
ArmorDroid: A Rule-Set Customizable Plugin for Secure Android
Application Development

Cong-Binh Le1,2 a, Bao-Thi Nguyen-Le1,2 b, Phuoc-Loc Truong1,2 c, Minh-Triet Tran1,2 d

and Anh-Duy Tran3,∗ e

1Faculty of Information Technology, University of Science, Ho Chi Minh City, Vietnam
2Vietnam National University, Ho Chi Minh City, Vietnam

3imec-DistriNet, KU Leuven, Leuven, Belgium
fi

Keywords: Android Studio Plugin, Security Coding, Rule-Set Customizable, DevSecOps.

Abstract: Although Android is a popular mobile operating system, its app ecosystem could be safer. The lack of aware-
ness and concern for security issues in apps is one of the main reasons for this. Given the current situation,
developers have yet to receive sufficient security knowledge. Therefore, we have researched and proposed a
tool to support security coding. Based on the idea of DevSecOps, developers are placed at the center to op-
timize the solution to this problem by integrating security programming into the earlier stage in the software
development process. This paper presents two main research contributions: compilation and categorization of
security issues in Android application development and developing ArmorDroid, a plugin for Android Studio
to support secure coding. This plugin, which can be used for Java, Kotlin, and XML files, can instantly scan
and detect vulnerable code and suggest quick fixes for developers during the development phase. This plugin
helps developers improve their security code and trains them to write secure code by providing security coding
standards in Android applications. Furthermore, developers can customize our rule set to suit their situation
and share it with different developers. Our work also presents the results of a pilot study on the effectiveness
of the ArmorDroid plugin.

1 INTRODUCTION

Smartphones are being used more and more fre-
quently and are crucial in many facets of life. The two
leading operating systems for smartphones are An-
droid and iOS. According to Statista (Statista, 2023),
in the fourth quarter of 2022, approximately 27.5 bil-
lion apps were downloaded from Google Play, while
the Apple App Store had roughly 8.1 billion down-
loads. Android apps have a shorter publishing time
than iOS apps. However, this also means that the
Google Play Market has more malicious apps than
the Apple App Store, which has stricter quality con-
trol. In many cases, high-ranking apps with hun-
dreds of thousands of downloads from the Google

a https://orcid.org/0009-0009-8546-5440
b https://orcid.org/0009-0000-3371-6986
c https://orcid.org/0009-0008-5665-9986
d https://orcid.org/0000-0003-3046-3041
e https://orcid.org/0000-0002-8036-954X
∗Corresponding author

Play Store have been discovered to contain security
issues (Faruki et al., 2014).

The primary responsibility for security problems
in Android apps remains a topic of debate. According
to the findings of the GitLab DevSecOps Survey 2022
(Gitlab, 2022), many security experts lack confidence
in developers’ ability to write secure code, while de-
velopers feel they lack guidance. In their study, Tran
et al. (Tran et al., 2021) proposed that the main causes
of the above issues are a lack of secure coding stan-
dards for mobile software development, varying lev-
els of developer knowledge and qualification in se-
cure coding practices, a focus on functionality, perfor-
mance, and deadlines over security, and the skipping
of important security steps to meet tight deadlines.
The reasons above suggest that various stakeholders
have not prioritized security issues in Android apps,
including software development companies involved
in the development process.

DevSecOps is a practice that integrates security
testing throughout the software development lifecy-
cle. It aims to ”shift-left” security, meaning to involve

634
Le, C., Nguyen-Le, B., Truong, P., Tran, M. and Tran, A.
ArmorDroid: A Rule-Set Customizable Plugin for Secure Android Application Development.
DOI: 10.5220/0012049500003555
In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 634-641
ISBN: 978-989-758-666-8; ISSN: 2184-7711
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



security from the initial design phase to the final de-
livery phase.

Mitigating common vulnerabilities requires se-
cure coding practices to be integrated into the earliest
stages of development. Therefore, a tool to help pro-
grammers track and fix insecure code right in the cod-
ing process is necessary. Several plugins have been
developed to support secure coding based on the men-
tioned idea. However, we have identified some limita-
tions with using these plugins from both commercial
and open source. For example, FixDroid (Nguyen
et al., 2017) cannot extend the rules or add more
tooltips for new or special security issues. 9Fix (Tran
et al., 2021) can only support Java programming lan-
guage and run on Android Studio versions earlier than
3.0.

In this work, we propose a new Android Studio
plugin that supports secure programming for devel-
opers, called ArmorDroid. It can detect and fix com-
mon security issues in Java, Kotlin, and XML files. It
works with new versions of Android Studio and runs
locally on the developer’s machine to ensure privacy.
In addition, the tool provides a rule management sys-
tem and support for rules customization. In this paper,
our main contributions are:

• Identifying and categorizing security issues in
Android applications. (Section 3)

• Building a plugin for Android Studio to support
secure coding, ArmorDroid. Designing a data
model that generalizes security issues collected
into a set of rules. (Section 4)

• Running the pilot study and analyzing the results
for ArmorDroid. (Section 5)

2 RELATED WORK

DevSecOps is a practice that ensures security
throughout the software development lifecycle. It
involves applying security principles and tools from
the design phase to the delivery phase. For Android
development, there are various security testing tools
that can be integrated into the CI/CD pipeline such
as AppSweep (GuardSquare, 2023), App-Ray (App-
Ray, 2023)), and MobSF (mob, 2023). These tools
can perform both Static Application Security Testing
(SAST) and Dynamic Application Security Testing
(DAST) of the source code and detect vulnerabilities.
However, they can only be used when code is ready
for testing.

By performing static code analysis, we can inspect
the control-flow and the data-flow of the program
without executing it. EstiDroid is an open-source tool

developed by Fan et al. (Fan et al., 2020). It ana-
lyzes the API calls of Android apps by scanning the
APK file. This method is faster than dynamic anal-
ysis but less accurate. Some solutions create IDE
plugins that catch insecure code right at the coding
time. SonarLint (son, 2023b) is a commercial product
consisting of plugins for various IDEs and languages,
such as Python, JavaScript, and Java. Another exam-
ple is DroidPatrol by Talukder et al. (Talukder et al.,
2019). It is a plugin for Android Studio that uses static
analysis to find data leaks in APK files. However, this
plugin only works after the code is compiled, not dur-
ing coding. 9Fix by Tran et al. (Tran et al., 2021) and
Sensei by Cremer et al. (De Cremer et al., 2020) are
two plugins that help programmers write secure code
and follow coding guidelines. They provide real-time
feedback and suggestions to fix vulnerabilities and
improve code quality. A current drawback of these
two plugins is that they do not support Kotlin, which
is a modern and popular language for Android app
development.

3 SECURITY ISSUES IN
ANDROID APPLICATION

This section covers various security problems that af-
fect Android apps and how they occur. This helps us
learn from the common mistakes of Android develop-
ers and find a way to fix them.

3.1 Security Issues Related to
Cryptography Implementation

Cryptography is essential for securing data in tran-
sit and at rest. Cryptography security issues can lead
to data leaks and compromise the confidentiality, in-
tegrity, and availability of sensitive data and com-
munications. Cryptography vulnerabilities make it
easy for attackers to steal data and violate privacy
(OWASP, 2016). To avoid security issues in cryptog-
raphy implementation in Android applications, devel-
opers should follow the standard guidelines for cryp-
tography algorithms and data protection.

3.2 Security Issues in Network
Communications

Security issues in Network communication in An-
droid applications refer to vulnerabilities or weak-
nesses in how an application interacts with other
devices or servers via a network. These problems
can expose the application and the data it contains

ArmorDroid: A Rule-Set Customizable Plugin for Secure Android Application Development

635



to attack, increasing the risk of data breaches, sys-
tem compromises, or other security incidents. Some
common security issues include Man-in-the-Middle
(MITM) attacks, insecure communication protocols,
a lack of authentication and access control, etc.

3.3 Security Issues in Data Storage

This category refers to security issues in the way that
an application stores and manages user data, which
can leave the application and its data open to attack.
SQL Injection is the most common type of security is-
sue. An attacker can inject malicious SQL commands
into a database management system of an application
to gain unauthorized access to or edit sensitive data.

3.4 Security Issues in Interprocess
Communication

The Android Interprocess Communication (IPC)
mechanisms let you verify the identity of the applica-
tion connecting to your IPC and set security policy for
each IPC mechanism such as Intent, Binder, Messen-
ger with a Service, and BroadcastReceiver. Interpro-
cess communication issues can lead to unauthorized
access to data and code execution.

3.5 Security Issues in WebView

WebView in Android allows applications to display
web content (HTML, CSS, JavaScript). While this
feature is very useful for many cases, improper use
of it can introduce web security issues into your app,
such as injection attacks, MITM attacks, clickjacking,
and cross-site scripting (XSS) attacks. A mobile ap-
plication that uses WebViews can have XSS issue if
untrusted code is executed with local file access en-
abled.

4 SECURE CODING PLUGIN FOR
ANDROID STUDIO

Android Studio (Google, 2023) is an IDE for develop-
ing Android apps. It is based on IntelliJ IDEA Plat-
form, a code editor and developer toolset. It provides
app development features like code completion, de-
bugging, testing, and deployment. Moreover, third-
party plugins can be written to add new features to
the IDE.

4.1 Overview of ArmorDroid

Android Studio allows several types of extensions,
two of which are suitable for the tool our team is plan-
ning to develop. Firstly, the User Interface Compo-
nents provide the ability to add some UI features to
the IDE such as MenuBar, ToolBar, etc. Secondly, the
Code Analyzing feature provides syntax highlight-
ing, language checking, source code inspection, etc.,
which allows our plugin to check for vulnerabilities.
Using the available extension features, we have im-
plemented a secure coding plugin for Android Studio,
named ArmorDroid. Our plugin’s architecture is de-
scribed in Figure 1.

Code Inspector

Rules data
(.json files)

Rule Manager Query

Project Manager
Listener

Download

Create, delete, update

Android Studio

Analyze

Listen

Save changes

Rule Editor

Invoke

Figure 1: Architecture of ArmorDroid.

When the user opens a project, the Project Man-
ager Listener will prompt a dialog asking for user per-
mission to inspect this project. If the user agrees, the
plugin will create a folder called ArmorDroidRule-
Data and download the default rule-storage files into
that folder: java.json, kotlin.json and xml.json. The
downloaded files are used locally by the Code Inspec-
tor module. No data are transmitted to any web server
to ensure the confidentiality of the project source
code. The Rule Editor module includes actions and
dialogues that are responsible for interacting with the
user. To modify the rules, Rule Editor calls APIs pro-
vided by the Rule Manager module. Rule Manager
is responsible for interacting with the rule files and
providing the right set of rules to Code Inspector ac-
cording to the language they are scanning. Every time
changes are made to the rule files, Rule Editor will
notify the Code Inspector to refresh the data.

4.2 Design and Implementation

4.2.1 Code Inspector

To check the rules, our tool utilizes the IDE syntax
parsing features called Program Structure Interface

SECRYPT 2023 - 20th International Conference on Security and Cryptography

636



Figure 2: Highlighted Vulnerable Code.

Figure 3: Quick Fix Menu.

(PSI). The PSI is the layer in the IntelliJ Platform re-
sponsible for parsing files and creating the syntactic
and semantic code model. When a developer writes
new code, the IDE rebuilds the Abstract Syntax Tree
(AST) and computes the changes compared to the
previous version. In simple terms, the AST breaks the
source code into smaller components such as PsiEle-
ment, PsiWhiteSpace, PsiClass, PsiMethod, PsiField,
etc. A typical PSI element will contain the following
information: source text, its parent, its children, and
its position in the source file. Since we aim to detect
and highlight problematic code as soon as the devel-
oper writes it, the localInspection (loc, 2023) config-
uration was chosen for our inspection method.

4.2.2 Rule Manager

The Rule Manager module is responsible for man-
aging the rule data storage. The rules are stored in
the JavaScript Object Notation (JSON) format, and
each .json file is dedicated to a supported language
(Java, Kotlin, XML). Rule Manager provides APIs to
encode and decode JSON to Rule object. The Rule
Manager class implements the singleton design pat-
tern to ensure that only one instance of it exists. This
instance holds a list of rules for each language that are
loaded from JSON files. The rules are cached in the
list to avoid repeated file I/O and to save memory.

4.2.3 Rule Editor

ArmorDroid lets you adjust the rules to fit your re-
quirements. It has UI features that can be found in
the Tools tab of the toolbar, under the ”ArmorDroid

Secure Coding” menu option. These UI features are
written in Java using custom Swing UI toolkit compo-
nents. Using these custom components ensures that
our plugin’s UI matches the IDE’s UI in appearance
and functionality.

4.3 Rule Model

Each security issue that we have collected is turned
into a Rule. Rule is a data model that we have de-
signed to contain information about a vulnerability
and how the plugin interacts with that insecure code.
The data structure of the Rule class is presented in
Figure 5.

The briefDescription field of each Rule stores the
message that appears when the user clicks on the code
with a warning (see Figure 2). The Rule can be en-
abled or disabled by setting the boolean value enabled
to true or false. The inspector field of type Inspection
holds the regex patterns that check the security of a
code fragment. It consists of a string pattern and a
list of patterns for captured groups (gro, 2023). The
main pattern is matched first. If it matches, the cap-
tured groups are matched with the corresponding pat-
tern in groupPatterns. If any of the group patterns
fail to match, the inspection result is false, indicating
that the code is secure. Otherwise, if all the patterns
match, the inspection result is true, and the code is
flagged as insecure.

A Rule can provide none, one, or more than one
solution to an issue. It has a field fixes that contains
an array of ReplaceStrategy objects. Each object has
a fixName field that shows the name of the fix on the

ArmorDroid: A Rule-Set Customizable Plugin for Secure Android Application Development

637



Figure 4: Rule customization dialog.

Rule
+ briefDescription: String

+ enabled: Boolean

+ inspector: Inspection

+ fixes: List<ReplaceStrategy>

Inspection
+ pattern: String

+ groupPatterns: List<String>

ReplaceStrategy
+ fixName: String

+ patterns: List<String>

+ strings: List<String>

Figure 5: Data model of a rule.

suggestion panel (Figure 3). The fields patterns and
strings are arrays of regex patterns and replacement
strings, respectively. ArmorDroid uses them to re-
place insecure code with secure ones.

4.4 Rule Checklist

ArmorDroid default rule set contains 60 detection pat-
terns covering 3 programming languages (25 for Java,
25 for Kotlin, and 10 for XML). 48 out of 60 rules
support quick fixes, the ones without quick fixes are
those that are too complicated to fix correctly or are
not serious enough. A snippet of the issue list is
shown in table 1.

Our collection of rules comes largely from our
own knowledge and experience with insecure coding
practices in Android app development. During our
research, we also supplement the rule set with some
rules from Sonarlint’s SAST rule list (son, 2023a).

4.5 Examples of Usage

4.5.1 Code Inspection and Quick Fix

ArmorDroid helps developers avoid insecure code by
highlighting and suggesting fixes. For example, Fig-
ure 2 show a Cipher object with the AES/CBC/P-
KCS5Padding parameter, which is vulnerable to at-
tacks. ArmorDroid marks this code with a warning
and provides detailed information when the mouse is
over it. The programmer can click on the light bulb
icon to see a list of quick-fix options and choose one
to replace the insecure code.

4.5.2 Rules Customization

ArmorDroid allows users to customize inspection
rules for each projects; for example, users might want
to detect the use of RSA without OAEP padding
scheme. Users can do this by choosing the Armor-
Droid Secure Coding → Customize Rules to open the
rule editing dialog.

To create a custom rule, press the Add rule button.
A new row will appear at the end of the table. Enter
the details of the vulnerability you want to find and fix
in this row. You can also edit or delete existing rules
(Figure 4).

4.5.3 Rules Import/Export

ArmorDroid is a tool that allows developers to create
and share their own rules for Android development.
These rules can be saved as .armor files and loaded
by other developers in their Android Studio. Alter-
natively, the rules can be distributed through version
control systems as JSON files in the project.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

638



Table 1: A part of ArmorDroid’s rules.

Is
su

e
L

an
gu

ag
e

R
eg

ex
D

es
cr

ip
tio

n
Q

ui
ck

fix

D
riv

er
M

an
ag

er
G

et
C

on
ne

ct
io

n

Ja
va

D
ri

ve
rM

an
ag

er
.g

et
C

on
ne

ct
\(
(.
∗?
),
(.
∗?
),
(.
∗?
)\
)

A
se

cu
re

pa
ss

w
or

d
sh

ou
ld

be
us

ed
w

he
n

co
nn

ec
tin

g
to

a
da

ta
ba

se

Pa
ss

w
or

d
E

nc
od

er
Ja

va
St

an
da

rd
Pa

ss
w

or
dE

nc
od

er
\(
(.
∗?
)\
)

Pa
ss

w
or

ds
sh

ou
ld

no
tb

e
st

or
ed

in
pl

ai
n-

te
xt

or
w

ith
a

fa
st

ha
sh

in
g

al
go

ri
th

m

U
se

B
C

ry
pt

Pa
ss

w
or

-
dE

nc
od

er
in

st
ea

d
of

St
an

da
rd

Pa
ss

w
or

-
dE

nc
od

er
SS

L
C

on
te

xt
Ja

va
SS

LC
on

te
xt
.g

et
In

st
an

ce
\(
(.
∗?
)\
)

W
ea

k
SS

L
/T

L
S

pr
ot

oc
ol

s
sh

ou
ld

no
tb

e
us

ed
Im

pr
ov

e
se

cu
ri

ty
by

us
in

g
T

L
Sv

1.
2

M
es

sa
ge

D
ig

es
t

Ja
va

M
es

sa
ge

D
ig

es
t.

ge
tI

ns
ta

nc
e\
((
.∗

?)
\)

SH
A

-1
an

d
M

es
sa

ge
-D

ig
es

th
as

h
al

go
ri

th
m

s
sh

ou
ld

no
tb

e
us

ed
in

se
cu

re
co

nt
ex

ts

Im
pr

ov
e

se
cu

ri
ty

by
us

in
g

SH
A

25
6

R
SA

W
ro

ng
M

od
e

A
nd

Pa
dd

in
g

Sc
he

m
e

K
ot

lin
C

ip
he

r.g
et

In
st

an
ce
\(
(.
∗?
)\
)

E
nc

ry
pt

io
n

m
od

e
an

d
pa

dd
in

g
sc

he
m

e
sh

ou
ld

be
ch

os
en

ap
pr

op
ri

at
el

y

U
se

O
A

E
P

pa
dd

in
g

sc
he

m
e

W
ea

k
SS

L
/T

L
S

Pr
ot

oc
ol

s
G

et
In

st
an

ce

K
ot

lin
SS

LC
on

te
xt
.g

et
In

st
an

ce
\(
(.
∗?
)\
)

W
ea

k
SS

L
/T

L
S

pr
ot

oc
ol

s
sh

ou
ld

no
tb

e
us

ed
E

nf
or

ce
T

L
S

1.
2

as
th

e
m

in
im

um
pr

ot
oc

ol
ve

rs
io

n

A
cc

es
si

ng
A

nd
ro

id
E

xt
er

na
l

St
or

ag
e

K
ot

lin
C

on
te

xt
.g

et
E

xt
er

na
lF

il
es

D
ir
\(
(.
∗?
)\
)

A
cc

es
si

ng
A

nd
ro

id
ex

te
rn

al
st

or
ag

e
is

se
cu

ri
ty

-s
en

si
tiv

e
U

se
in

te
rn

al
st

or
ag

e
by

ge
tF

ile
sD

ir

B
ro

ad
ca

st
in

g
In

te
nt

s
K

ot
lin

C
on

te
xt
.s

en
dB

ro
ad

ca
st
\(
(.
∗?
)\
)

B
ro

ad
ca

st
in

g
in

te
nt

s
is

se
cu

ri
ty

-s
en

si
tiv

e
R

es
tr

ic
tt

he
ac

ce
ss

to
br

oa
dc

as
te

d
in

te
nt

s
E

na
bl

in
g

Fi
le

A
cc

es
s

fo
rW

eb
V

ie
w

s

K
ot

lin
W

eb
vi

ew
.g

et
Se

tt
in

gs
()
.s

et
A

ll
ow

C
on

te
nt

A
cc

es
s\
((
.∗

?)
\)

E
na

bl
in

g
fil

e
ac

ce
ss

fo
rW

eb
V

ie
w

is
se

cu
ri

ty
-s

en
si

tiv
e

D
is

ab
le

ac
ce

ss
to

lo
ca

lfi
le

s
fo

r
W

eb
V

ie
w

s
un

le
ss

it
is

ne
ce

ss
ar

y
D

eb
ug

Fe
at

ur
es

A
ct

iv
at

ed

X
M

L
an

dr
oi

d
:d

eb
ug

ga
bl

e
=
\\

”t
ru

e\
\”

In
th

e
ap

pl
ic

at
io

n
m

an
if

es
te

le
m

en
t

of
an

an
dr

oi
d

ap
pl

ic
at

io
n,

se
tti

ng
th

e
de

bu
gg

ab
le

pr
op

er
ty

to
tr

ue
co

ul
d

in
tr

od
uc

e
a

se
cu

ri
ty

ri
sk

In
A

nd
ro

id
M

an
i-

fe
st

.x
m

lt
he

an
dr

oi
d

de
bu

gg
ab

le
pr

op
er

ty
sh

ou
ld

be
se

tt
o

fa
ls

e
C

le
ar

Te
xt

Pr
ot

oc
ol

s
X

M
L

an
dr

oi
d

:u
se

sC
le

ar
te

xt
T

ra
ff

ic
=
\\

”t
ru

e\
\”

C
le

ar
-t

ex
tp

ro
to

co
ls

(f
tp

,t
el

ne
t,

ht
tp

)l
ac

k
en

cr
yp

tio
n

of
tr

an
sp

or
te

d
da

ta
,a

s
w

el
la

s
th

e
ca

pa
bi

lit
y

to
bu

ild
an

au
th

en
tic

at
ed

co
nn

ec
tio

n

D
is

ab
le

al
lc

le
ar

-t
ex

t
tr

af
fic

ArmorDroid: A Rule-Set Customizable Plugin for Secure Android Application Development

639



5 PILOT STUDY

5.1 Study Tasks

In our study, we invited Android developers ranging
from a few months to a few years of experience to
solve a coding exercise comprised of 5 sub-tasks with
and without the assistance of ArmorDroid. The ex-
ercise involves an Android project that uses crypto-
graphic APIs to encrypt and decrypt the input string.
But the encrypting and decrypting code was missing
and the programmers had to implement it. To evaluate
ArmorDroid’s effectiveness, the participants received
a guidance document on how to use the tool. After
the exercise, the participants were asked to fill in a
survey form that collected personal and technical data
to evaluate the tool’s effectiveness.

5.2 Study Results

5.2.1 Participants

Our study involved 41 participants from various do-
mains, including students and developers (see Table
2). Almost all of them had Android development ex-
perience of various levels: 24 participants have less
than 1 year, 12 partipants between 1 year and 2 years
and 5 participants have more than 2 years.

Table 2: Participant’s Background.

Participant’s Background Count
Student 20
Android Developer 9
Security Developer 2
Other 10

According to our survey, about 68% of the par-
ticipants have no experience in security. However,
roughly 76% of them are still concerned about secu-
rity issues that stem from the coding process. This
indicates that most developers prioritize secure cod-
ing but have not received adequate security training.

5.2.2 Features

Code Inspection. As shown in Figure 6, ArmorDroid
code inspection feature was effective in detecting vul-
nerabilities code during the plugin development. The
plugin highlighted the vulnerable code lines in the ed-
itor and provided a brief description of each error.
This helped users to identify and understand the vul-
nerabilities code easily.

However, the brief note on the issues did not help
developers gain insight into the issue. Out of 41 de-

Figure 6: Participants’ Experience with Code Inspection.

velopers, less than 10 strongly agreed, and less than
10 agreed that the note was useful. About 17 were
neutral. The brief note should include links to rel-
evant documentation that provide a detailed view of
the problem for developers.
Quick Fix. The quick fix feature was a popular op-
tion among the participants. According to the survey
results, more than two-thirds (71%) of them indicated
that they utilized this feature during the experiment.
The results show that the majority of the participants
have used quick fixes and achieved good results.
Rule Manager. About 90% of the participants re-
ported that the Rule Manager was easy to use. How-
ever, a small percentage of participants still do not
understand the rules and suggest improving the UI
of Rule Manager. In another question, we ask them
whether customizing the rule set was easy. More than
half of the participants (56%) think that customizing
the rule set is difficult. This implied that more work
needs to be done on the Rule Manager UI for our fu-
ture work.

5.2.3 Performance

We have conducted a performance comparison be-
tween ArmorDroid and Sonarlint on a Windows 11
laptop device with 16 GB of RAM and an Intel Core
i5-8300H CPU. The first experiment focused on the
speed of detection, while the second experiment fo-
cused on the memory consumption.

For the speed experiment, we run the test on 30
samples of bad code and measured the time taken by
each plugin to flag them. The results showed that Ar-
morDroid was about as fast as Sonarlint, with a range
of 120 to 400 ms versus 150 to 420 ms. This re-
sult proves that ArmorDroid meets our expectation of
catching bad code in real-time.

For the memory experiment, we used a Python
script to monitor the memory usage of Android Stu-
dio every 2 seconds for 2 minutes while doing a cod-
ing task similar to the one in the survey in Section
5. We repeated this 10 times and calculated the av-
erage memory usage for each condition. The results
showed that Android Studio without any plugin used
1689.25 MB of memory, while with ArmorDroid it
used 1824.24 MB and with Sonarlint it used 1892.61
MB. This means that ArmorDroid increased memory

SECRYPT 2023 - 20th International Conference on Security and Cryptography

640



usage by about 135.01 MB, while Sonarlint increased
it by about 203.36 MB. ArmorDroid used less mem-
ory than Sonarlint initially, but this may be due to
its smaller rule set and fewer features and languages.
Sonarlint has more features than ArmorDroid, which
could explain its higher memory consumption.

6 CONCLUSION AND FUTURE
WORK

This article presents ArmorDroid, a plugin for An-
droid Studio that helps developers avoid common se-
curity problems in Android programming. Armor-
Droid detects insecure code patterns in real-time and
suggests fixes. It also allows users to customize and
share inspection rules with co-workers. We evalu-
ated ArmorDroid with junior Android developers and
found that they appreciated its ability to identify and
correct vulnerable code quickly and easily. They also
found the rule editing feature very useful.

The survey reveals some areas for improvement in
current ArmorDroid. First, the rule editor’s UI. They
complained that it needed to be clarified or that the
regex pattern fields were not validated. Another is-
sue is the code inspector’s inability to inspect variable
function arguments due to ArmorDroid’s limited un-
derstanding of the expression context.

In future work, we plan to redesign the UI of the
rule editor. We will also create a website where all
the rule detail explanations and examples will be pre-
sented. In addition, the link to each issue will be at-
tached to the brief description, and users can follow
the link to see the vulnerability in more detail. Fi-
nally, we are going the improve ArmorDroid’s con-
text awareness, i.e., allowing it to inspect the value of
a variable.

ACKNOWLEDGEMENTS

This research is funded by the University of Science,
VNU-HCM, Vietnam under grant number CNTT
2023-05

REFERENCES

(2023). groupvalues in kotlin. https://kotlinlang.
org/api/latest/jvm/stdlib/kotlin.text/-match-result/
group-values.html.

(2023). Mobsf. https://mobsf.github.io/docs/#/.

(2023). Plugin configuration file. https://plugins.
jetbrains.com/docs/intellij/code-inspections.html#
plugin-configuration-file.

(2023a). Sonar rules. https://rules.sonarsource.com/.
(2023b). Sonarlint. https://www.sonarsource.com/products/

sonarlint/.
App-Ray (2023). App-Ray. App-Ray website.
De Cremer, P., Desmet, N., Madou, M., and De Sutter, B.

(2020). Sensei: Enforcing secure coding guidelines
in the integrated development environment. Software:
Practice and Experience, 50(9):1682–1718.

Fan, W., Zhang, D., g Chen, Y., Wu, F., and Liu, Y.
(2020). Estidroid: Estimate api calls of android appli-
cations using static analysis technology. IEEE Access,
8:105384–105398.

Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur,
M. S., Conti, M., and Rajarajan, M. (2014). Android
security: a survey of issues, malware penetration, and
defenses. IEEE communications surveys & tutorials,
17(2):998–1022.

Gitlab (2022). The GitLab 2022 Global DevSecOps Survey.
Google (2023). Android studio. https://developer.android.

com/studio. Accessed: February 19, 2023.
GuardSquare (2023). AppSweep: Mobile Application Se-

curity Testing. GuardSquare website.
Nguyen, D. C., Wermke, D., Acar, Y., Backes, M., Weir,

C., and Fahl, S. (2017). A stitch in time: Support-
ing android developers in writing secure code. In
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages
1065–1077.

OWASP (2016). M5: Insufficient cryptography.
https://owasp.org/www-project-mobile-top-10/
2016-risks/m5-insufficient-cryptography.

Statista (2023). Quarterly number of mobile app downloads
worldwide from 1st quarter 2016 to 4th quarter 2022.
Statista website. Accessed: February 19, 2023.

Talukder, M. A. I., Shahriar, H., Qian, K., Rahman, M.,
Ahamed, S., Wu, F., and Agu, E. (2019). Droidpatrol:
a static analysis plugin for secure mobile software de-
velopment. In 2019 IEEE 43rd annual computer soft-
ware and applications conference (COMPSAC), vol-
ume 1, pages 565–569. IEEE.

Tran, A.-D., Nguyen, M.-Q., Phan, G.-H., and Tran, M.-T.
(2021). Security issues in android application devel-
opment and plug-in for android studio to support se-
cure programming. In Future Data and Security En-
gineering. Big Data, Security and Privacy, Smart City
and Industry 4.0 Applications: 8th International Con-
ference, FDSE 2021, Virtual Event, November 24–26,
2021, Proceedings 8, pages 105–122. Springer.

ArmorDroid: A Rule-Set Customizable Plugin for Secure Android Application Development

641


