
Integrating a Multi-Agent System Simulator and a Network Emulator to
Realistically Exercise Military Network Scenarios

Dante A. C. Barone1 a, Juliano Araujo Wickboldt1 b, Maria Claudia Reis Cavalcanti2 c,
David Moura2 d, Julio Cesar C. Tesolin2 e, André M. Demori2 f, Julio C. S. dos Anjos3 g,

Leonardo Filipe Batista Silva de Carvalho4 h, João Eduardo Costa Gomes5 i

and Edison Pignaton de Freitas1 j

1Graduate Program on Computer Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
2Military Institute of Engineering, Rio de Janeiro, Brazil

3Graduate Program in Teleinformatics Engineering (PPGETI/UFC), Federal University of Ceará, Fortaleza, Brazil
4Federal Institute of Rio Grande do Sul, Canoas, Brazil

5Graduate Program on Electrical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Keywords: Integration, MAS, Military Network.

Abstract: Modern battlefield scenario are complex environment in which a myriad of equipment and people interact to
accomplish a given mission. Most of this interaction is performed by means of wireless communication via
Command and Control Systems, which efficiency represent a critical factor the mission success. The assess-
ment of these systems, and their supporting networks, is of primal interest to decide for the best equipment
and military maneuver approach. However, there is a lack of tools that provide all the necessary behavioral
and network features to perform the task. Observing this fact, this work presents an alternative to simulate a
battlefield environment model by means of integrating a network emulator and a Multi-Agent System simula-
tor. By combining both software, it is possible to assess specific characteristics of each area without limiting
the model, thus providing the necessary data for an informed military network setup assessment.

1 INTRODUCTION

Battlefields have been dynamic and hostile environ-
ments throughout history that are constantly subjected
to unexpected changes. The advance of technology
has increased the size and scope of battles. Now, bat-
tlefields can spread over multiple domains where ad-
versaries contest their forces over land, air, sea, space
and cyberspace. Such evolution has significantly in-

a https://orcid.org/0000-0002-5133-0144
b https://orcid.org/0000-0002-7686-8370
c https://orcid.org/0000-0003-4965-9941
d https://orcid.org/0000-0002-1153-3879
e https://orcid.org/0000-0002-0240-4506
f https://orcid.org/0000-0002-0533-3395
g https://orcid.org/0000-0003-3623-2762
h https://orcid.org/0009-0001-7032-5850
i https://orcid.org/0000-0003-1418-0658
j https://orcid.org/0000-0003-4655-8889

creased the role of communications in military ac-
tivities and with it, has created the basic concept of
Network-Centric Warfare (NCW) (Cebrowski, 1999).
This has made it possible to deploy distributed Com-
mand and Control (C2) Systems to support Multi-
Domain Operations (MDO) (Townsend, 2018).

The complexity and extension of modern military
operations make them costly and cumbersome to as-
sess. Therefore, simulation becomes a useful tool to
evaluate military scenarios and help armed forces to
test new approaches. However, the effectiveness and
accuracy of a simulation depend on how close to the
real-world operation its model is. Moreover, as new
details are added, more complex becomes the model
and the demands from the simulator.

An alternative is to break the model into smaller
ones, isolating and assessing each aspect of the sce-
nario with a specific simulator. This separation, how-
ever valid, removes the interaction between different
aspects of the model from the assessment. In order to

194
Barone, D., Wickboldt, J., Cavalcanti, M., Moura, D., Tesolin, J., Demori, A., Anjos, J., Silva de Carvalho, L., Gomes, J. and Pignaton de Freitas, E.
Integrating a Multi-Agent System Simulator and a Network Emulator to Realistically Exercise Military Network Scenarios.
DOI: 10.5220/0012051600003546
In Proceedings of the 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2023), pages 194-201
ISBN: 978-989-758-668-2; ISSN: 2184-2841
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

get a better picture of what is happening in the mili-
tary operation as a whole, it is necessary to broaden
the scope instead of isolating its parts. Unfortunately,
there are not many simulators capable of assessing
very complex military operations models. This is the
case when the goal is assess the performance of troops
in Network-Centric Operations, in which communi-
cation network aspects directly affect the unfolding
of the military units on the field.

Thus, a solution to model such complex environ-
ment is to integrate two types of simulators, each
covering one aspect of the scenario: unit behavior
and network communication between units. Albeit
simple, the idea of integrating two different simu-
lators is easier said than done since both programs
might run in different operating systems, use differ-
ent programming languages, and have different time
approaches (real-time, simulated time, event-driven),
among many other specificities.

Observing the need for simulations that exercise
C2 communication network features in realistic mil-
itary operation scenarios, this work proposes the in-
tegration of a Multi-Agent System (MAS) simulator
with a Network emulator. This paper presents an
overview of the proposed Simulator-Emulator Inte-
grated System, highlighting the main contributions:

• The proposal of an integration between a behav-
ioral model based on Multi-Agents Systems with
computer network paradigms able to deploy a re-
alistic behavior of a military network;

• An integrated execution environment entitled Sys-
tem of Systems of Command and Control (S2C2)
Emu-Sim;

• The design of timing and decision mechanisms
that allows the joint operation of the integrated
software.

This work is divided in the following structure:
Section 2 brings the main concepts regarding the ad-
dressed military scenarios, then Section 3 presents
the main challenges involved in integrating two dif-
ferent simulation paradigms, and Section 4 follows
with the proposal of the integrated software. Section
5 presents the solutions for the challenges previously
presented. Section 6 shows the results obtained on a
case study and the paper is concluded with Section 7.

2 CONCEPTS REVIEW

The key concepts for military communications on the
field are briefly summarized next.

2.1 Command and Control

The fundamental core of Command and Control re-
gards the structure and decision making to enable a
team of individuals to accomplish a mission (Alberts
and Hayes, 2006).

The idea of military Command used to be pro-
jected into a single individual (the leader, the ge-
nius commander) but the Information Age has shifted
that idea from centralized Command to de-centralized
Command (Alberts and Hayes, 2003). Therefore,
shifting authority and decision power to individuals at
the edge of the organization (Boone, 2021) in a new
approach that has been called Network-Centric War-
fare (NCW) (Alberts and Hayes, 2006).

2.2 Military Communication Networks

To modern military conflicts, the communication net-
work infrastructure is highly important. While it
includes several methods, it relies mostly on wire-
less connections (Pawgasame and Wipusitwarakun,
2015). As consequence, there has been a consider-
able general increase in data rates to support mod-
ern applications such as maps, friendly positions and
real-time video feeds (Jalui et al., 2019), which has
become even more pressing after the introduction of
Internet of Battle Things (IoBT) (Kott et al., 2016),
which must be capable of dealing with different types
of users and data requests. A contemporary exam-
ple of that are the debilities of the Russian Armed
Forces to communicate in the war of Ukraine, which
points that most of the difficulties faced by the Rus-
sians are based on communication network problems,
particularly in regard to acquiring timely data and to
the coordination of their actions - clearly C2 business
(Cranny-Evans and Withington, 2022).

To overcome the challenges of a variable network
configuration and topology, new network approaches
have been developed based on new paradigms that
aim to aim to improve network connectivity and data
transfer between nodes while providing robustness,
such as Information-Centric Network (ICN) (Campi-
oni et al., 2019), Disruption/Delay-Tolerant Network
(DTN) (Amin et al., 2015), Software Defined Net-
work (SDN) (Nobre et al., 2016) and combinations
of them (Wang et al., 2017), (Zacarias et al., 2017),
(Leal et al., 2019).

2.3 Decision Making Process

Every military group has its own hierarchy and dis-
cipline. However, as NCW advances, responsibility
and decision power shift to de-centralized individu-

Integrating a Multi-Agent System Simulator and a Network Emulator to Realistically Exercise Military Network Scenarios

195

als at the edge of the organization. Hence, each troop
must be capable to make its own decisions in view of
the main objective of the operation.

One way to simulate such behavior is to use Multi-
Agents System (MAS) simulators. The core abstrac-
tion of agent is defined by (Dorri et al., 2018, p. 2)
as “an entity which is placed in an environment and
senses different parameters that are used to make a de-
cision based on the goal of the entity. The entity per-
forms the necessary action on the environment based
on this decision”. This definition perfectly models the
military units and the military operation scenario in
which their are inserted.

However, while MAS simulators create communi-
cations between agents to allow them to interact with
each other, those are simple and aim only to exchange
knowledge of the environment. Thus, simulators usu-
ally do not assess real network parameters.

2.4 Conceptual Data Modeling

It is essential for the success of software development
endeavors to conciliate both developers’ and experts’
perceptions about a domain while capturing it. Con-
ceptual Data Modeling aims to provide such align-
ment, bringing semantic-rich concepts to represent re-
ality as accurately as it can be, becoming more un-
derstandable and implementation independent. In this
sense, the modeling language must provide the essen-
tial constructs for such task. Otherwise, some impor-
tant concepts may be left out of the final model.

Ontological Conceptual Data Modeling (OCDM)
can be used on large and complex information sys-
tem, instead of Traditional Conceptual Modeling
(TCM), to bring substantial benefits. In (Verdonck
et al., 2019), authors observed in their empirical
study that novice modelers (modelers without pre-
vious data modeling knowledge) using OCDM tech-
niques brought higher quality models when compared
to the ones brought by novice modelers using a TCM
technique. Hence, ontology-based conceptual model-
ing tools, such as OntoUML (Guizzardi et al., 2015),
are able to deliver better domain conceptual models,
improving not only their reading clarity and imple-
mentation, as well to improve the reasoning capabil-
ities of a system. Using ontology also reduces ambi-
guity and avoids semantic conflicts within the model.

3 PROBLEM STATEMENT

Modern battlefield scenarios cover aspects of
decision-making and network communications
that make realistic simulation models complex.

As more details and parameters are added, more
is required from simulators. Although there are
network simulators and emulators able to efficiently
assess network parameters, and to evaluate different
network paradigms, they have poor support to
realistic represent the behavior of military troops on
the field. This includes making decisions regarding
the presence of enemies and performing coordinated
maneuvers to avoid natural or man-made obstacles.

On the other hand, while making decisions and co-
ordinating the movement of units are tasks better eval-
uated by MAS simulators, they are unfit to assess/test
new network paradigms or parameters. Hence, to in-
tegrate these two types of simulators provides a way
to improve complex military operation models to net-
work communications and decision-making as well.

To use those two tools in synchrony requires to
account some key factors, such as the simulation
progress time having to occur at the same pace in both
programs. Otherwise, events occurring in one pro-
gram (and their consequences) are not properly re-
flected at the other. This is not a simple task when
combining an emulator and a simulator. A simulator
can accelerate (or slow down) time, while an emulator
uses real-world clock time. This creates restrictions to
how fast (or if) the scenario can be sped up to.

The kind of information shared between software,
how it is shared and the physical position of units on
the field are also matters to consider. Particularly,
continuous and synchronous update of positions on
both software is necessary so that aspects like signal
loss/variation or loss of packages can be added to the
model and to the decision-making process. That way,
movement decisions are dealt by the MAS simula-
tor while the network emulator uses the position of
units to figure the network behavior. Thus, a common
data interface to share information between these two
types of tools becomes a requirement. However, that
is not part of the design goals of either of them.

One way to synchronize data communication be-
tween those programs is to write and read data from
external files, e.g. .txt or .csv files. That way, data
generated and registered by one program can be ac-
cessed by to the other. Yet, this solution might lead to
issues like semantic conflicts (see Section 2.4), con-
current file requests and file management problems.

To overcome such problems, an alternative is to
write and read data from databases as the use of a
well-conceived data model might facilitate interoper-
ability. This makes it possible to register the configu-
ration of the simulation and of each step of its steps,
therefore, making it easier to compare, debug or iden-
tify outliers. The drawback of this approach is that
if often requires the use of external scripts or third-

SIMULTECH 2023 - 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

196

party software (such as DBMS) to enable direct ac-
cess database files. Other than, that, the permission
to read/write access into the database file is also an
important concern.

The simulation of military scenarios requires to
use information from real locations, with natural ge-
ographic elements such as rivers, mountains and val-
leys, as well as man-made elements such as bridges
and roads. Hence, the use of maps with Geographic
Information System (GIS) is a good option. This
because, MAS simulators can be tuned to interpret
each geographic information and use them in path-
finding algorithms like Dijkstra or A*. On that mat-
ter, weather conditions may also be another source of
interference for units’ movement and network com-
munications that should be taken into account.

Combining all these concerns described above in
a single setup that enables the assessment of network
and military doctrine parameters is not a trivial task
and requires the integration of different software sys-
tems. In turn, this integration has a number of chal-
lenges that have to be handled in order to work prop-
erly. The approach presented in this paper faces these
problems as detailed in the following.

4 INTEGRATION PROPOSAL

This work presents the integration of a MAS simula-
tor and a Network emulator to realistic represent bat-
tlefield environments and the accurate behavior of its
troops, including the interoperability issues that might
occur in communications in such scenarios.

4.1 Architectural Overview

The general structure of the proposed solution de-
fined by the “S2C2 EmuSim - Command and Con-
trol Simulation Configuration and Orchestration” sys-
tem is shown on the component diagram of Figure
1 and are described next from a objective point-of-
view. Though most of the inner components of the
diagram are omitted, Section 4.2 discusses the sub-
components of the “EmuSim Script” component.

• “S2C2 Menu”: the component tasked to initialize
the system. It provides the “Start” interface used
by other components to execute the each or theirs
corresponding functionality.

• “ManageSimulation”: the component used to cre-
ate, load and edit a “Scenario (Simulation)” ob-
ject. It uses the “Run” interface provided by the
“EmuSim Script” to run the scenario over the
“MAS Simulator” and the “Network Emulator”.

• “Scenario (Simulation)”: the battlefield scenario
to be simulated. Each scenario is built over a bat-
tlefield ontology based on the Web Ontology Lan-
guage (OWL)1, a domain ontology for the rich
representation of entities, individuals, categories,
inferences, attributes, and relationships on the bat-
tlefield. It also enables checking the logical con-
sistency between the simulated entities and infer-
ring rules and constraints of the battlefield sce-
nario.

• “Simulation Log”: an object created by “Manage
Simulation” after a scenario has been run and had
its data saved to the database.

• “S2C2 OWL Loader”: a component used to con-
vert to/from OWL data through its “Parse” inter-
face.

• “MAS Simulator”: the Multi-agent System Sim-
ulator used to simulate the troops and the battle-
field environment of the military scenario under
analysis, including the decision-making and path-
finding algorithms used to choose routes and ac-
tions that should be taken to reach the goal.

• “Network Emulator”: a program used to em-
ulate the communication signals (and the suc-
cess/failure of their delivery) of military troops
simulated by the MAS Simulator.

• “EmuSim Script”: a component tasked to syn-
chronize the “MAS Simulator” and the “Network
Emulator” and to run the input battlefield Sce-
nario.

• “EmuSim Persistence”: a component used to in-
sert, update or read data base data through its pro-
vided “DB Query” interface.

• “Manage Simulation Report”: a component used
to read the “Simulation Log” object and view the
resulting data from the execution of a Scenario in
a user-friendly way. It is also used to configure the
report, selecting which statistics should be shown.

• “Manage Simulation Set”: a component tasked to
build and read a “Simulation Set” object and to
sequentially run each of its scenarios.

• “Simulation Set”: the object file containing a set
of different configurations of the same “Scenario
(Simulation)” file that should be run to collect
their data and to produce reports to identify the
best resulting strategies.

• DBMS: the database of the system.

The need to synchronize the “MAS Simulator”
and the “Network Emulator” comes from the fact that

1https://www.w3.org/OWL/

Integrating a Multi-Agent System Simulator and a Network Emulator to Realistically Exercise Military Network Scenarios

197

Figure 1: S2C2 EmuSim - Command and Control Simulation Configuration and Orchestration.

both use co-simulation (Gomes et al., 2018) to simul-
taneously run the same military scenario over their re-
spective settings. This is critical to this work since
that, different from a simulator, an emulator works in
real-world time only.

4.2 EmuSim Script Component

The “EmuSim Script” component manages the gen-
eral functioning of the S2C2 System. It also bridges
the events triggered by the use of the system and the
external applications responsible to them, such as the
“MAS simulator” and the “Network emulator”, re-
spectively NetLogo and Mininet WiFi.

NetLogo is a multi-agent programmable modeling
environment (Wilensky, 1999). It is a robust open-
source platform based on Logo programming lan-
guage and implemented in Java and Scala. Mininet-
WiFi is a lightweight open-source emulator developed
in Python used to create realistic virtual networks that
runs at the same computer real kernel, switch, and ap-
plication code(Lantz et al., 2010), as well as wireless
connections with access points, ad hoc communica-
tion, and mesh networks (Fontes et al., 2015).

When executing a scenario, the “MAS Simulator”
is tasked to start and end the simulation, as well as
to set the number of nodes (agents), their environ-
ment, primary objective, and behavior when encoun-
tering enemies. Meanwhile, the “Network Emulator”
has the task of asserting the nodes’ success/failure to
communicate in order to track the chance of friendly
fire.

The “EmuSim Script” is triggered by the “Manage

Simulation” component whenever a scenario simula-
tion must be run. Next, it simultaneously start the
“MAS simulator” and the “Network emulator”. This
task is carried out by its two sub-components seen in
Figure 1: “PyNetLogo” and “Socket”.

The “PyNetLogo” sub-component is a Python
Script to send instructions to NetLogo and to Mininet-
Wifi. It provides the “Command” interface to send
messages that deliver these instructions. However, the
distributed nature of the Network Emulator requires
that messages are delivered to network nodes, which
may not be physically located on the same computer.
For that reason, messages sent to the “Network Emu-
lator” through the “Command” interface are first de-
livered to the “Socket” sub-component that, in turn,
forwards them through its own provided “Command”
interface to the network nodes emulated by the “Net-
work Emulator”. Details of the complete flow of this
process are described in Section 4.3.

Once the simulation is over the resulting data is
collected through the “SIM log” interface connecting
the “PyNetLogo” sub-component to the “MAS Sim-
ulator”, and the “Emu log” interface connecting it to
the “Socket” sub-component. In turn, this component
uses its own provided “Emu log” interface, gathers
data from the emulator and delivers it back.

4.3 System Workflow

To run a simulation scenario on the “S2C2 EmuSim -
Command and Control Simulation Configuration and
Orchestration” system requires a number of steps.
The flow of this functionality is detailed next.

SIMULTECH 2023 - 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

198

1. The user starts the System using the “S2C2
Menu” component and selects to manage a sim-
ulation (“Manage Simulation component”).

2. The user requests the “Manage Simulation” com-
ponent to load a previously built simulation.

3. The “Manage Simulation” component” retrieves
the scenario data and gives the “EmuSim Script”
component charge of the simulation.

4. The “EmuSim Script” initializes the database of
the system, the “MAS Simulator” and the “Net-
work Emulator” to set them ready to store data
and to run commands.

5. The “Network Emulator” instantiates every net-
work node of the emulated scenario, each with its
own client and server objects, so it can monitor
the success/failure of their exchange of messages.
Each loaded scenario may have any number of
emulated network nodes that, in turn, communi-
cate with one another. Here, an abstraction is used
to represent this unknown number of nodes as
the “ClienteNodeA”, “ClienteNodeB”, “ServerN-
odeA” and “ServerNodeB” objects.

6. Next, the system runs the simulation to collect its
results. This starts a loop that is repeated one tick2

at a time, until all the nodes of the simulation have
reached their goal. It should be noted that, while
the simulation moves forward one tick at a time
the simulator can be set to run any number of ticks
per second. The next sub-items detail this loop.

(a) The “EmuSim Script” requests from the
“Database” the communication messages of all
nodes (if any) that were written at the last tick.

(b) The retrieved data is sent to the “MAS Simula-
tor” to use it to update for every node of the
simulation the information of each ally node
they are aware of.

(c) The “MAS Simulator” calls itself to update
the data about any hill between two simulated
nodes. This step is essential to simulate ge-
ographical interference that may affect troop
members and lead to friendly fire.

(d) The “EmuSim Script” calls the “MAS Simula-
tor” to run the present tick. Next, it retrieves
from it the current positions of the simulated
nodes and writes it to the “Database”.

(e) The “EmuSim Script” calls the “MAS Simu-
lator” to retrieve the information of every hill
located between the current position of any two
nodes. It then writes the data to the “Database”.

2The internal time frame unit of the simulation.

(f) The “EmuSim Script” calls the “Network Em-
ulator” to start the communication of the nodes
using the MQTT (Message Queuing Teleme-
try Transport) protocol, a machine-to-machine
network protocol for message queue/message
queuing service (FairCom, 1999). This action
starts a new loop (detailed next) that runs on a
single tick to every simulated node.

i. The “Network Emulator” sends an asyn-
chronous message to “ClientNodeA” via
MQTT protocol.

ii. The message is received by “ClientNodeA”
which sends an asynchronous UDP message
to “ServerNodeB” to asses communication
success/failure.

iii. To every successfully received message,
“ServerNodeB” sends an asynchronous mes-
sage to “ClientNodeB” to write that message.

iv. “ClientNodeA” requests the database to per-
sist every message it sent at the current tick.

v. “ServerNodeB” requests the current simula-
tion tick from the database. Then, it writes
to it every message it received at that tick.

vi. Next, steps 6(f)i to 6(f)v repeat themselves
to the opposite client-server pairs. First,
the “Network Emulator” asynchronously mes-
sages the “ClientNodeB” via MQTT protocol.

vii. When a message is received by “ClientN-
odeB” it sends an asynchronous UDP mes-
sage to “ServerNodeA” to asses communica-
tion success/failure.

viii. To every message it successfully received,
“ServerNodeA” sends an asynchronous mes-
sage to “ClientNodeA” to write that message.

ix. “ClientNodeB” requests the database to per-
sist every message it sent at the current tick.

x. “ServerNodeA” requests from the database
the value of the current simulation tick. After-
ward, it writes to the database every message
it received at that tick.

7. The “EmuSim Script” fires messages to stop the
“Network Emulator” and the “MAS Simulator”
and to disconnect the database.

5 CHALLENGES

Time synchronization is crucial to integrate the “MAS
simulator” and the “Network emulator”. Contrary
to the parameters evaluated by the former, the ones
assessed by the latter require real-world clock time.
Thus, to optimize the execution time of the simulation
the “EmuSim Script” acts as a pacemaker to keep both

Integrating a Multi-Agent System Simulator and a Network Emulator to Realistically Exercise Military Network Scenarios

199

tools running at real-world time speed. Hence, while
this avoids disturbing the assessment of the parame-
ters of the emulator (e.g. transmitted packets, estab-
lished connection, etc) it allows the quick transfer of
the position of units from the MAS to the emulator.

To enable the “EmuSim Script” to control the
simulation pace and to achieve synchronization, the
smallest time fraction of the “MAS simulator” was set
to one (1) second. This also made it possible to track
parameters of interest along the run of the simulation.

The management of the database is a task of the
“DBMS” as it controls the read and write opera-
tions and the overall access. This is required due
to the “MAS simulator”, “Network emulator” and
“EmuSim Script” having different read/write privi-
leges to most database tables. Other than that, the
use of a database also allowed saving data to different
configurations of the simulation, such as the number
of units or broadcast communication intervals.

The last challenge faced in co-simulate the battle-
field scenarios was scale. Mininet-WiFi uses real-life
metrics while NetLogo uses different scales accord-
ing to the map file. Yet, while NetLogo can use real
geographic data from GIS files, the map scale has to
be set within the simulator. To integrate these differ-
ent scales, it was required to use a scale factor to keep
the position of units proportional in both software.

6 CASE STUDY

Sections 4 and 5 show that the problem described in
Section 3 is addressed by integrating Mininet-WiFi
and NetLogo via database and orchestration scripts.
Figure 2 illustrates the interfaces of the two synchro-
nized software and is meant to represent a friendly fire
case study scenario to validate that solution.

At the top of Figure 2 is the Mininet-WiFi emu-
lator, displaying the telemetry of its emulated nodes
in real-world distances. At the bottom is the NetLogo
simulator, showing the geography of the current map
being simulated and its agents/nodes. As shown, the
two programs have the same nodes at the same posi-
tions (considering scale correction).

The scenario consists of 29 units (blue hexagons
with military symbols) that carry broadcast radios and
walk through a real-world terrain marked by plains
(light green), hills (darker shades of green), and water
bodies (blue). When in execution, NetLogo (bottom
map) must consider these aspects and find either the
shortest or fastest path to take troops from their initial
position (bottom-left red square) over their mid-goals
(red squares on the map diagonal) to their goal (top-
right red square). To units, water bodies and steep

Figure 2: Mininet and NetLogo synchronized interfaces.

hills are impassable while plains and leaser hills have
different effects over their movement speed.

To assess possible friendly fire situations, each
unit broadcasts its current location every few seconds
until it reaches its goal, thus, creating a blue force
tracking. This is a necessity since there are elements
of the map that might block the sight of an agent and
lead to friendly fire whenever an agent detects an un-
known agent in its presence. The same scenario can
also be customized to run under different time inter-
vals to analyze the impact these differences have over
the friendly fire.

Particularly, longer intervals provide less informa-
tion to agents about their peers, thus increasing the en-
counter of agents unaware of the other’s nature (friend
or foe) and the potential of friendly fire. At the end of
each simulation, the value of the used test-parameter
interval and the results of the simulation are shown in
a report with a set of batches that lists for each agent
the average number of encounters leading to friendly
fire and their standard deviation.

7 CONCLUSIONS

Despite the complexity to simulate modern military
operations, this paper proposes how to handle some
of that complexity by integrating two software. More-
over, while this architecture allows to simultaneously
assess bigger complexities and larger number of pa-
rameters, it also prompts a model behavior closer to
reality and avoids oversimplifications and loss of in-
formation.

SIMULTECH 2023 - 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

200

To that end, aspects such as timing, data for-
mat, shared information, and the orchestration of the
involved software had to be considered. Synchro-
nizing these software was crucial so that the model
could take into account communication and decision-
making factors, while the database assured the evalu-
ation and register of these factors for further analysis
and comparison as well as the build of the case study.

Due to the success of this work, further develop-
ments are expected to communications and decision-
making. This includes the testing of new network
paradigms (such as ICN, DTN) and the addition of
new elements to influence the behavior of agents (e.g.
limited resources, enemies, etc.).

ACKNOWLEDGEMENTS

This study was financed in part by CAPES - Brazil
- Finance Code 001 and in part by CNPq - Brazil,
Projects 309505/2020-8. We also thank the Brazilian
Army via the research project S2C2, ref. 2904/20.

REFERENCES

Alberts, D. S. and Hayes, R. E. (2003). Power to the edge:
Command... control... in the information age. Techni-
cal report, Office of the Assistant Secretary of Defense
Washington DC Command and

Alberts, D. S. and Hayes, R. E. (2006). Understanding com-
mand and control. Technical report, Assistant secre-
tary of defense (C3I/Command Control Research Pro-
gram

Amin, R., Ripplinger, D., Mehta, D., and Cheng, B.-N.
(2015). Design considerations in applying disruption
tolerant networking to tactical edge networks. IEEE
Communications Magazine, 53(10):32–38.

Boone, C. M. C. (2021). Decentralized decision making.
Marine Corps Gazette.

Campioni, L., Hauge, M., Landmark, L., Suri, N., and Tor-
tonesi, M. (2019). Considerations on the adoption
of named data networking (ndn) in tactical environ-
ments. In 2019 International Conference on Military
Communications and Information Systems (ICMCIS),
pages 1–8.

Cebrowski, A. K. (1999). Network centric warfare: An
emerging military response to the information age.
Military Technology, 27(5):16.

Cranny-Evans, S. and Withington, T. (2022). Rus-
sian comms in ukraine: A world of hertz.
https://rusi.org/explore-our-research/publications/
commentary/russian-comms-ukraine-world-hertz.

Dorri, A., Kanhere, S. S., and Jurdak, R. (2018). Multi-
agent systems: A survey. Ieee Access, 6:28573–
28593.

FairCom (1999). MQTT. https://www.faircom.com/
products/faircom-edge. Accessed: 2023-02-20.

Fontes, R. R., Afzal, S., Brito, S. H. B., Santos, M. A. S.,
and Rothenberg, C. E. (2015). Mininet-wifi: Emu-
lating software-defined wireless networks. In 2015
11th International Conference on Network and Ser-
vice Management (CNSM), pages 384–389.

Gomes, C., Thule, C., Broman, D., Larsen, P. G., and
Vangheluwe, H. (2018). Co-simulation: a survey.
ACM Computing Surveys (CSUR), 51(3):1–33.

Guizzardi, G., Wagner, G., Almeida, J. P. A., and Guizzardi,
R. S. (2015). Towards ontological foundations for
conceptual modeling: The unified foundational ontol-
ogy (UFO) story. Applied Ontology, 10(3-4):259–271.

Jalui, S., Hait, T., Hathi, T., and Ghosh, S. (2019). Ad-
vanced military helmet aided with wireless live video
transmission, sensor integration and augmented re-
ality headset. In 2019 International Conference on
Communication and Electronics Systems (ICCES),
pages 123–127.

Kott, A., Swami, A., and West, B. J. (2016). The internet of
battle things. Computer, 49(12):70–75.

Lantz, B., Heller, B., and McKeown, N. (2010). A network
in a laptop: rapid prototyping for software-defined
networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, pages 1–6.

Leal, G. M., Zacarias, I., Stocchero, J. M., and Freitas,
E. P. d. (2019). Empowering command and con-
trol through a combination of information-centric net-
working and software defined networking. IEEE
Communications Magazine, 57(8):48–55.

Nobre, J., Rosario, D., Both, C., Cerqueira, E., and
Gerla, M. (2016). Toward software-defined battle-
field networking. IEEE Communications Magazine,
54(10):152–157.

Pawgasame, W. and Wipusitwarakun, K. (2015). Tacti-
cal wireless networks: A survey for issues and chal-
lenges. In 2015 Asian Conference on Defence Tech-
nology (ACDT), pages 97–102.

Townsend, S. J. (2018). Accelerating multi-domain opera-
tions. Military Review, pages 4–7.

Verdonck, M., Gailly, F., Pergl, R., Guizzardi, G., Mar-
tins, B., and Pastor, O. (2019). Comparing traditional
conceptual modeling with ontology-driven conceptual
modeling: An empirical study. Information Systems,
81:92 – 103.

Wang, H., Tang, H., and Zhang, S. (2017). Joint optimiza-
tion in software defined wireless networks with net-
work coded opportunistic routing. In 2017 IEEE 14th
International Conference on Mobile Ad Hoc and Sen-
sor Systems (MASS), pages 298–302.

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/
netlogo/. Accessed: 2023-02-15.

Zacarias, I., Gaspary, L. P., Kohl, A., Fernandes, R. Q. A.,
Stocchero, J. M., and de Freitas, E. P. (2017). Combin-
ing software-defined and delay-tolerant approaches in
last-mile tactical edge networking. IEEE Communi-
cations Magazine, 55(10):22–29.

Integrating a Multi-Agent System Simulator and a Network Emulator to Realistically Exercise Military Network Scenarios

201

