Towards a Low-Code Tool for Developing Data Quality Rules

Keywords:

Abstract:

Timon Sebastian Klann', Marcel Altendeitering?®? and Falk Howar! ©°

YTU Dortmund University, Dortmund, Germany
2Fraunh0fer ISST, Dortmund, Germany

Data Quality Rules, Data Validation, Data Management, Domain Specific Language, Visual Programming.

High-quality data sets are vital for organizations as they promote business innovation and the creation of data-
driven products and services. Data quality rules are a common approach to assess and enforce compliance
with business domain knowledge and ensure the correctness of data sets. These data sets are usually subject
to numerous data quality rules to allow for varying requirements and represent the needs of different stake-
holders. However, established data quality tools have a rather technical user interface and lack support for
inexperienced users, thus hindering them from specifying their data quality requirements. In this study, we
present a tool for the user-friendly and collaborative development of data quality rules. Conceptually, our tool
realizes a domain-specific language, which enables the graphical creation of rules using common data quality
constraints. For implementation, we relied on CINCO, a tool for creating domain-specific visual modeling
solutions, and Great Expectations, an open-source data validation framework. The evaluation of our prototype
was two-fold, comprising expert interviews and a focus group discussion. Overall, our solution was well-

received and can contribute to lowering the accessibility of data quality tools.

1 INTRODUCTION

A high level of Data Quality (DQ) is a critical suc-
cess factor for organizations but is often impaired
by missing, erroneous, or duplicate values (Kandel
et al., 2012). These DQ issues are usually difficult to
find and resolve and can interrupt business operations
(Redman, 2020; Amadori et al., 2020). Consequently,
poor DQ is considered one of the major tasks in mod-
ern data management (Groger, 2021) and is responsi-
ble for ”$15 million per year in losses” (p.1) (Moore,
2018) for an average organization.

The specification of DQ rules is a typical approach
to ensure accurate and high-quality data sets. These
rules define general or domain-specific data knowl-
edge and can be used for validating the compliance of
data (Altendeitering and Tomczyk, 2022). However,
defining these rules is complicated by the ’fitness for
use’ principle of DQ (Wang and Strong, 1996). Fit-
ness for use means that different stakeholders pose
different requirements on data and have varying qual-
ity definitions based on their tasks. As a result, a data
set is usually subject to numerous DQ rules (Wang
and He, 2019; Tebernum. et al., 2021). For example,

https://orcid.org/0000-0003-1827-5312
@ https://orcid.org/0000-0002-9524-4459

22

Klann, T., Altendeitering, M. and Howar, F.
Towards a Low-Code Tool for Developing Data Quality Rules.
DOI: 10.5220/0012050400003541

when analyzing a sales data set, a data scientist might
want the data to be accurate, while a business analyst
is more focused on the timeliness of data.

In the past, defining DQ rules was a technical
task conducted by a centralized group of technically
skilled employees. However, this approach to DQ
does not scale in light of ubiquitous and big data,
leading to cumbersome and time-consuming DQ pro-
cesses (Altendeitering and Guggenberger, 2021). In
response to this lack of scalability, DQ is becom-
ing increasingly decentralized and conducted at the
source” (p.1) (Redman, 2020). It evolves from a cen-
tralized task to a cooperative effort involving stake-
holders across the organization (Groger, 2021; De-
hghani, 2020). DQ tools must embrace these changes
and allow various stakeholders to specify their DQ
rules and validate data to their needs. Established DQ
tools often fail to address this need as they are limited
in supporting inexperienced users and lack collab-
orative functionalities (Altendeitering and Tomczyk,
2022).

We aim to address the need for accessible and
user-friendly solutions by developing a low-code ap-
plication that supports the design and development of
DQ rules. The following research question guided our
study:

In Proceedings of the 12th International Conference on Data Science, Technology and Applications (DATA 2023), pages 22-29

ISBN: 978-989-758-664-4; ISSN: 2184-285X

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

Research Question: What does a DQ tool for the
user-friendly and collaborative specification of DQ
rules look like?

To answer the proposed research question, we de-
veloped and prototypically implemented ColDaQ, a
DQ tool for the graphical and collaborative specifi-
cation of DQ rules. ColDaQ offers a data-flow pro-
gramming environment for constructing DQ rules in
a user-friendly way. The low-code approach is well-
suited for supporting users from various backgrounds
to realize their DQ requirements (Altendeitering and
Schimmler, 2022). In this sense, our tool helps data
domain experts become self-reliant and empowers
them to integrate and operate DQ rules themselves.
As a result, we contribute to overcoming the typical
divide of DQ tasks between technical (e.g., data engi-
neers) and non-technical (e.g., domain experts) users
that complicates DQ management (Altendeitering and
Guggenberger, 2021).

For the prototypical implementation of ColDaQ,
we used Great Expectations (The Great Expectations
Team, 2020) and CINCO (Naujokat et al., 2018) as
technological bases. The qualitative evaluation of our
application was two-fold. In the first round, we inter-
viewed three experts from the DQ and user experience
domains to gain in-depth feedback. Subsequently, we
completed a second round of evaluation using a fo-
cus group discussion with ten participants working in
data-intensive jobs. Overall, we found that our tool
can ease the manual specification of DQ rules and in-
form the design of future DQ tools.

The remainder of this article is structured as fol-
lows. First, we describe the theoretical background
of our study regarding data management and quality,
DQ tools, and domain-specific languages in section
2. In section 3, we outline the conceptual approach of
our tool and describe its prototypical implementation.
We present and discuss the qualitative evaluation re-
sults for our tool in section 4. Finally, in section 5,
we describe the contributions of our study, highlight
limitations, and outline paths for future work.

2 BACKGROUND

2.1 Data Management & Data Quality

”You can’t do anything important in your company
without high-quality data” (p.1) (Redman, 2020).
(Redman, 2020) states that DQ forms an important
organizational success factor and is widely recog-
nized as an essential building block for organizational
agility and a driver of business innovation. For in-

Towards a Low-Code Tool for Developing Data Quality Rules

stance, a high level of DQ has a positive influence on
the functioning of data-intensive applications (e.g., ar-
tificial intelligence) (Tebernum. et al., 2021; Groger,
2021), allows seamless business processes (Amadori
et al., 2020), and builds trust among partners in a data
ecosystem (Guggenberger et al., 2020).

To be considered high-quality, data needs to ful-
fill a ’fitness for use’, which is context-dependent
and defined by the data consumer (Wang and Strong,
1996). As a context-dependent and multi-dimensional
concept, a sufficient level of DQ can be difficult to
achieve. As aresult, it has long been incorporated into
data management practices but is still considered a
significant issue (Wang, 1998; Groger, 2021). Several
frameworks, such as the Total Data Quality Manage-
ment (TDQM) framework, emerged to support and
ease DQ management. The TDQM framework out-
lines how to define, analyze, measure, and improve
DQ. For example, by specifying DQ rules and vali-
dating data against these rules (Altendeitering, 2021).
However, manual DQ management is complex, cum-
bersome, and error-prone and is often supported by
DQ tools (Altendeitering and Tomczyk, 2022; Al-
tendeitering and Guggenberger, 2021).

2.2 Data Quality Tools

A plurality of tools emerged from science and prac-
tice to support DQ management. We can distinguish
these tools in data preparation tools for correcting er-
roneous data, data measuring and monitoring tools for
data validation, and general-purpose tools, which of-
fer the most comprehensive set of DQ functionalities
(Ehrlinger and WoB, 2022; Altendeitering and Tom-
czyk, 2022). Over time, DQ evolved from an algo-
rithmic, I'T-centric task to a joint effort involving mul-
tiple stakeholders from across the organization (Al-
tendeitering and Tomczyk, 2022). These develop-
ments raised new requirements for modern DQ tools,
which must offer collaborative functionalities and ac-
cessible user interfaces (Altendeitering and Guggen-
berger, 2021; Swami et al., 2020). However, estab-
lished tools often cannot fulfill these requirements and
lack support for inexperienced users and collabora-
tive approaches to DQ (Altendeitering and Tomczyk,
2022).

In this study, we aim to address this lack of estab-
lished tools and develop a collaborative, user-friendly
solution for defining DQ rules and validating data.
For this purpose, we extend the DQ tool Great Expec-
tations (GE) (The Great Expectations Team, 2020).
We decided to use GE as it is open-source, offers ex-
tensive documentation, and is well-established in the
field of DQ. It also has an active community and was

23

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

used by similar studies (e.g., (Swami et al., 2020)).

GE is a Python-based library for validating and
profiling data. By specifying *Expectations’, users
can formulate their requirements on data in a declar-
ative language (The Great Expectations Team, 2020).
Along with metadata, several Expectations are com-
bined into a list inside an *Expectation Suite’ in JSON
format. Besides deriving expectations manually or
automatically through profiling, the critical features
of GE are data validation and documentation. The
latter also offers a graphical and comprehensive pre-
sentation of the data and the validation results. GE
allows to validate Expectations individually or com-
bined in an Expectation Suite.

2.3 Domain Specific Languages

Domain-Specific Languages (DSLs) are used to de-
scribe the context of a specific problem domain effi-
ciently with gains in productivity (Kosar et al., 2008).
In contrast to general-purpose languages, a textual
or graphical DSL is limited to the bounded con-
text of its domain and does not require general pro-
gramming knowledge. This means a DSL is more
accessible to domain experts and offers expressive
power through abstraction without explaining every-
thing in detail (Fall and Fall, 2001; Kosar et al., 2008;
Van Deursen and Klint, 2002). Potential advantages
of DSLs are high portability, efficiency, and reliabil-
ity (Deursen and Klint, 1998; Van Deursen and Klint,
2002; Van Deursen et al., 2000).

The CINCO meta tooling suite is a simplicity-
oriented DSL tool for developing domain-specific
graphical modeling tools (Naujokat et al., 2018).
Based on several frameworks, CINCO generates such
tools, also called CINCO Products (CP), from simple
high-level specifications (MGL: meta graph language,
MSL: meta styler language, and CPD: CINCO prod-
uct definition) automatically (Lybecait et al., 2018).
The key idea of CINCO is to hide the complexity of
its underlying frameworks and keep the development
of the CP as simple as possible (Naujokat, 2016).

Owing to the common meta-domain, every CP has
the same structure and basic functionality. Based on
structural specifications made in the MGL, users of
the CP can place nodes into a graphical editor (can-
vas) by drag & drop and connect them via edges.
The resulting graph will appear as specified in the
MSL (Naujokat, 2016). Users can define additional
functionality and semantic interpretations, such as
code generation or model validation, using meta plug-
ins (Naujokat et al., 2018). We decided to use CINCO
to develop our prototype as it supports creating cus-
tom domain-specific languages and reduces the de-

24

velopment time. It is thus well-suited for quickly
creating prototypical applications and retrieving feed-
back early on. CINCO was also used in several other
projects and CINCO Cloud, the web-based successor
of CINCO, is currently under development (Naujokat
et al., 2018).

3 PROTOTYPE

3.1 Conceptual Approach

With our prototypical DQ tool ColDaQ, we aim
to enable the user-friendly and collaborative spec-
ification and application of DQ rules. In contrast
to established solutions such as GE, users should
benefit from a simple UI that is less code-centric.
ColDaQ should empower users from technical and
non-technical backgrounds to specify their individual
DQ needs without modifying codebases (Altendeit-
ering and Guggenberger, 2021; Altendeitering and
Tomczyk, 2022). We envision ColDaQ to be oper-
ated in a federated, self-serve data infrastructure as a
platform where different domains and user groups can
customize ColDaQ to their needs (Groger, 2021). In
this architecture, a centralized DQ team could specify
DQ information models and offer universal DQ rules,
which domain experts can extend and customize (Al-
tendeitering and Tomczyk, 2022; Dehghani, 2020).

ColDaQ relies on CINCO and GE as its techno-
logical bases. The tool is specified as an MGL and
MSL and generated into a CP by CINCO. To enable
the validation of a given data set against user-defined
DQ rules, ColDaQ offers a code export that converts
the DQ rules into an Expectation Suite suitable for
use in GE. For our prototype, we focused on validat-
ing CSV files for simplicity. Furthermore, ColDaQ
only considers single table data sources and is limited
to DQ conditions that can be validated as true or false.
In this sense, we assume that DQ rules in ColDaQ can
be treated as logical statements about the data.

As a starting point, ColDaQ offers a small set
of typical DQ constraints that users can use to de-
scribe specific requirements on data (see Table 1).
We based the pre-defined set of DQ constraints on
two studies reviewing DQ tools and their function-
alities (Ehrlinger and W68, 2022; Altendeitering and
Tomczyk, 2022). Users can create custom DQ rules
by combining one or more of these constraints us-
ing edges and Or-Container nodes. The key idea of
edges and Or-Containers is to cover the basic logical
connectives (negation, conjunction, and disjunction)
to form a composition of (custom) DQ constraints.
The latter is supported by a graphical user interface

Towards a Low-Code Tool for Developing Data Quality Rules

Table 1: Set of DQ constraints available in ColDaQ.

Constraint Description

Not Null Exclude Null Values

All True Assert that all values are True

Values In Range Ensure that values are restricted to given bounds

Matches Regex Ensures values match a given regular expression

Uniqueness Exclude duplicate values

Numeric Assert that all values are numeric

Evenly Distributed Assert an even distribution with a given parameter for tolerance

Min Between
Max Between
Sum Between

Check if the minimum of the values is within a given interval
Check if the maximum of the values is within a given interval
Check if the sum of the values is within a given interval

that allows users to model DQ rules in a low-code DQ
graph called ColDaQ Graph (CG). Following a data-
flow programming approach, our concept lowers the
semantic and syntactic barriers to creating DQ rules
and improves the accessibility to DQ tools for inexpe-
rienced users (Altendeitering and Schimmler, 2022).

3.2 Prototypical Implementation

For the prototypical implementation of our concept,
we followed the guidelines by (Alavi, 1984) and con-
tinuously improved an initial version of our proto-
type. We initialized the implementation by specify-
ing the MGL and MSL more concretely. The MGL
describes all nodes and edges available in the graphi-
cal DSL. ColDaQ distinguishes three kinds of edges:
Success, No-Success, and Default edge. The latter is
a universal edge used in cases where no separation
between success and non-success is necessary. List-
ing 1 displays an example of how edges are specified
in CINCO.

Listing 1: Specification of the success edge.

@style (success)
edge Success{}

Regarding the provisioning of nodes, ColDaQ im-
plements each of the DQ constraints shown in Table
1 as a node. Listing 2 shows how a node is imple-
mented using the "Matches Regex’ constraint as an
example. The abstract Constraint node (1. 1-6) spec-
ifies the general handling of edges. Nodes can have
outgoing edges depending on whether a constraint is
validated successfully. Every concrete node inherits
from this abstract node and specifies further details
(1. 7-19). For instance, the Matches Regex constraint
has an attribute to transfer the display name to the
MSL and a column attribute annotated with possibl-
eValuesProvider annotation to choose a column from
the data table provided. Furthermore, a DQ node can
have additional attributes (1. 18).

Listing 2: Specification of the Matches Regex node.
abstract node Constraint{
incomingEdges (*[1,1])
outgoingEdges (Success [0,1],
NoSuccess [0,1],
{Success, NoSuccess}[1,2])

}

@style(ruleRectangle3Arg,
"S{column}","${display}","${regex}™")
@palette ("DefRules")
node MatchesRegex extends Constraint{
@possibleValuesProvider ("info.scce.
cinco.product.coldaqg.provider.
PossibleColumnValueProvider")
attr EString as column
@propertiesViewHidden
attr EString as display :=
"matches regex"
attr EString as regex

}

In CINCO, annotations are an easy way to imple-
ment additional functionality. For example, the model
checking annotation can check whether all nodes ex-
cept the Data node are connected from the Start to the
End node. It can also automatically adjust the size of
Or-Container and Or-Lanes whenever the user adds
new elements. The MSL only implements the visual
concept declaratively illustrated in Figure 1, which
shows the user interface of ColDaQ in its final ver-
sion. As an additional feature, users of ColDaQ can
reuse CGs with custom DQ rules as new nodes that
behave like a new, single node. For instance, the DQ
rule specified in the CG shown in Figure 1b is referred
to by a new node named ’Valid Identifier’ in the CG
in Figure la.

For the validation of data against a DQ rule mod-
eled in ColDaQ, we implemented a code generator
that creates a Python script and an Expectation Suite.
The Expectation Suite summarizes the DQ conditions
and uses GE for validation. ColDaQ generates the
Python script in three steps. At first, static code for

25

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

€% ColDaQ-Runtime-Workspace - myProject/demoRule.coldag - Cinco

File Edit View Navigate Search Project Run GraphModel Window Help

Mo Qg wilw via oo - | |

&5 Project Explorer & = 5 EdemoRule # alididentif
B

g

~ & myProject
demoRule.coldag
validldentifier.coldaq

%o o of | % o | | = | 22328 % e &t

[m] X

[e 1 0

** Palette 4
s Select
L Marquee
&O0R @

* OrContainer

Orlane
& DefRules ®
@ Valid Identifier ° © Nothul
" AllTrue
“* ValueslnRange
no success & Basic ©
= e
OMod... & a. O valies it range Data
1000000 - 9999999 Start
S EE v
] e
L Diagram| Source
all checks passed! =
P [Cinco Properties & 2! Problems =
ColDaQ name| Demo Rule|
(a)
€% ColDaQ-Runtime-Workspace - myProject/validldentifier.coldaq - Cinco — O X

File Edit View Navigate Search Project Run GraphModel Window Help
Nyl @it v & vyif v v oo v

= vid | | 3¢

&5 Project Explorer &) - demoRule validldentifier %
B

iy

~ & myProject

demoRule.coldaq .
validldentifier.coldaq

Identifier Identifier
not null ralues are uniqueg

Diagram | Source

all checks passed! . . .
I Cinco Properties Problems

Bo o of | el o7 B 00| = | & ®[100% v |11 N L T

T

l Palette 4
s Select
L Marquee
&0R @
* OrContainer
Orlane
= DefRules ®
“ NotNull
" AllTrue
“* ValueslnRange
= Basic @
Data
Start
End

ColDaQ name| Valid Identifier

(b)
Figure 1: Data Quality Rules modeled with the ColDaQ Prototype.

executing the atomic validation with GE is generated.
In the second step, the code generator analyzes every
path from the Start to the End node and builds a bi-

tree’s structure to generate a logical statement based
on the atomic validation results. When executing the
Python script, the evaluation of that logical statement

nary parse tree considering all concepts of DQ rules equals the overall validation of the modeled CG.

treated as logical statements. At last, ColDaQ uses the

26

To realize the collaborative functionality of

ColDaQ, we relied on Pyro (Zweihoft, 2022), a meta-
plugin to CINCO (Naujokat, 2016). Pyro can gen-
erate a full-featured web application that supports si-
multaneous work on DQ rules. However, technical re-
strictions and incompatibilities hindered us from fully
integrating Pyro. The collaborative aspect is thus cur-
rently limited to sharing DQ rules using the import
and export function of ColDaQ (see also section 5.2).

4 EVALUATION

Following the guidelines of (Kitchenham et al., 2004),
our evaluation aims to critically reflect on the valid-
ity, impact, and applicability of our prototype. To
achieve this goal, we conducted a two-fold evalu-
ation. In the first step, we interviewed three DQ
and user experience experts. With these interviews,
we wanted to gain in-depth feedback on our concep-
tual approach and the functional scope of ColDaQ
(Meuser and Nagel, 2009). Subsequently, we con-
ducted a focus group discussion with ten participants
working in data-intensive roles. The focus group dis-
cussion was well-suited for obtaining additional in-
sights as they are high in external validity and can
spark discussions participants have in their daily lives
(Hollander, 2004). In the following subsections, we
describe each evaluation step more closely.

4.1 Step 1: Expert Interviews

The first expert we interviewed is employed as a fron-
tend software developer. Interviewees 2 and 3 have a
background in DQ. We initiated each interview with a
demo of our tool, including creating a DQ rule and its
application to an exemplary data set. After the demo,
we asked the interviewees for feedback regarding in-
tuition and concept of the UI components, relevance,
and benefit. We noted their responses, which form
the primary source for analysis (Meuser and Nagel,
2009). To systematically analyze the data, we used
content analysis (Vaismoradi and Snelgrove, 2019).

Overall, the expert feedback was mainly positive.
All interviewees liked the conceptual design of the
user interface. Interviewees 2 and 3 emphasized that
the concept of composing DQ rules graphically is in-
tuitive. As a potential improvement, interviewee 3
stated that the start and end nodes could feature ad-
ditional functionality, such as connecting with APIs
for direct data imports.

Regarding the conceptual approach for develop-
ing DQ rules, interviewees 1 and 2 critically noted
that ColDaQ only allows DQ constraints that can be
validated as true or false. In addition, they criticized

Towards a Low-Code Tool for Developing Data Quality Rules

the limitation of the static set of DQ constraints in the
node palette and envisioned possibilities to include
additional nodes. Moreover, interviewee 3 suggested
including a node that uses external code for data vali-
dation. Interviewees 2 and 3 proposed more automa-
tion, for example, by conducting automated data pro-
filing and offering a set of DQ constraints appropriate
for a data set.

4.2 Step 2: Focus Group Discussion

The focus group discussion included ten participants
working in data engineering. Similar to the expert in-
terviews, we initiated the discussion with a presenta-
tion of the tool and demonstrated its functionality us-
ing an exemplary data set. After the presentation, we
asked guiding questions on the tool’s functional com-
position and visual style to spark a discussion among
the participants (Hollander, 2004). The participants
positively noted the conceptual approach and the pos-
sibility of graphically designing DQ rules. It can help
users inexperienced with DQ to construct rules and
apply these to a data set.

On the negative side, the participants noted that
some nodes are difficult to understand because they
did not recognize the difference between default
(atomic) and composed nodes. They suggested sim-
plifying the naming of nodes for better usability.
Users might furthermore benefit from additional ex-
planations and usage examples for the individual
nodes to improve their comprehensibility. Addition-
ally, the participants stated limitations in the compo-
sition of DQ rules. They envisioned further nodes and
logical operators for combinations. Finally, the eval-
uation of DQ rules with GE can be improved. More
detailed results about which nodes failed and poten-
tial reasons could help users identify underlying data
errors and improve the quality of a data set.

S CONCLUSION

5.1 Contributions

In response to our initial research question, we suc-
cessfully developed a DQ tool that allows the user-
friendly specification of DQ rules using a low-code
user interface. With export functionalities, ColDaQ
allows the collaborative design of DQ rules and auto-
mated validation in GE. The two-step evaluation re-
vealed that ColDaQ was, overall, well-received and
can fulfill the goal of lowering the accessibility of DQ
tools. Specifically, the participants positively com-
mented on the intuitive user interface and the visual,

27

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

low-code concept for constructing DQ rules. For fur-
ther development, the participants noted that the tool
should allow the design of more complex DQ rules
and improve the comprehensibility of nodes.

Our study offers both scientific and managerial
contributions. Scientifically, we conceptually de-
signed and prototypically implemented an artifact that
addresses the need for more intuitive, user-friendly,
and collaborative DQ tools raised in several studies
(Altendeitering and Tomczyk, 2022; Swami et al.,
2020; Ehrlinger and W68, 2022). Our findings can
furthermore contribute to realizing decentralized DQ
tools accessible to different stakeholders and inform
the design of future tools (Groger, 2021). For man-
agers, we provide insights on building tools for the
manual specification of DQ rules that take current
trends into account. This knowledge can support
make-or-buy decisions, inform custom implementa-
tions, and raise awareness for DQ and adequate tool-
ing.

5.2 Limitations & Future Work

Despite following a rigorous approach, our study is
subject to several limitations, which offer paths for
future work. Most importantly, we aimed to create an
application that supports collaborative work on DQ
rules. However, due to technical restrictions, the col-
laborative aspect is only partly realized and limited
to export/import functionalities. We plan to focus the
future development of our tool on this aspect and up-
grade to "Cinco Cloud’, which was not yet available
at the time of writing. Cinco Cloud aims to realize
full-featured web applications that enable the collab-
orative, multi-user modeling of DQ rules.

Moreover, ColDaQ currently features a limited
set of pre-defined DQ rules. In the future, ColDaQ
should allow more kinds of basic DQ rules from dif-
ferent sources and allow users to specify custom DQ
rules for validation. In this regard, it would also be
interesting to investigate the difference in DQ rules
between different user groups and derive which ones
are generally applicable.

To further increase its usability, ColDaQ should
offer additional support and automation. For exam-
ple, we can apply automated data profiling techniques
on a given data set and generate DQ rules automati-
cally (Abedjan et al., 2015).

Regarding our methodological approach, our eval-
uation results are based on qualitative feedback from
participants working in computer science and data-
related jobs. In future studies, we plan to evalu-
ate ColDaQ with a more extensive and diverse user
group to obtain more profound results. These stud-

28

ies should also include participants working in non-
technical jobs to assess if our tool can achieve the de-
sired level of accessibility.

ACKNOWLEDGEMENTS

This research was partly supported by the German
Federal Ministry of Education and Research (BMBF)
and the research project FAIR Data Spaces.

REFERENCES

Abedjan, Z., Golab, L., and Naumann, F. (2015). Profiling
relational data: a survey. The VLDB Journal, 24:557—
581.

Alavi, M. (1984). An assessment of the prototyping ap-
proach to information systems development. Commu-
nications of the ACM, 27(6):556-563.

Altendeitering, M. (2021). Mining data quality rules for
data migrations: a case study on material master data.
In International Symposium on Leveraging Applica-
tions of Formal Methods, pages 178—191. Springer.

Altendeitering, M. and Guggenberger, T. M. (2021). De-
signing data quality tools: Findings from an action
design research project at boehringer ingelheim. In
ECIS 2021 Proceedings.

Altendeitering, M. and Schimmler, S. (2022). End-user de-
velopment for smart spaces: A comparison of block
and data-flow programming. In Proceedings of the
11th International Conference on Smart Cities and
Green ICT Systems, SMARTGREENS.

Altendeitering, M. and Tomczyk, M. (2022). A functional
taxonomy of data quality tools: Insights from science
and practice. Wirtschaftsinformatik 2022 Proceed-
ings.

Amadori, A., Altendeitering, M., and Otto, B. (2020). Chal-
lenges of data management in industry 4.0: a single
case study of the material retrieval process. In Interna-
tional Conference on Business Information Systems,
pages 379-390. Springer.

Dehghani, Z. (2020). Data mesh principles and logical ar-
chitecture. https://martinfowler.com/articles/data-m
esh-principles.html. Accessed: 17.01.2023.

Deursen, A. V. and Klint, P. (1998). Little languages: lit-
tle maintenance? Journal of Software Maintenance:
Research and Practice, 10(2):75-92.

Ehrlinger, L. and W68, W. (2022). A survey of data quality
measurement and monitoring tools. Frontiers in Big
Data, page 28.

Fall, A. and Fall, J. (2001). A domain-specific language for
models of landscape dynamics. Ecological modelling,
141(1-3):1-18.

Groger, C. (2021). There is no ai without data. Communi-
cations of the ACM, 64(11):98-108.

Guggenberger, T. M., Méller, F., Boualouch, K., and Otto,
B. (2020). Towards a unifying understanding of digital

business models. In Proceedings of the Twventy-Third
Pacific Asia Conference on Information Systems.

Hollander, J. A. (2004). The social contexts of focus groups.
Journal of contemporary ethnography, 33(5):602—
637.

Kandel, S., Parikh, R., Paepcke, A., Hellerstein, J. M., and
Heer, J. (2012). Profiler: Integrated statistical analysis
and visualization for data quality assessment. In Pro-
ceedings of the International Working Conference on
Advanced Visual Interfaces, pages 547-554.

Kitchenham, B. A., Dyba, T., and Jorgensen, M. (2004).
Evidence-based software engineering. In Proceed-
ings. 26th International Conference on Software En-
gineering, pages 273-281. IEEE.

Kosar, T., Mart1, P. E., Barrientos, P. A., Mernik, M., et al.
(2008). A preliminary study on various implementa-
tion approaches of domain-specific language. Infor-
mation and software technology, 50(5):390—405.

Lybecait, M., Kopetzki, D., Zweihoff, P., Fuhge, A., Nau-
jokat, S., and Steffen, B. (2018). A tutorial in-
troduction to graphical modeling and metamodeling
with cinco. In International Symposium on Leverag-
ing Applications of Formal Methods, pages 519-538.
Springer.

Meuser, M. and Nagel, U. (2009). The expert interview
and changes in knowledge production. Interviewing
experts, pages 17-42.

Moore, S. (2018). How to create a business case for data
quality improvement. https://www.gartner.com/smar
terwithgartner/how-to- create- a-business-case-for-dat
a-quality\-improvement. Accessed: 24.01.2023.

Naujokat, S. (2016). Cinco user’s manual. https://cinco.sc
ce.info/. Accessed: 24.01.2023.

Naujokat, S., Lybecait, M., Kopetzki, D., and Steffen,
B. (2018). Cinco: a simplicity-driven approach to
full generation of domain-specific graphical model-
ing tools. International Journal on Software Tools for
Technology Transfer, 20(3):327-354.

Redman, T. C. (2020). To improve data quality, start at the
source. https://hbr.org/2020/02/to-improve-data-qua
lity-start-at-the-source. Accessed: 10.01.2023.

Swami, A., Vasudevan, S., and Huyn, J. (2020). Data sen-
tinel: A declarative production-scale data validation
platform. In 2020 IEEE 36th International Confer-
ence on Data Engineering (ICDE), pages 1579-1590.
IEEE.

Tebernum., D., Altendeitering., M., and Howar., F. (2021).
Derm: A reference model for data engineering. In
Proceedings of the 10th International Conference on
Data Science, Technology and Applications, pages
165-175. INSTICC.

The Great Expectations Team (2020). Welcome to great
expectations! https://greatexpectations.io/. Accessed:
24.01.2023.

Vaismoradi, M. and Snelgrove, S. (2019). Theme in qual-
itative content analysis and thematic analysis. Forum
Qualitative Sozialforschung/Forum: Qualitative So-
cial Research, 20(3).

Van Deursen, A. and Klint, P. (2002). Domain-specific lan-

Towards a Low-Code Tool for Developing Data Quality Rules

guage design requires feature descriptions. Journal of
computing and information technology, 10(1):1-17.

Van Deursen, A., Klint, P., and Visser, J. (2000). Domain-
specific languages: An annotated bibliography. ACM
Sigplan Notices, 35(6):26-36.

Wang, P. and He, Y. (2019). Uni-detect: A unified approach
to automated error detection in tables. In Proceedings
of the 2019 International Conference on Management
of Data, pages 811-828.

Wang, R. Y. (1998). A product perspective on total data
quality management. Communications of the ACM,
41(2):58-65.

Wang, R. Y. and Strong, D. M. (1996). Beyond accuracy:
What data quality means to data consumers. Journal
of Management Information Systems, 12(4):5-33.

Zweihoff, P. (2022). Pyro - a collaborative, meta-model-
driven, web-based and graphical modeling environ-
ment. https://pyro.scce.info. Accessed: 17.02.2023.

29

