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Almost 50 years after the invention of SQL, injection attacks are still top-tier vulnerabilities of today’s ICT

systems. In this work, we highlight the shortcomings of the previous Machine Learning based results and fill
the identified gaps by providing a comprehensive empirical analysis. We cross-validate the trained models by
using data from other distributions which was never studied in relation with SQLi. Finally, we validate our

findings on a real-world industrial SQLi dataset.

1 INTRODUCTION

One of the biggest security concerns today is Struc-
tured Query Language Injection (SQLi), which is also
reflected in the OWASP Top 10 List (OWASP, ). Fur-
thermore, not only the occurrence but the complex-
ity and the severity are increasing of the SQLi cases,
so faster and easier methods are needed to tackle this
problem. Following the recent success of Machine
Learning (ML) in many fields, traditional SQLi de-
tection techniques are also being challenged by ML
techniques (Jemal et al., 2020).

In this short work we highlight the shortcomings
of the previous ML-based results focusing on 1) the
evaluation methods, 2) the optimization of the model
parameters, 3) the distribution of utilized datasets,
and 4) the feature selection. Since none of the pre-
vious works explored these aspects in depth, we fill
this gap, i.e., we compare different types of ML al-
gorithms with various pre-processing methods. Addi-
tionally, we cross-verified the models on datasets cor-
responding to different distributions than the training
samples. We also validate our findings on a private
SQLi dataset originating from a major player in the
security industry in Europe.

Our findings revealed that the model with the
highest accuracy is not necessarily the best choice 1)
when a specific (e.g., low) false positive rate is desired
and 2) when the model is used on data from other dis-
tributions. Our goal is to raise awareness of the is-
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sues using pre-trained off-the-shelf ML models and
to ease the choice of security engineers in selecting
the proper setup for specific use cases.

Disclaimer. The full version of the paper (with ex-
tended background, scenario recommendations, etc.)
is available at ArXiv (Pejo and Kapui, 2023).

2 PRELIMILARIES

2.1 SQL Injection

SQL is a query language for relational databases to
help modify, retrieve, and store data. There are many
dialects, such as MySQL, PostgreSQL, and SQLite.
SQL Injection is a server-side attack where a web se-
curity vulnerability allows attackers to alter the SQL
queries made to the central database; therefore, they
can retrieve information from or about the database,
which often comes with the leakage of sensitive data.

There are three main categories of SQLi: in-band,
out-of-band, and blind. The in-band SQLi can be ei-
ther Error-based or Union-based, where the attacker
uses the same channel for attacking and receiving re-
sults. In contrast, in out-of-band SQLi, the query re-
sponse returns on a different channel, usually by uti-
lizing HTTP, DNS, or FTP. Finally, the blind SQLi
can be either Content-based or Time-based, where the
attacker does not rely on response but instead probes
the server and observe how it behaves.
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2.2 ML Techniques

A key technique to tackle SQLi is to use ML: these
techniques learn directly from the data and have the
potential to detect hidden patterns which would slip
through traditional approaches. Below we give a
high-level introduction to the data parsing techniques
and ML architectures utilized in this work.

Pre-Processing. The raw benign and malicious SQL
payloads cannot be fed directly into ML models. We
surveyed the relevant literature and identified three
parsing techniques that are the most widely utilized.

» TF-IDF vectorizer is based on the Bag of Words
model that counts how much occurs from a word
in a document. It consists of the Term Frequency
(TF) and the Inverse Document Frequency (IDF)
parts, which measures the frequency of a word
in a specific document and the importance of the
words across the entire dataset, respectively.

* Keyword weights assign weights to SQL keywords
based on their maliciousness.

o Skip-gram model is a word embedding model
(e.g., Word2Vec) that maps every word into a con-
tinuous vector space, making it easier to check
which ones are similar.

Models. There are many model architectures choices
to feed the processed data into. We surveyed the rel-
evant literature and identified five ML architectures
that are the most widely utilized.

* Logistic Regression (LR) is a linear model that
learns to classify the data by minimizing the cor-
responding error.

* Support Vector Machine (SVM) learns to classify
the data by maximizing the distance between the
classes.

e Random Forest (RF) consists of several Decision
Trees that operate as an ensemble: the decision is
based on the majority vote of the trees.

* Gradient Boosting (GB) is learning by minimiz-
ing the loss function, which is achieved by adding
more weak learners that are concentrating on the
areas where the existing ensemble perform poorly.

e Neural Network (NN) mimics the human brain,
i.e., it is based on a collection of connected neu-
rons where the output of each is computed by
some non-linear function.

3 RELATED WORKS

A summary of previous research efforts concerning
SQLi detection without ML are surveyed in (Kindy
and Pathan, 2011), while (Pattewar et al., 2019) and
(Hu et al., 2020) are surveyed the ML solutions. We
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inspected the ML-based SQLi literature while focus-
ing on four aspects: the datasets, the features, the
models, and the evaluation. We considered 28 papers,
which we obtained by forward and backward snow-
balling from the surveys and by using targeted queries
(e.g., "SQL Injection” + "Machine Learning”, etc.) in
Google Scholar. Our findings are summarized in Ta-
ble 2.

Dataset. The datasets’ size and diversity are im-
perative; yet, more than a quarter (29%) of works ex-
periments with small (i.e., below 10k) datasets. Al-
though the rest utilize a more data for training, for
many of them (32%), the data comes from a single
source. Besides, when the authors consider multiple
sources (39%), they merely merge them into a sin-
gle database. On the other hand, we train our models
on many separate datasets from different sources and
evaluate them in a cross-verification manner.
Features. Few works (18%) only utilize less
than a dozen features, which is insufficient to cap-
ture the underlying language’s richness. Although
other works (43%) exploit more features, only some
of them (39%) apply over a thousand features (i.e., by
using OneHot-Encoding, Word2Vec, String2Vec, or
TF-IDF with large datasets), which is needed to cap-
ture the abundance of the payloads appropriately.
Models. Almost a third of the works (32%) men-
tioned in Table 2 consider only a single ML model
without any hyper-parameter tuning. This cherry-
picking strategy is superficial and, without proper
comparison, could be easily misinterpreted. Although
other works (57%) consider comparing more off-the-
shelf models or fine-tuning a single one, this still not
paints a complete picture of the relationship between
these models. Finally, similarly to our work, only a
handful of papers (18%) evaluate multiple models and
utilize parameter optimization.

Evaluation. Few works (18%) present the accuracy
metric only, which is inappropriate in the SQLi use-
case: the difference between type I and type II er-
rors is crucial. The majority of the works (61%) in-
deed consider false positives and false negatives and
present them either via the confusion matrix or via
the precision, recall, and F1 values. However, this
still might be insufficient from the usability point of
view: any practitioner of an SQLi detection system
would require the possibility to set the trade-off be-
tween these values, depending on the underlying sce-
nario’s sensitivity. Hence, the ROC curve is of the
utmost importance. Besides this work, it is measured
only half a dozen times (21%).
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Table 1: Notation used in Table 2. Acc. and conf. mx are the abbreviations for accuracy and confusion matrix.

| Data | Feature | Model ‘ Evaluaton
. < 10k <12 1 w/o Tuning acc.
o > 10k, 1 source | [12,999] | 1 w/ Tuning or > 1 w/o Tuning acc. & conf. mx
e | > 10k, > 1 source | > 1000 > 1 w/ Tuning acc. & conf. mx & ROC
Table 2: The symbol -, o, and e means insuffi- called United (containing 1133 benign and 7 mali-

cient/mediocre/sufficient, as described in Table 1. R, D,
F, M, and E means References, Dataset Size, Number of
Features, Model Optimization, and Evaluation Metrics re-
spectively.
Reference D F M
(Joshi and Geetha, 2014) . . .
(Hasan et al., 2019) . .o
(Moosa, 2010) . .
(Chen et al., 2018)
(Gandhi et al., 2021)
(Pham and Subburaj, 2020)
(Mishra, 2019)
(Krishnan et al., 2021)
(Ingre et al., 2017)
(Jothi et al., 2021)
(Sheykhkanloo, 2015)
(Luo et al., 2019)
(Yu et al., 2019)
(Alam et al., 2021)
(Chen et al., 2021)
(Ross, 2018)
(Uwagbole et al., 2017b)
(Lietal., 2019a)
(Tripathy et al., 2020)
(Tang et al., 2020)
(Hosam et al., 2021)
(Liu et al., 2020)
(Farooq, 2021)
(Xie et al., 2019)
(Betarte et al., 2018)
(Liet al., 2019b)
(Uwagbole et al., 2017a)
(Gogoi et al., 2021)
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4 EXPERIMENTS

Besides providing a comprehensive analysis, our
main aim is to compare models on different datasets
with various sizes coming from distinct distributions.
Thus, obtaining appropriate datasets is crucial. For
our experiments, we utilized three public datasets
with different sizes (small, medium, large) from two
sources. We merged three small datasets (OWASP,
BurpSuite, and FuzzDB) from GitHub! into one we

https://www.github.com/ChrisAHolland/
ML-SQL-Injection-Detector/tree/master/data
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cious samples). We also used two datasets from Kag-
gle?, namely SQLil (containing 950 benign and 3000
malicious samples) and SQLi2 (containing 11424 be-
nign and 22301 malicious samples). Finally, we em-
ployed a private dataset (containing 2337 benign and
257 malicious samples) only for testing (referred to as
Company) from a SIEM of an international SOC oper-
ating company with clients all over Europe. Opposed
to the first three datasets, the last one is not public.
The data belongs to a single client, and it was acquired
in-between 2019/08 and 2021/05.

We considered three scenarios to evaluate. Firstly,

to give a comprehensive analysis, we review the well-
studies IID case (i.e., when the test and train datasets
are from the same distribution). Secondly, to measure
the robustness of the models against data distribu-
tion change, we provide experiments concerning the
non-IID case (which was not studied before), namely
when the training and the testing data come from a
different distribution. Thirdly, to inspect the applica-
bility of the lab-tested models in the real world, we
evaluate the trained models on confidential data of an
international SOC operator within Europe. When ap-
plicable, we randomly split the datasets into training,
validation, and testing using 70-10-20 percentages.
All our experiments are performed two-fold to miti-
gate the randomness of the training process.’
Using the Same Distribution for Training/Testing.
Due to the lack of space, we neither show the accu-
racy nor the confusion matrices but instead present
the more informative F1-scores and the ROC curves.
The former is visible in Table 3, while the latter is vi-
sualized in the first column of Figure 1 for the consid-
ered three datasets (United, SQLil, SQLi2). In Table
3, we also present the best-performing model types
(LR, SVM, RF, GB, NN) with the corresponding opti-
mal pre-processing method (TF-IDF, Keyword, Skip-
gram) and hyper-parameters. The models trained on
United (with Skip-gram) have 125 features, the mod-
els trained on SQLil (with TF-IDF) have 9683, and
the models trained on SQLi2 have 1455 and 28679
when pre-processed with Skip-gram and TF-IDF re-
spectively.

Zhttps://www.kaggle.com/datasets/syedsaqlainhussain/
sql-injection-dataset

30ur implementation can be found at https://github.
com/nikikapui/sqli_detection.



In Table 3, one can see that the best-
performing setups (pre-processing, model type,
hyper-parameters) across different datasets vary
greatly. For instance, Skip-gram pre-processing
method outperforms TF-IDF on the United dataset,
while the opposite trend corresponds to SQLil, and
neither dominates the other on SQLi2. The optimal
learning rate for GB and NN and the optimal weight
for LR and SVM depend on the underlying dataset.
No one model type dominates, i.e., the model ob-
taining the highest Fl-score is different for all three
datasets. Hence, it is uttermost important to see how
models optimized for one dataset perform on other
datasets with different distributions.

In the first column of Figure 1 from the ROC
curves, it is visible that independently of the opti-
mal setup (i.e., model type, pre-processing method,
hyper-parameters), RF slightly outperforms the other
models in the low false positive rate region as it ob-
tains the highest true positive rate. Conversely, when
a high false positive rate is tolerated, the models have
only negligible differences. Note that the AUC values
are all above 0.99 except for the United dataset due to
its small size: there is only a single negative sample
in its test set.

In addition to these results, we found that the Key-
word weights pre-processing method is inferior to
both TF-IDF and Skip-gram, as the corresponding re-
sults were always about 10% less, even though be-
sides the model parameters, we also tuned the exact
weights for this pre-processing method.

Timing Measurements. Besides its prediction
power, another essential aspect is the usability of the
models, i.e., how much time it takes to train these

Table 3: For all considered public datasets (DS) and mod-
els, we present the F1-scores of the best-performing models
with the corresponding pre-processing (PP) methods for the
training set, the validation set, and the test set where Sg and
TI stands for Skip-gram and TF-IDF. The utilized hyper-
parameters are also displayed where S, W, K, F, E, L, D, H,
and A are Solver, Weight, Kernel, Feature num., Estimator
num., Learning rate, Depth, Hidden layer size, and Activa-
tion function, respectively.

DS. | PP. | Model Parameters Train Val. Test
Sg LR S:newton,W:0.1 99.7% | 99.6% | 99.8%

3 | Sg | SVM K:linear,W:10 99.9% | 100% | 100%
= | Sg RF F:32,E:10 100% | 100% | 99.9%
> | Sg GB L:0.01,E:1000,D:2 100% | 100% | 99.8%
Sg NN | L:0.001,H:64.A:sigmoid | 99.7% | 99.6% | 99.8%
TI LR S:newton,W:10 98.7% | 96.8% | 98.4%
= TI | SVM K:linear,W:1 98.2% | 96.3% | 97.9%
3 | TI| RF F:16,E:100 100% | 97.2% | 97.8%
@ | TI GB L:0.1,E:1000,D:4 100% | 98.7% | 98.7%
TI NN L:0.001,H:64,A:sigmoid | 93.9% | 90.8% | 92.8%
TI LR S:newton,W:10 99.5% | 99.3% | 99.4%
o | Sg | SVM K:poly, W:10 99.3% | 99.5% | 99.4%
5 Sg RF F:1,E:100 100% | 99.6% | 99.6%
@ | Sg GB L:0.1,E:1000,D:8 100% | 99.3% | 99.3%
TI NN L:0.1,H:64,A:sigmoid | 99.6% | 99.5% | 99.3%
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models, what is their sizes, and how fast they can pre-
dict. These details are presented in Table 4 for the
best-performing models. The training was done on
Ubuntu 20.04.4 LTS Linux with 16 CPUs (3.10GHz)
and 98 Gb RAM. One can see that while the models
achieve comparable performances, both the time and
the size values have a considerable variance. Addi-
tionally to the model type and the employed hyper-
parameters, these differences are a combined result of
the corresponding datasets and pre-processing meth-
ods. Yet, two trends are visible: LR is always the
smallest model, and GB is always the most costly
model to be trained. Along with the ROC curve, such
information is essential for SOC operators to optimize
the trade-off between the usability and prediction per-
formance of the SQLi-detecting ML model.

Using Different Distribution for Training/Testing.
The previous experiments revealed the sensitivity of
the setup: similar high Fl-scores could be reached
with vastly different settings. Opposed to the com-
mon IID practice that uses the same distribution for
testing and training (by splitting the same dataset), we
are focusing on the non-IID case, i.e., measuring the
performance of the models on test sets from other dis-
tributions. This experiment measures the model’s ro-
bustness against data distribution. The F1-scores are
shown in Table 5, while the ROC curves for all pair-
wise scenarios are presented in the second and third
column of Figure 1.

As expected, the Fl-score of the best-performing
models drops when tested on other datasets from
other distributions. For instance, training on a small
dataset could produce completely unreliable models:
the result on the top of Table 5 suggests that the mod-
els trained on United are essentially reduced to a ran-
dom guess when tested on SQLil and SQLi2. Simi-
lar results can be found on the middle top of Figure
1: when trained on the smallest United dataset, the

Table 4: The pre-processing and training time, the model
size, and the prediction speed of the best performing models
with Skip-gram or with TF-IDF.

Dataset | Mod. & PreP. | Learn. Time | Mod. Size | Pred. Speed
LR (S) 0.0258 s 0.002 Mb 0.002 ms
SVM (S) 0.0204 s 0.023 Mb 0.002 ms
United RF (S) 0.018 s 0.012 Mb 0.001 ms
GB (S) 1.4178 s 0.646 Mb 0.005 ms
NN (S) 0.283 s 0.118 Mb 0.054 ms
LR (T) 1.9164 s 0.219 Mb 0.123 ms
SVM (T) 44.1636 s 72 Mb 3.077 ms
SQLil RF (T) 2.3232s 7.1 Mb 0.174 ms
GB (T) 589.8s 1.5 Mb 0.150 ms
NN (T) 15184 s 7.2 Mb 0.112 ms
LR (T) 57.7254 s 0.631 Mb 0.320 ms
SVM (S) 35.2536's 3.4 Mb 0.089 ms
SQLi2 RF (S) 3.5634 s 4.2 Mb 0.043 ms
GB (S) 572.54s 6.8 Mb 0.035 ms
NN (T) 21.4831s 21 Mb 0.165 ms
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Figure 1: The best performing setting’s ROC curves with the AUC values. 1st column: train and test sets are from the same
public distribution. 2nd and 3rd column: train and test sets are from different public distribution. 4th column: train set is the

entire public domain and test set is private data.

best models’ AUC is 0.644 and 0.877 when tested on
SQLil and SQLi2, respectively.

Additionally, the pre-processing method seems
crucial too: when trained on SQLi2 and tested on
United, models using Skip-gram are idle. In contrast,
the ones using TF-IDF have a decent performance.
Another interesting finding is that different models
could have opposing generalization properties against
other distributions. For example, in the middle of Ta-
ble 5 RF performs exceptionally on United and terri-
bly on SQLi2 when trained on SQLil. At the same
time, the exact opposite trend holds for GB.

Concerning the ROC curves in the second and
third colunm of Figure 1, similarly to the IID case,
for this non-IID setup RF is also ideal for low false
positive rate region but only when trained on United
(left). However, when the models are trained on the
large SQLi2 dataset (right), the highest AUC belongs
to NN: 0.916 and 0.999 when tested on United and
SQLil1, respectively. NN is also a good choice when
a low false positive rate is desired.

In addition, when the models are trained on SQLi 1
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and tested on United (i.e., middle top), SVM is the
optimal model choice for sensitive domains where a
low false positive rate is required. Yet, when tested on
SQLi2 (i.e., middle bottom), multiple models achieve
the best trade-off, depending on the desired false pos-
itive rate range. What is clear is SVM has the highest
AUC values (0.872 and 0.973).

Based on these results, TF-IDF and SVM seem
more robust against test data distribution shifts than
other methods and models. TF-IDF uses statisti-
cal features such as frequencies, which change only
slightly when there is a minor change in the under-
lying distribution. On the other hand, Skip-gram is
based on a Neural Network, which takes a predefined
input size and could easily overfit, making it rigid to
use with different input families. Considering models,
SVM is robust, as it maximizes the smallest distance
between the benign and malicious samples. Thus it
should be tolerant of minor changes in the classes.
GB also performed well in this experiment due to
its assembly nature. In contrast, NN, the most com-
plex model, might overfit (when trained on United)



Table 5: Dataset-wise the Fl-scores with cross-verification
of the best performing models with Skip-gram or with TF-
IDF.
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Table 6: F1-scores of the best performing models with Skip-
gram or with TF-IDF when tested on the private Company
data.

on LR (S)

on LR (T)
United | 92.2% 92.4% 99.8% 76.1% 91.2%
SQLil | 98.43% | 97.86% | 97.79% | 98.68% | 92.78%
SQLi2 | 84.6% 79.7% 52.8% 82.2% 83.2%

Tested Trained on SQLi2

on LR(T) | SVM(S) | RF(S) | GB(S) | NN (T)
United | 97.3% 41.8% 50.7% | 66.5% 97.5%
SQLil | 953% 92.5% 97.8% | 98.1% 96.5%
SQLi2 | 99.36% | 99.41% | 99.57% | 99.30% | 99.34%

and lose its generalization capability to tackle sam-
ples from other distributions. However, it could also
outperform the rest of the models when trained on a
large representative dataset, e.g., SQLi2.

Validating the Findings on Private Dataset. Fi-
nally, we perform a similar non-IID experiment, but
instead of utilizing public datasets for training and
testing, we apply the private Company dataset as a
test set. The F1-scores of the best performing mod-
els are shown in Table 6 while the ROC curves are
presented in the last column of Figure 1.

The last column of Table 6 (using the large SQLi2
dataset) elaborates that Skip-gram is indeed not ap-
propriate for models indented to be used on other
distributions than the model was trained on. This
is seemingly contradicted in the first column; how-
ever, that corresponds to the smallest United dataset,
which could also produce highly unreliable models,
as we showed in Table 5. We hypothesize this ex-
cellent result is due to the closeness of United’s and
Company’s distribution. Similarly to the previous use
cases, the highest F1-score (95.7%) is reached by NN
when trained on the biggest dataset using the robust
TF-IDF.

Surprisingly, in the last column of Figure 1 (right)
shows the simple LR model trained on SQLi2 does
outperform NN based on the ROC with a minor AUC
difference (0.99 vs. 0.98). Furthermore, LR also
performs exceptionally on Company when trained on
SQLil (middle), making it the best choice even for
the low false positive rate domain.

S CONCLUSION

SQL Injections are top-tier vulnerabilities of today’s
ICT systems. As with many other problems, machine

Tested Trained on United Trained on |  United SQLil SQLi2
SVM(S) | RE(S) | GB(S) | NN(S) Model F1-score on Company

United || 99.78% 100% 99.89% | 99.78% | 99.78%

SQL@I 38.8% 39.0% 38.8% 37.8% 38.8% S]_\l/}l{\/l gggggz g; ;322;‘; g; ggg?;//i g‘;

SQLi2 50.6% 49.6% 50.6% 50.5% 50.6% RF 92’47% (S) 90'03% (T) 32.68% (S)

Tested Trained on SQLil GB 91.69% (S)  76.41% (T)  78.47% (S)
SVM(T) | RF(T) | GB(T) | NN(T) NN 94.79% (S)  77.65% (T)  95.69% (T)

learning techniques have also been proven appropri-
ate to tackle this issue. In this work, we highlighted
the shortcomings of the previous machine learning
solutions, which consider only a few aspects of the
underlying problem. Thus, this study is the first to
provide a comprehensive (wide and in-depth) empir-
ical analysis of SQL injection detection via machine
learning. Furthermore, we cross-validated the trained
models by using data from other distributions. This
aspect is idle in the literature, even though the sensi-
tivity of models to distribution change is crucial for
any real-life deployment. Our work could be benefi-
cial for security engineers and practitioners working
with SQL.
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