem that is not considered in the literature, that
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we tackle here. Thus, we propose a hypothesis that
data points should really be in high-dimensions and
possess a manifold-like structure in order to analyse
the effects of our proposed approaches.

Every type of data requires different pre-
processing and a unique approach to handle it in or-
der to generate lower-dimensional embedding. There-
fore, to validate the performance of our approach, we
have worked on broad areas of applications and used
few benchmark data sets involving tabular, textual and
medical image data sets with instances ranging from
800 ∼ 48000 and number of attributes ranging from
14 ∼ 20000. To evaluate the utility of the proposed
approaches, we used various machine learning classi-
fication models such as: SVM, Naive Bayes, Decision
Tree, Random Forest, Gradient Boosting, XGB and,
KNN, and we used the best resulting model for test-
ing purposes. Further, we used k-fold cross validation
to validate the performance of the models. To esti-
mate the performance of our approach, we compute
accuracy, precision, recall and K-Stress values.

To examine the privacy analysis of this pa-
per, we found that K-Anonymity is safe from re-
identification and avoids identity disclosure risks.
Whereas, differential-privacy requires the selection of
a machine learning model before perturbing, to build
an appropriate protection method. Thus, this paper
provides novel contribution in investigating the ef-
fects of K-Anonymity on a high-dimensional data that
possess manifold structure.

The main contributions of the paper are as follows.

1. A novel K-Anonymity based privacy-preserving
model to anonymize high-dimensional data con-
sidering the manifold structure of data.

2. A novel M-MDAV privacy method that is a gener-
alised version of MDAV. It can be applied in any
real-world data to protect the data records, and at
the same time preserve the data’s inherent struc-
ture.

3. A study on the importance of geodesic dis-
tance in manifold learning approaches such as M-
ISOMAP and M-LLEMDAV using natural and
synthetic datasets including tabular, image and
textual data.

4. An analysis of trade-off between privacy and
utility of the samples is provided, in terms of
anonymising the records while preserving the
neighbourhood of samples during transforma-
tions.

5. An analysis on the importance of preserving the
manifold structures in anonymization process, as
direct anonymization of high-dimensional data
leads to poor machine learning performance.

6. We show that the proposed approach provides
99% accuracy in machine learning classification
tasks.

The remaining part of the paper is organized in the
following manner. Section 2 describes about the def-
initions of the concepts which are being used in this
paper. Section 3 presents step-by-step explanations of
the proposed approach. Section 4 discusses about the
data sets involved, empirical results and some discus-
sion about them. Finally conclusion and future works
are presented in Section 5.

2 PRELIMINARIES

This section provides a brief overview of the neces-
sary concepts that are involved in this paper.

2.1 Manifold Learning

In mathematics, a manifold is a topological space
which locally resembles the Euclidean space. Thus,
each record in a n-dimensional manifold has a neigh-
bourhood that is homeomorphic to the Euclidean
space of dimension n. Manifold learning assumes that
sample points lie on a low-dimensional manifold M
embedded in a high-dimensional ambient space. The
aim of manifold learning is to map sample points from
M to a low-dimensional space that preserves its local
geometry.

Definition 2.1. Manifold learning considers a fi-
nite set of data points x1, ...xn ∈ RD that exists in
a D-dimensional space, and optimize to find low-
dimensional points y1, ...yn ∈Rd when d≪D such that
Euclidean relationship between (yi,y j) reflects the in-
trinsic non-linear relationships between (xi,x j).

There are some widely used nonlinear mani-
fold learning approaches including ISOMAP, Lo-
cally Linear Embedding (LLE), Laplacian Eigenmaps
(LE), t-stochastic Neighbour Embedding(t-SNE), Lo-
cal Tangent Space Analysis (LTSA), Diffusion Map,
and Uniform Manifold Approximation and Projection
(UMAP) etc. These techniques help in generating
lower- dimensional embeddings of the data while pre-
serving the manifold structure of the data.

Linear Manifold learning techniques assume that
the high-dimensional data lies on a linear subspace
and as a result linear manifold learning techniques
can be successfully applied to linear data. There ex-
ists state-of the art approaches for determining the
lower-embedding space such as: Principal Compo-
nent Analysis (Hotelling, 1933), Multi-Dimensional
Scaling (Kruskal, 1964), and Linear-Discriminant
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Analysis (Fisher, 1936). They help in preserving the
linear relationship of the data set. However, when
the high-dimensional data lies on a non-linear space,
these methods can not capture the inherent structure
of the data, thus unable to preserve the pairwise-
distance between data points in lower-embedding of
the high-dimensional space. Therefore, non-linear
manifold learning techniques seek to preserve the
non-linear manifolds in high-dimensional space.

2.2 ISOMAP

Isometric Mapping is a non-linear dimensionality re-
duction approach, that projects the data onto a lower-
dimensional space (Tenenbaum et al., 2000). It uses
the concept of geodesic distance to find the distance
between two points, rather than using the Euclidean
distance. The Euclidean distance computes only the
distance between two points, completely ignoring the
shape of the dataset. In contrast, the geodesic distance
generalises the concept of distance for smooth curved
surfaces, and calculates the shortest path distance be-
tween two points considering the adjacent data points.
It can be computed by the construction of an adja-
cency graph, and then approximate geodesic distance
by any shortest path algorithm through the graph. The
main steps of the ISOMAP method are described as
follows.

• Construct a neighbourhood Graph over high-
dimensional space to find the N-nearest-
neighbours of each data point. This can be
performed in two ways.

– K-nearest neighbour
– Selecting neighbours that lie within a fixed ra-

dius (epsilon-ball)

• Compute geodesic distance between all data
points in a fully-connected neighbourhood graph
using any shortest-path algorithm. E.g. Dijkstra’s
algorithm and Floyd Warshall algorithm. The re-
sulting matrix will also be D(N× N) matrix.

• Construct centering matrix H = IN − 1/NeNeT
N

where N: size of matrix, I: an identity matrix,
eN = [1....1]T ∈RN .

• Construct the Kernel matrix K = −1/2HD2H.

• Perform eigenvalue-decomposition on K to obtain
the embedded top d-dimensional data points.

The intuition behind working with ISOMAP is, un-
like other linear techniques, ISOMAP can compute
the non-linear degrees of freedom that underlie com-
plex actual observations. It is also able to obtain a
global optimal solution, and is guaranteed to converge
asymptotically to the actual structure.

2.3 Locally Linear Embedding (LLE)

LLE is a non-linear dimensionality reduction method
which favors the preservation of local data structures
because it requires that every data point and its neigh-
bours lie on a linear manifold (Roweis and Saul,
2000). It reconstructs each point as a linear combi-
nation of its nearest neighbours, typically using Eu-
clidean distance. Later on, it embeds these points
onto a lower-dimensional space while preserving the
neighbourhood. LLE falls in a general category of
local linear transformation and should be able to per-
form well for open planar manifolds, with a smooth
surface curve. The main steps of the LLE method are
explained as follows.

• Find nearest neighbours of data points using Eu-
clidean distance.

• Calculate the reconstruction error by minimising
the cost function and obtain W such that:

minW =
n

∑

i=1
∣Xi−

n

∑

j=1
Wi jX j ∣

2

where X=(n×D) i.e., data points in high-
dimensions. Every point Xi j is a linear combina-
tion of its neighbours and weights Wi j are com-
puted such that Xi is close to ∑k

j=1Wi jX j

• Map the data points on low-dimensional space
while preserving the weights and obtain Y such
that:

minY =
n

∑

i=1
∣Yi−

n

∑

j=1
Wi jYj ∣

2

weights Wi j between each points gets preserved
and low-dimensional embedding Y of dimension
(n× d) where d≪D is obtained.

• Finally, low-dimensional embedding of data set is
obtained.

2.4 K-Anonymity

K-Anonymity is a privacy model that limits the risk
of re-identification by ensuring the property that
each record is indistinguishable from at least another
k-1 records, that share identical values for quasi-
identifiers (QIDs). These are known as equivalence
groups/classes (Samarati and Sweeney, 1998) (Sama-
rati, 2001). It is generally known as power of hiding
in the crowd. K-Anonymization in a given way min-
imises the sum of the squared error (SSE) by solv-
ing an objective function having number of parame-
ters more than two. This makes the problem to be
NP-Hard. Thus, some heuristic methods are used. K-
Anonymity can be implemented using generalization
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(publishing more general values of the samples), sup-
pression (removal of some samples) and micro aggre-
gation.

Micro aggregation creates some micro-clusters
from the entire data set and then replaces the original
data set in each cluster by their cluster representatives.
In this manner privacy is achieved because now the
perturbed data, the cluster representative, is not a sin-
gle record anymore, instead it is representation of the
entire cluster. Each cluster should have a minimum
number of records to assure privacy, which is equal
to k to satisfy k-anonymity. k is a parameter which
determines ”how much” the information is protected,
intuitively, the higher the value of k, the more is the
protection of information. It decreases the probabil-
ity of a successful record linkage by generating large
equivalence classes.

(De Capitani di Vimercati et al., 2023) illustrates
k-anonymity and its main extensions in different ap-
plications. In this paper, we have developed a man-
ifold version of Maximum Distance to Average Vec-
tor(MDAV) algorithm (Domingo-Ferrer and Mateo-
Sanz, 2002) for k-anonymisation based on micro ag-
gregation. It constructs homogeneous clusters from
the data set while minimizing the sum of squared er-
rors (SSE) i.e., the distance between each record and
its centroid.

SSE =
n

∑

j=1

n

∑

i=1
(xi j − x̄ j)

2

Differential Privacy (Dwork, 2006) is another
mechanism for privacy protection in machine learn-
ing. It aims to obfuscate the presence or absence of
a particular record in a given dataset, by limiting its
effect on the final result. However in real-world ap-
plications, data analysis and model construction are
just one of the steps of a complex process. One needs
to perform exploratory data analysis and test the data
on several models before selecting an optimal ma-
chine learning model and apply privacy-preserving
solutions to it (Torra, 2022), (Domingo-Ferrer et al.,
2021).

There are some recent works which includes dif-
ferential privacy on manifold learning (Vepakomma
et al., 2021) and on riemannian manifolds (Reimherr
et al., 2021). But according to our knowledge, there
are no studies that uses K-anonymity privacy model
on the manifolds. Thus this paper provides a novel
contribution.

3 METHODOLOGY

This section provides a description of our three dif-
ferent approaches that are developed in this pa-

per to achieve a privacy preserving model that
anonymize high-dimensional data considering the
manifold structure. Nobody investigated this field of
analysing the effects of K-Anonymity privacy model
on manifold learning. So, we studied this by propos-
ing three different approaches. Each approach is de-
scribed in a different algorithm.

Algorithm 1 is the M-MDAV approach, that di-
rectly tries to anonymize high-dimensional data us-
ing geodesic-MDAV. Algorithm 2 is M-ISOMDAV,
which uses ISOMAP for preserving the manifold
structure and then uses M-MDAV for anonymiza-
tion. Algorithm 3 is M-LLEMDAV method. It uses
geodesic-LLE and M-MDAV. We have developed
three different approaches, since the Algorithm 1 is a
manifold version of MDAV that directly anonymises
high dimensional data. While the later algorithms use
different manifold learning techniques to preserve the
inherent structure of data and then anonymize using
M-MDAV. A comparative analysis is also conducted
between these three algorithms which is described in
the later sections of the paper.

The intuition behind developing three different ap-
proaches is to analyse the effect of privacy model
on manifold learning techniques. To do so, firstly
we need a metric that preserves the information of
the high-dimensional space. The information should
be preserved and not lost while transforming to low-
dimensional space, as manifold learning computes
distance between points in high-dimensional space
and then aims to preserve these distances while trans-
forming to its low-dimensional embedding.

This is achieved by utilising geodesic distance as a
metric in manifold learning approaches. Once, the in-
formation is transformed in a low-dimensional space,
M-MDAV a newly developed manifold version of K-
anonymity model is used to protect the information
from intruders. We have considered two different
manifold learning techniques for the good properties
they have, and provided a comparative analysis be-
tween them.

Algorithm-1 M-MDAV is a manifold version of
state of the art MDAV. Initially, pairwise-geodesic
distance between each data points are computed as
defined in 1. Then, median of all data points is ob-
tained by minimising the geodesic distance between
the data points, as mentioned in the objective func-
tion of the algorithm 3. After that, clusters are formed
around the data points that are furthest from the me-
dian. This process is repeated until all points get clus-
tered. Finally, the clustered data points are replaced
by the median of that cluster. The Algotihm-2 M-
ISOMDAV is a manifold combination of two different
approaches i.e., ISOMAP manifold learning and
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Algorithm 1: M-MDAV.

Require: Y: original data set and k: integer
Ensure: Y ′: protected data set

1: while ∣Y ∣ ≠ 0 do
2: if ∣Y ∣ ≥ 3k then
3: Identify median of all the records denoted by

ymedian such that :

ymedian = argmin
y∈Y

n

∑

i=1
d(y,yi)

2

where d is the geodesic distance.
4: Find the furthest record from centroid

ymedian called as yr , and furthest record from
yr, called as ys. This is also computed using
geodesic distance.

5: Create Cluster Cr around yr which consists
of yr and k-1 records closest to it. Cluster Cs
which includes ys and k-1 closets records. k
is micro-aggregation parameters which de-
notes the number of times each combination
of values appears in a dataset.

6: The dataset gets updated Y =Y −(Cr,Cs)

7: The clusters get updated as well: C = C ∪
(Cr,Cs)

8: else if ∣Y ∣ ≥ 2k then
9: Find ymedian with all the records in Y.

10: Find most distant record yr from ymedian.
11: Create Cluster Cr with yr and k-1 closest

records. Cluster Cs with remaining records.
12: The clusters get updated: C =C∪(Cr,Cs)

13: else
14: C =C∪(Y)
15: end if
16: end while
17: Produce k-anonymized matrix Y ′ from clusters C.

MDAV micro-aggregation model.
Similarly, the Algorithm-3 M-LLEMDAV is a

manifold version of combination of two different al-
gorithms i.e., LLE manifold learning method and
MDAV privacy model. The algorithm starts by the
construction of neighbourhood graph as it is per-
formed in LLE method. After that, geodesic dis-
tance between each point and it’s neighbours are
computed instead of measuring euclidean distance.
Since geodesic distance is a generalisation of dis-
tance for curved surfaces, and it is more suitable in
high-dimensional space. Later on, the data points
are transformed to low-dimensional space while pre-
serving the weights and minimising the objective
function as depicted in algorithm 3 1. Finally, the
low-dimensional data points are protected using M-
MDAV a manifold version of MDAV privacy model.

Algorithm 2: M-ISOMDAV.

Require: D(n, p); p ≥ n or p ∼ n
Ensure: D′(n,d) ; d < n

1: Construct the weighted neighbourhood graph M
by connecting points Ni and N j such that if
they are closer to ε,then edge length becomes
dE(Ni,N j).

2: Compute pairwise-geodesic distance matrix M′ ∶
N ∗N ∈R with all the data-points of matrix M us-
ing Dijkstra shortest path algorithm.

3: Construct a centering matrix H where H = In −

1/NeNeT
N and eN = [1....1]T ∈R.

4: Compute kernel matrix K = −1/2HM′2H.
5: Determine eigenvalue decomposition of matrix K

of size D into d using any built-in function and
decompose it.

6: Record top-d eigenvalues of K in λ and their cor-
responding eigenvectors in ν.

7: Obtain Y =
√

λν the lower d-dimensional vector
of dimension (n×d).

8: Apply M-MDAV approach to Y to perform k-
anonymisation as discussed in Algorithm 1.

4 EXPERIMENTATION AND
RESULTS

In this section we initially present the data sets that are
considered for evaluation of the proposed approach.
Later on, we describe the computational requirements
that are necessary to conduct this experimentation. Fi-
nally, we discuss the obtained results and our analysis
using the proposed approach.

4.1 Data Set Description

In this sub-section, we describe the different data sets
that are involved for this experimentation. A wide-
variety of high-dimensional data sets are available
with us. Thus, we intended to consider real as well as
synthetic data sets. The three-different types of real
data set are tabular, image and textual data sets. The
number of instances ranges from 800 to 48000, and
the number of attributes ranges from 14 to 20000, so
that a broad experimentation can be performed to ana-
lyze that the proposed approach is suitable on various
types of data. The description of data sets used are
depicted as follows.
RNA Data. It is a classification data set, that
consists of random extraction of gene expression
of patients having five-different types of cancerous
tumor: KIRC, PRAD, BRCA, LUAD and COAD
(Fiorini, 2013). The dimensions of this data set is
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Algorithm 3: M-LLEMDAV.

Require: D(n, p); p ≥ n or p ∼ n
Ensure: D′(n,d) where d < n

1: Construct the weighted neighbourhood graph M
by connecting points Ni and N j such that if
they are closer to ε,then edge length becomes
dE(Ni,N j).

2: Calculate geodesic distance between points Ni
and it’s neighbors that are selected in above step
using Dijkstra shortest path algorithm.

3: Construct each point from its neighbours. Recon-
struction errors are calculated by minimising the
cost function

ε(W) =∑
i
∣Ni−∑

j
Wi jN j ∣

2

subject to constraint ∑n
j=1Wi j = 1. Thus, weights

Wi j are obtained that reconstructs each data point
from its neighbours.

4: Compute the low-dimensional data Y that best
preserves the manifold structure, represented by
weights Wi j.

φ(Y) =∑
i
∣Yi−∑

j
Wi jYj ∣

2

subject to constraint ∑n
i=1Yi = 0. Thus, lower-

dimensional matrix Y(n*d) is resulted.
5: Apply M-MDAV approach to Y to perform k-

anonymisation as discussed in Algorithm 1.

(801*20531). The number of attributes are signif-
icantly more than the number of instances. High-
dimensional visualization of this data is difficult, but
the proposed approach makes this easier.
GISETTE Data. It is a handwritten digit recogni-
tion problem(Guyon, 2003). The task is to differenti-
ate between highly confusible digits ’4’ and ’9’. This
data set is one of five data sets of the NIPS 2003 fea-
ture selection challenge. It is also a classification data
set having dimensions of (6000*5000).
SPAM Data. It is a textual data set that classi-
fies emails as Spam or Non-Spam (Hopkins, 2002).
It consists of 4457 instances which are pre-processed
using TF-IDF method that quantifies the relevance of
a text using statistical measures. Therefore, when TF-
IDF approach is applied on SPAM data set the resul-
tant data has (4457*5055) dimensions. This data set
is widely used in natural language processing (NLP)
task.
ADULT Data. It is a census income dataset, which
consists of numerical and categorical values and pre-
dicts whether income of a person exceeds 50K/ yr .
It is a classification data set which consists of 48000

instances and 14 attributes.
MADELON. It is an artifically created dataset that
consists of two-class classification problem with con-
tinuous input variables. It was a part of NIPS 2003
feature challenge having dimension of (4400*500).

4.2 System Description

The experimentation is performed on mac OS with 8-
core M1 Pro chip, 16 GB RAM, 500 GB Memory,
Python version 3.10 with a steady internet connection
was used.

4.3 Results and Analysis

This sub-section describes the visualisation and de-
tailed explanations of the empirical results which
were obtained using the proposed approach. The ex-
periments were conducted using three different ap-
proaches. They mainly correspond to the application
of the three Algorithms described in the previous sec-
tion. The proposed three approaches provides a way
for micro-aggregation to avoid identity disclosure risk
using K-anonymity privacy model,since it is safe from
re-identification.

The first approach consists of applying M-MDAV
directly on the high-dimensional data set and obtain
k-anonymous data records in the higher embedding
itself. Afterwards, to empirically evaluate the perfor-
mance, state-of-the art ML classification algorithms
such as SVM, Naive Bayes, Gradient Boosting, Deci-
sion Tree, Random Forest, Extreme Gradient Boost-
ing and K-nearest neighbours are implemented. The
best resulting model is further used for testing pur-
poses. To obtain a more generalised model with less
bias, k-fold cross validation technique is also utilised.
Finally, to validate the utility of the approach evalua-
tion metrics such as accuracy, precision and recall are
recorded.

Following Algorithm 2 M-ISOMDAV, we begin
with ISOMAP manifold learning technique to pre-
serve the manifold structure of the data and obtain
lower-embedding of the data set. Later on, anonymi-
sation on the low-embedding are performed using M-
MDAV algorithm. Finally, the anonymity data sets
are classified using all the above mentioned ML mod-
els and validated using k-fold cross validation. To
examine the utility of perturbed lower-dimensional
embedding, we describe another metric known as K-
Stress.

Following Algorithm 3 M-LLEMDAV, we use
geodesic version of LLE manifold learning technique
that tries to preserve the local neighbourhood struc-
ture. Then anonymization using M-MDAV is applied
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and classified using different ML models. A com-
parative analysis is performed with all three differ-
ent approaches and the best resulting approach for
each data sets are highlighted. Note that, the K-
Stress metric cannot be used with Algorithm 1 be-
cause K-Stress preserves pairwise distances between
high-dimensional and their low-dimensional embed-
ding, and any kind of transformation from high-
dimensional space to low-dimensional space is not
performed in Algorithm 1.

The performance of the proposed approach is
evaluated using four evaluation measures which are
described as follows.
Accuracy: is a metric for evaluating classification
models, that measures the ratio of number of cor-
rect predictions with respect to total number of pre-
dictions. Numerical representation of accuracy is de-
picted as follows.

Accuracy =Correct predictions/Total predictions.

Precision is a measure of quality that calculates
the fraction of correct positive results out of total pos-
itive outcomes obtained by the model. Mathemati-
cally, it is presented as follows.

Precision = T P/T P+FP.

where TP is True positives and FP is False Positives.
Recall: is a measure of quantity that computes the
fraction of correct positive results out of all relevant
samples that should have been classified as positive
by the model. Its algebraic representation is

Recall = T P/T P+FN

where TP is True positives and FN is False Negatives.
K-Stress: is a weighted sum of differences between
distance in original space, and the corresponding
lower-dimensional space (Kargupta et al., 2005). It is
a measure of goodness of fit that requires that distance
between two points in perturbed lower-dimensional
embedding are well preserved with respect to distance
between those points in original higher-dimensional
space. The stress indicates the amount of information
loss before and after transformation, and expressed as
a percentage with 0% stress being equivalent to per-
fect transformation. Mathematically, it is calculated
as follows.

√

∑(di j −δi j
2
)/∑d2

i j

where di j is pairwise distance between points
in higher-dimensional embedding, whereas δi j is
the pairwise distance between points in lower-
dimensional space.

Table 1: Evaluation of the proposed approach.
Dataset (D) D(n,p) Algorithm Accuracy Precision Recall K-Stress

RNA 800 × 20531

M-ISOMDAV

M-LLEMDAV

M-MDAV

99.17

58.12

90.10

99.18

59.3

90.12

99.17

58.13

90.11

0.43

0.73

−

Gisette 6000 × 5000

M-ISOMDAV

M-LLEMDAV

M-MDAV

77.79

85.13

69.21

76.82

86.10

69.87

77.78

85.14

69.18

0.69

0.64

−

SPAM 5272 × 5055

M-ISOMDAV

M-LLEMDAV

M-MDAV

85.20

42.61

39.56

84.34

43.13

40.10

85.21

42.59

39.81

0.45

0.89

−

4.4 Discussion

A detailed analysis has been performed for the selec-
tion of hyper-parameters. The hyper parameter k for
k-anonymity is chosen after performing several itera-
tions over different values of k. When we used k in
the range of (5-10), similar outcomes were resulted
in terms of accuracy. When k value was increased
to (15-20), the performance of our approach started
decreasing. Because a value of k larger than 5 is of-
ten considered as acceptable for k-anonymity and mi-
cro aggregation. So, we chose k=10 as a generalised
value for our experiments.

We implemented our approach using seven dif-
ferent machine learning classification models as de-
scribed above. Upon analysis we found that, the re-
sulting best classification model for RNA data set is
K-nearest neighbour classifier. This model is then fur-
ther used for testing purposes and evaluating the per-
formance using accuracy, precision and recall. The
hyper parameters used for tuning the K-nearest neigh-
bour classifier are: number of neighbours to be 5, and
weight distribution to be uniform. In contrast, for
Gisette and SPAM data set Gradient Boosting classi-
fier turns out to be the best performing model and fur-
ther used for evaluation purposes. The hyper parame-
ters used for Gradient Boosting classifier are: number
of estimators to be 100, learning rate to be 0.1 and
maximum depth of the tree to be 5. Rest of the hyper
parameters are kept by default as provided by scikit
library in python.

Table. 1 presents the tabular representation of re-
sults which are obtained on data sets using the three
different proposed approach which are involved in
this paper, it provides a comparative analysis between
our approaches. The first column presents the name
of data set used, the second column describes the size
of dataset in terms of number of instances and number
of attributes, the third column depicts the name of the
algorithm, whereas the remaining columns describe
the evaluation metrics. They are accuracy, precision,
recall, and K-Stress. For each data set, the best per-
forming approach is marked in bold.
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(a)

(b)

(c)

(d)

Figure 2: Performance analysis on (a) RNA (b) Gisette and
(c) SPAM Data sets (d) K-Stress values comparison using
M-ISOMDAV and M-LLEMDAV method.

Upon analysis it is found that for RNA and SPAM
data set, M-ISOMDAV approach is providing best ac-
curacy of 99.17% and 85.20 %. K-Stress value is
0.43 which is better than 0.73 that is obtained us-
ing M-LLEMDAV for RNA data set. Contrary, for
GISETTE data set M-LLEMDAV approach is pro-
viding the highest accuracy of 85.13 % and K-Stress

(a) (b)

(c) (d)

(e) (f)

Figure 3: Visualization of Data sets in high and low-
dimensions.

of 0.64. However, it can be observed that M-MDAV
didn’t provide the best results on any data set. Per-
formance of M-MDAV is significantly less than the
other approaches. Therefore, it can be analysed that
M-MDAV alone is not able to anonymise and preserve
the manifold structure of high-dimensional data and
it emphasize the importance of manifold learning. It
becomes relevant to use approaches that preserves the
inherent structure of the data for any machine learning
algorithms.

M-LLEMDAV’s performance on RNA and SPAM
data sets was relatively poor. We think the reason
behind this is that these data sets consist of multiple
manifolds, and LLE manifold learning algorithm use
a variety of tangent linear patches to model a mani-
fold. It represents one function as several small linear
functions, thus it is designed to work on slightly sim-
pler datasets (like the Gisette data set).

The Figure 2 depicts the visual representation of
three different proposed approaches on the selected
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data sets and provides a comparative analysis among
them. The Figure 2(a) records performance of three
proposed approaches on RNA data set in terms of ac-
curacy, precision and recall. It can be clearly seen
that, bar plots of M-ISOMDAV are highest in length
since they are resulting in most precise outcomes.
Similar trends are observed in Figure 2(c), where M-
ISOMDAV approach are providing most optimal out-
comes in SPAM data set. The Figure 2(d) depicts the
K-Stress values on three selected data sets using M-
ISOMDAV and M-LLEMDAV approach. It is found
that for two data sets i.e., RNA and SPAM the M-
ISOMDAV are providing minimal K-Stress values as
compared to the other approach.

The visual analysis of original high-dimensional
data sets are not possible. So, the impact of the trans-
formation from high-dimensional ambient space to
lower-dimensional embedding are represented in Fig-
ure 3. We present both 3D graphs and 2D graphs. In
3D graph plots it can be seen that all the data points
are immensely overlapped. These representations can
be seen for RNA, Gisette and SPAM data set in Fig-
ure 3 (a), (c) and (e). The data points in 2D are much
easier to be classified and visualisation also becomes
better. This is clearly depicted in Figure 3(b) and (d).
This analysis provides the visual importance of the
proposed approach.

To estimate the accuracy of ML classification
models, we use 10 fold cross-validation method. We
evaluated the impact of k for k-fold cross validation
on the classifier’s performance. The value of k is
varied from 3 to 10, and misclassification errors are
recorded. For all data sets, as the value of k increases,
the misclassification error also increased. The mini-
mum error values were obtained for k value 5 majorly.
Thus, k is set to be 5 for validating purposes and we
used 5-fold cross validation. This effect of varying k
with respect to misclassification error is displayed in
Figure 4.

We also computed the complexity of the proposed
approaches. We found it to be O(m×n3

) where m is
the dimensions of data points and n is the number of
data points.

We performed our experiments on a wide variety
of datasets including Adult, Madelon and few other
image data sets such as MNIST, CIFAR-10 etc. We
implemented the above three proposed approaches
and recorded accuracy, precision, recall and K-Stress
values. The results are presented in Table 2. We pro-
pose the following hypothesis based on the analysis
of our results.

Hypothesis 1. The data-points should really be in
high-dimensions and must possess manifold struc-
ture, then only the proposed approaches will be

Table 2: Limitation of the proposed approach.
Dataset (D) D(n,p) Algorithm Accuracy Precision Recall K-Stress

Adult 48842*14

M-ISOMDAV

M-LLEMDAV

M-MDAV

50.12

43.32

41.19

50.13

43.30

42.90

50.11

42.29

40.12

0.35

0.32

-

Madelon 4400*500

M-ISOMDAV

M-LLEMDAV

M-MDAV

62.18

59.23

60.38

62.25

59.21

60.30

62.19

59.23

61.21

0.28

0.25

-

able learn the intrinsic structure of the manifold and
anonymize data-points efficiently.

We consistently test the performance of our ap-
proach on Adult, Madelon, MNIST etc, datasets by
using ablation studies on different hyper-parameters,
We found that in the case of Adult and Madelon data
set, the data points are not really in high-dimensions,
as it should be for the manifold learning techniques.
Also, the data-distribution for these datasets is not
similar to the manifold structure. Thus, poor per-
formance in terms of accuracy and neighbourhood
preservation (K-Stress) is obtained.

5 CONCLUSION AND FUTURE
WORKS

In this paper, we proposed a privacy preserving frame-
work that uses K-Anonymity to anonymize high-
dimensional data maintaining its manifold structure.
In particular, we proposed three different approaches
out of which two use manifold learning techniques
to preserve the inherent structure of data during
anonymising, while the third one involves only a man-
ifold version of MDAV micro aggregation method to
achieve privacy. Later on, machine learning classifi-
cation models were used to evaluate the performance
of the proposed approach.

We evaluated the results in terms of statistical
measures such as machine learning classification ac-
curacy and good neighbourhood preservation such
as K-Stress values. The results show that the non-
linear transformations of data into lower-embedding
can preserve the privacy of the data. This paper pro-
vides a trade-off between utility and privacy of the
records.

We have also shown that anonymising high-
dimensional data directly i.e., using M-MDAV alone
is not able to preserve the underlying structure of the
data and leads to poor machine learning performance.
Thus, the proposed approaches are relevant for preser-
vation of manifold structure of the data. We investi-
gated with different types of real and synthetic data
sets. We proposed a hypothesis about the need of
data-points to be in high-dimensions and possess the
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manifold structure to be efficiently anonymized using
the proposed approach.

In future, we will provide a proof for this hypthe-
sis. Also, we will analyse our approach using
geodesic version of different manifold learning ap-
proaches such as: t-SNE, LTSA etc. Additional ex-
periments are considered for future work. Our K-
anonymity privacy model avoids the risk of identity
disclosure. However, it is unable to safeguard against
attibute disclosure risk. Thus, in future we would
like to formulate k-anonymity privacy model taking
into account the attribute disclosure risk in the man-
ifold structure. Also, we would like to analyse the
behaviour of differential privacy on our proposed ap-
proach.

(a)

(b)

(c)

Figure 4: No. of k vs misclassification error for (a) RNA
(b) Gisette and (c) SPAM Data sets.

ACKNOWLEDGEMENTS

This work was partially supported by the Wallen-
berg Al, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg
Foundation.

REFERENCES

Aggarwal, C. C. (2005). On k-anonymity and the curse of
dimensionality. In VLDB, volume 5, pages 901–909.

Cox, L. H. (1980). Suppression methodology and statistical
disclosure control. Journal of the American Statistical
Association, 75(370):377–385.

De Capitani di Vimercati, S., Foresti, S., Livraga, G., Sama-
rati, P., et al. (2023). k-anonymity: From theory to
applications. TRANSACTIONS ON DATA PRIVACY,
16(1):25–49.

Domingo-Ferrer, J. and Mateo-Sanz, J. M. (2002). Practical
data-oriented microaggregation for statistical disclo-
sure control. IEEE Transactions on Knowledge and
data Engineering, 14(1):189–201.

Domingo-Ferrer, J., Sánchez, D., and Blanco-Justicia, A.
(2021). The limits of differential privacy (and its mis-
use in data release and machine learning). Communi-
cations of the ACM, 64(7):33–35.

Dwork, C. (2006). Differential privacy. In Automata, Lan-
guages and Programming: 33rd International Collo-
quium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part II 33, pages 1–12. Springer.

Fiorini, S. (2013). https://archive.ics.uci.edu/ml/datasets/
gene+expression+cancer+rna-seq. UCI Machine
learning repository.

Fisher, R. A. (1936). The use of multiple measurements in
taxonomic problems. Annals of eugenics, 7(2):179–
188.

Guyon, I. (2003). https://archive.ics.uci.edu/ml/datasets/
gisette. UCI Machine learning repository.

Hopkins, M. (2002). https://archive.ics.uci.edu/ml/datasets/
spambase. UCI Machine learning repository.

Hotelling, H. (1933). Analysis of a complex of statistical
variables into principal components. Journal of edu-
cational psychology, 24(6):417.

Huang, Y., Kou, G., and Peng, Y. (2017). Nonlinear man-
ifold learning for early warnings in financial mar-
kets. European Journal of Operational Research,
258(2):692–702.

Kadoury, S. (2018). Manifold learning in medical imaging.
In Manifolds II-Theory and Applications. IntechOpen.

Kargupta, H., Datta, S., Wang, Q., and Sivakumar, K.
(2005). Random-data perturbation techniques and
privacy-preserving data mining. Knowledge and In-
formation Systems, 7(4):387–414.

Kruskal, J. B. (1964). Multidimensional scaling by opti-
mizing goodness of fit to a nonmetric hypothesis. Psy-
chometrika, 29(1):1–27.

Reimherr, M., Bharath, K., and Soto, C. (2021). Differ-
ential privacy over riemannian manifolds. Advances
in Neural Information Processing Systems, 34:12292–
12303.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimension-
ality reduction by locally linear embedding. science,
290(5500):2323–2326.

Samarati, P. (2001). Protecting respondents identities in mi-
crodata release. IEEE transactions on Knowledge and
Data Engineering, 13(6):1010–1027.

K-Anonymous Privacy Preserving Manifold Learning

47



Samarati, P. and Sweeney, L. (1998). Protecting privacy
when disclosing information: k-anonymity and its en-
forcement through generalization and suppression.

Seo, K., Pan, R., Lee, D., Thiyyagura, P., Chen, K., Initia-
tive, A. D. N., et al. (2019). Visualizing alzheimer’s
disease progression in low dimensional manifolds.
Heliyon, 5(8):e02216.

Spruyt, V. (2014). The curse of dimensionality in classifi-
cation. Computer vision for dummies, 21(3):35–40.

Tenenbaum, J. B., Silva, V. d., and Langford, J. C. (2000).
A global geometric framework for nonlinear dimen-
sionality reduction. science, 290(5500):2319–2323.

Torra, V. (2022). Guide to Data Privacy: Models, Tech-
nologies, Solutions. Springer Nature.

Vepakomma, P., Balla, J., and Raskar, R. (2021). Pri-
vatemail: Supervised manifold learning of deep fea-
tures with differential privacy for image retrieval.
arXiv preprint arXiv:2102.10802.

Wang, R., Zhu, Y., Chang, C.-C., and Peng, Q. (2020).
Privacy-preserving high-dimensional data publishing
for classification. Computers & Security, 93:101785.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

48


