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The anonymity and untraceability benefits of the Dark web account for the exponentially-increased potential
of its popularity while creating a suitable womb for many illicit activities, to date. Hence, in collaboration with
cybersecurity and law enforcement agencies, research has provided approaches for recognizing and classify-
ing illicit activities with most exploiting textual dark web markets’ content recognition; few such approaches
use images that originated from dark web content. This paper investigates this alternative technique for rec-
ognizing illegal activities from images. In particular, we investigate label-agnostic learning techniques like
One-Shot and Few-Shot learning featuring the use Siamese neural networks, a state-of-the-art approach in the
field. Our solution manages to handle small-scale datasets with promising accuracy. In particular, Siamese
neural networks reach 90.9% on 20-Shot experiments over a 10-class dataset; this leads us to conclude that
such models are a promising and cheaper alternative to the definition of automated law-enforcing machinery

over the dark web.

1 INTRODUCTION

The web as we know it today has two primary lay-
ers. On the one hand, the Surface web offers most if
not all the web pages we normally use daily. On the
other hand, the Deep web—or hidden web(Raghavan
and Garcia-Molina, 2001)—offers parts of the World
Wide Web whose contents are not indexed by stan-
dard web search-engine programs. The latter remains
unindexed because its content is considered either ir-
relevant or confidential, and for security purposes, it is
intentionally concealed. The advantages above, how-
ever, create a suitable womb for many illicit activi-
ties concealed from regular search indexing. Such ac-
tivities collectively form a relatively small fraction of
the Deep web, called the Dark Web (Godawatte et al.,
2019). The Dark Web uses the Tor—The Onion Rout-
ing! —network to access its content, and featuring a
sensibly different architecture than the Surface web;
for example, each request is redirected through vari-
ous remote servers to reach the requested content and
finally return to the user via a different server, thereby
making that request untraceable.

Uhttps://www.torproject.org/
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Although the Dark Web amounts to circa 0.005%
of the web (Juan Sanchez, 2019), only 48% of the
Dark Web content is legal (Al-Nabki et al., 2019),
with the rest being illicit, suspicious, or otherwise
un-categorized but still within a grey-area of legality
(e.g., Smart Drug Trafficking). Such illegal activities
usually contain drug selling, counterfeit products, and
child abuse content (Dalins et al., 2018). The majority
of these illicit contents are sold through various Dark
Web markets. Numerous Surface websites advertise
these markets, providing the user with the onion link.
Consequently, the Dark Web markets are gaining ex-
ponential popularity, endangering, in many cases, the
unsuspected user who cannot identify the legality of
each product or the truthfulness of the presented in-
formation. Lastly, the vulnerability in malicious and
phishing code is deep in these markets, posing an ad-
ditional threat to the everyday user.

In an attempt to shed light on the illicit activi-
ties on the Dark Web, the research community is ei-
ther classifying images, text, or even the underlying
code of the dark websites (Cascavilla et al., 2022a;
Cascavilla et al., 2022b). Several studies implement
machine learning algorithms and deep learning tech-
niques for automatic taxonomy extraction and Deep
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and Dark Web content analysis. On the one hand, im-
age categorization of the HTML pages in the various
Dark Web content is researched in depth by (Hashemi
and Hall, 2019). Specifically, authors in (Hashemi
and Hall, 2019) identified and categorized dark pro-
paganda based on visual content while using seman-
tic segmentation with specifically designed filters. Fi-
nally, (Fidalgo et al., 2019), through specially de-
signed masks and “bags of visual words,” they clas-
sified illicit images from the Dark Web with high ac-
curacy. On the other hand, the textual appearance is
the main focus of the studies (Al Nabki et al., 2017)
(Ghosh et al., 2017). In the latter research (Ghosh
et al., 2017), they proposed an onion crawler to the-
matically categorize the content of Dark Web pages,
e.g., drug-related, gun-related.

The above studies share one key element, the ex-
istence of significantly big datasets that are accurately
labeled or, in the case of (Fidalgo et al., 2019), a
dataset that can be considered “ideal”. That is ad-
equately cleaned images, lacking any noisy back-
ground that someone might encounter when scrap-
ing images from the Dark Web. Besides, the data
used in the studies mentioned earlier are mostly well-
balanced and categorized at a high level, which means
that specific categories have not yet been investigated.
However, “Reality is cruel,” meaning relying on more
data is not always possible. Law enforcement should
have the possibility to react as soon as possible to
detect illicit activities on the Dark Web using an ap-
proach that works with high accuracy even when the
data collection is reduced. In the context of our re-
search, we provided a novel approach for illicit image
recognition, considering new Dark Web images—thus
possibly implying small and noisy data. In particu-
lar, we investigated an alternative approach when han-
dling small datasets using the ability of label agnostic
learning techniques, i.e., One-Shot (Lake et al., 2011)
and Few-Shot (Hilliard et al., 2018), when identify-
ing illicit images, thus possibly improving the prob-
lem of handling unlabeled and few data. One/Few-
shot learning requires fewer data to train a model, thus
eliminating high data collection and labeling costs.
Moreover, low training data means low dimensional-
ity in the training dataset, which can significantly re-
duce computational costs. When new data are added,
the model can recognize them without re-training.
The Dark Web can benefit from these approaches
since new illicit content images are arising daily, mak-
ing their identification time-consuming and challeng-
ing. The approaches mentioned rely on using Siamese
networks since it can be more robust to class imbal-
ance and works well with images without losing their
information. Moreover, it has not been studied on

Dark Web content yet. Consequently, we formulated
the following main research question:

RQ. To what extent can illicit Dark Web content be
classified through a limited number of images?

To answer our main research question, we need to
address the following sub-questions:

SRQI. To what extent One-Shot technique using
Siamese Neural Networks can identify illicit
images from the Dark Web?

SRQ2. To what extent Few-Shot technique using
Siamese Neural Networks can identify illicit
images from the Dark Web?

The goal is to investigate the ability of One-Shot and
Few-Shot learning techniques to identify and sepa-
rate illicit image embeddings using Siamese Neural
Networks. We verify the results by evaluating the
model’s performance and focusing mainly on the ac-
curacy metric.

The results of our study highlight that our ap-
proach peaked at 90.9 % testing accuracy on 943 un-
seen images of 10 different categories.

To sum up, the paper provides four key contribu-
tions:

1. A novel Dataset of Dark Web illicit contents con-
sisted of 3750 images categorized in 55 different
categories, e.g., drugs and weapons (Replication-
Package, 2023).

2. A new approach that exploits the One-Shot Learn-
ing technique to identify illicit images from the
Dark Web;

3. A new approach that exploits the Few-Shot One-
Shot Learning technique to identify illicit images
from the Dark Web;

4. An online available repository reporting the raw
data in the context of the study for further re-
search and new considerations by the commu-
nity (Replication-Package, 2023).

The remainder of this paper is organized as fol-
lows. Section 3 provides an overview of the dataset
and the related approach used to build, clean, and pre-
pare it. Section 4 introduces and explains the method-
ology for classifying illicit images. In Section 5 are
presented the results of our approach. Section 6 dis-
cusses the results of our research and the related lim-
itations, while Section 8 draws the conclusions and
sketches some possible future research.
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2 RELATED WORK

Previous research on the Dark Web mainly focused
on classifying the illicit activities in the Dark Market
places based on their textual content. More specifi-
cally, (Al Nabki et al., 2017) created the well-known
DUTA dataset, which consists of 5002 labeled Dark
websites. Three supervised machine learning algo-
rithms were tested: Support Vector Machines (SVM),
Logistic Regression, and Naive Bayes. Using Term
Frequency - Inverse Document Frequency (TF-IDF)
and Bag Of Words (BOW) dictionaries tuned explic-
itly for their dataset, they achieved high accuracy
when predicting illicit content. Similarly, (Ghosh
et al., 2017) created an onion crawler to themati-
cally categorize the content of Dark Web pages as
drug-related, gun-related, etc., based on specific key-
words. Authors in (Choshen et al., 2019), while fol-
lowing a similar approach, enriched their experiments
with data originating from eBay product pages as well
as Legal Onion websites in an attempt to identify
the legal and illegal language used in the Dark Web.
Lastly, (Ranade et al., 2018) collected data from the
Twitter streaming API to generate a multilingual cor-
pus based on keywords such as DDoS attacks, DNS,
spam, malware, etc. The collected data was fed to
a translating algorithm designed by the researchers,
which achieved 97% semantic relevance compared to
Google’s translated output upon expert evaluation.
Even though the textual representations of the
Dark Marketplaces are thoroughly investigated, more
extensive research should be conducted on the images
originating from these markets. One of the most in-
fluential studies regarding HTML classification based
on the visual contents of Dark websites is (Hashemi
and Hall, 2019). The researchers in (Hashemi and
Hall, 2019) are identifying and categorizing dark pro-
paganda based on the visual content of the investi-
gated websites. They trained the well-known Convo-
lutional Neural Network (CNN) Alex-Net on 120,000
images obtained from the Dark Web and finally tested
on 1.2 million suspicious images concluding with an
accuracy of 86%. On the other hand, the researchers
in (Fidalgo et al., 2018) created a dataset (TOIC) of
almost 700 images scraped from the Dark Web. They
generated dictionaries representing this database by
implementing K-Means and Nearest Neighbour algo-
rithms. Edge-Shifting dense techniques were tested
on a different radius, resulting in an 85.6% overall ac-
curacy. Inspired by the promising results, the authors
in (Fidalgo et al., 2019) introduced specifically de-
signed masks, and through a similar “bag of visual
words” BoVW classified illicit images. The accu-
racy of the pre-trained model when tested on the re-
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searchers’ dataset TOIC while using BoVW reaches
approximately 88%.

Label-agnostic techniques, such as One-Shot and
Few-Shot, learn from the pixels of each image using
the Siamese Networks produced embeddings. There-
fore, re-training is optional. One of the main dif-
ferences between One-Shot and Few-Shot Learning
techniques is the volume of the input data, which
means that the sample of data is used to classify
the embeddings produced by the Siamese Networks.
In particular, the model is trained on a few images
(Li et al., 2017) (Wang et al., 2019), or one image
per category (Shaban et al., 2017) (Vinyals et al.,
2016). In (Chopra et al., 2005) are testing the ability
of Few-Shot learning implementing Siamese Neural
Networks on the AT&T dataset and the AR database
of faces. The datasets, in combination, contain ap-
proximately 4000 images of faces photo-shoot in a
period of 14 days. Their proposed networks recog-
nize employee faces with an 80% accuracy. Siamese
Neural Networks is one of the most popular choices
for label-agnostic tasks. Its objective is to use twin
embedding nets and generate representing vectors for
each picture which are compared by calculating their
euclidean distance. Studies like in (Schroff et al.,
2015; Fei-Fei et al., 2006; Lake et al., 2011; Koch
et al., 2015) used the Siamese networks’ architec-
ture, obtaining high accuracy in different domains.
All the above studies share one key element, the exis-
tence of significantly big datasets that are accurately
labeled or, in the case of (Fidalgo et al., 2019), a
dataset that can be considered “ideal”, where images
are cleaned and lacked from noisy. Also, the data
used are mostly well-balanced and categorized at a
high level, which means that specific “in-depth” cat-
egories have not been investigated yet. Therefore,
we investigated an alternative approach when han-
dling small datasets using the ability of label agnostic
learning techniques, i.e., One-Shot (Lake et al., 2011)
and Few-Shot (Hilliard et al., 2018), when identify-
ing illicit images, thus possibly improving the prob-
lem of handling unlabeled and few data. To the best
of our knowledge, no previous research investigated
the ability of label-agnostic techniques for illicit im-
age recognition, which is the focus of our work.

3 DATASET OVERVIEW AND
DATA ENGINEERING

This section reports the steps followed to extract
new images from the Dark Web and create our
datasets (Replication-Package, 2023).
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3.1 Data Scraping - Collection

To collect data, we implemented a crawler using the
Selenium Python library capable of automating steps
to download HTML pages from the Dark Web using
the Tor browser.

Since login into the website was mandatory to
extract any information, we needed to deal with the
security Captchas using Captcha-solving API. The
script captured a screenshot of the website’s login
page, which was sent to the external server. After lo-
cating the input box, the resulting password was au-
tomatically typed into the appropriate field.

After logged in, the script crawled through the dif-
ferent product ads and collected the URLSs of the im-
ages. Initially, the objective was to download the im-
ages of the products immediately after redirecting to
the product page. However, this technique was iden-
tified as an attack and blocked. Hence, we built a
list with external links of all the product images ac-
companied by the category these images belonged to.
Lastly, a different script bypassed, in a similar man-
ner, the security of the website and randomly down-
loaded the images from the servers, avoiding trigger-
ing any alarms. The data used in this research have
been scraped in a period between January and March
2020 from various Dark Markets. More specifically,
we scraped three popular Dark Web marketplaces Silk
Road, BitBazaar, and Dark Market, resulting in 5500
images depicting drugs of all categories, credit cards,
ID cards (IDs), and gift cards. Although the markets
above broadly related to drugs, the sample of personal
IDs and credit cards was relatively small, while the
sample of passports was less than five images. These
Dark markets also lacked images of weaponry, so we
scraped additional random onion sites resulting in 210
high-quality images of guns and semi-automatic guns,
215 ID cards, 51 images of passports, and 118 addi-
tional credit cards. The dataset with all the data is
currently stored in an encrypted hard drive and avail-
able under request. However, it is worth highlight-
ing that the authors did not buy any item advertised
in the markets cited above. All the images are pub-
licly available from the crawled dark marketplaces as
product advertisements.

3.2 Data Cleaning and Preparation

To prepare our data, we performed common steps like
cleaning and removing duplicates. In particular, we
tested for identical duplicates through hashing tech-
niques?, resulting in about 2000 matching images.

2Image Hashing - Python Documentation: https://pypi
.org/project/ImageHash/

For this reason, we removed them from the dataset. In
the online appendix (Appendix, 2023) Figure 4 shows
the distribution of the dataset.

Finally, based on the availability problem de-
scribed in 3.1, we dealt with merging, removing, or
relabeling specific sub-categories (the removed cate-
gories are marked with a red dot in Figure 4 (in online
appendix (Appendix, 2023)), Moreover, we created a
new category of counterfeit including passports, IDs,
money bills, credit cards, gift cards, and documents.
All the drug-related categories kept their initial labels.
All these steps concluded in a dataset of 3570 images
and 55 different classes.

3.3 Data Augmentation

Even after the various cleaning steps and precise cat-
egorization, the final dataset results unbalance. In
the context of our paper, we experiment with our
approach using One-Shot (Fei-Fei et al., 2006) and
Few-Shot (Wang et al., 2019). Since previous studies
((O’Mahony et al., 2019; Ochal et al., 2021)) advise
using them on balance data—with an identical sample
of images for each category—avoiding a poor repre-
sentation of specific categories, we performed data
augmentation to balance the minority categories, e.g.,
type of drugs. In particular, the script calculates the
final size after the possible augmentation steps and
aids the user in a better sample decision. The code
augments each image six times and saves it for later
use while randomly removing excess images from the
more significant categories to balance them with the
remaining ones. The volume of images that needed
to be removed was calculated based on the size of the
smallest size category, and the images were deleted
from each category. Pseudocode is available in Algo-
rithm 1.

Algorithm 1: Augmentations.

Data: Images from categories i
Result: Augmented categories

1 remove_excess_i < 0
2 smallest_category < min(cat_1,cat 2,cat_3)
3 smallest _category <— smallest category 6

augmentations
4 for i in #categories do
5 cat_i < cat_i * 6 augmentations
6 remove_excess_i <—
cat_i — smallest_category
7 cat_i < cat_i — remove_excess_i

The augmentations steps are: rotation by 30 de-
grees, horizontal flip, vertical flip, cropping by 30%-
45%, change of contrast’s gamma by 2.0 - 3.0, and
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addition of Gaussian noise. The augmentations are il-
lustrated in Fig. 1. We generated the augmentations
using Imgaug Augmenters-.

Augmentation Steps

Gaussian Contrast Cropped Original Rotated Horizontal Vertical
Noise Change Flip Flip

Figure 1: The 6 different augmentations implemented to
this image from left to right are: Gaussian Noise of density
30, Contrast Change (gamma = 2.4), Zoom-Crop by 30%,
Rotation by 40 degrees, Horizontal flip, and Vertical Flip.

4 RESEARCH METHODOLOGY

This section explains the methodology implied to
classify illicit images and carry out our experimental
evaluation.

4.1 Experimental Setup

Figure 2 reports the experimental research pipeline
followed in our study. The first step regards using
the scraping tool that accesses the Dark Web through
the Tor browser to scrape Onion websites. The im-
ages were randomly downloaded and stored locally
in the appropriate folders based on their category,
we removed duplicates, and some images were re-
labeled manually for better representation. We eval-
uated the most popular dimensions of images in the
dataset and informed the user appropriately. We aug-
mented the images and balanced the classes based on
the users’ dictation. Finally, we trained and evaluated
the Siamese neural network using One-Shot and Few-
Shot learning.

We implemented our script and model using
Python using libraries like Selenium (Gojare et al.,
2015), Glob*, Shutil’, Image PIL®, ImGaug Aug-
menters’, Tensorflowd, Sklearn®, and TSNE (Lin
etal., 2017).

3Documentation and Examples: https://imgaug.readthe
docs.io/en/latest/source/overview/arithmetic.html

4Glob Documentation: https://docs.python.org/3/librar
y/glob.html

5Shutil Documentation: https://docs.python.org/3/libr
ary/shutil.html

Image PIL: https://pillow.readthedocs.io/en/stable/re
ference/Image.html

7 Augmentation Library: https://imgaug.readthedocs.io/
en/latest/

8Tensorflow: https://www.tensorflow.org

9Sklearn: https:/scikit-learn.org/stable/
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4.2 One-Shot and Few-Shot Learning

The One-Shot and Few-Shot techniques merely differ
in the volume of the input data used for creating the
embeddings and testing the models. In other words,
one or a few images are used for each category for the
One-Shot and the Few-Shot experiments. The num-
ber of categories is represented by k, hence, k-way
datasets and N-shot where N is the number of images
in each category.

4.3 Pair Generation for Siamese
Networks

Before we move on to the models, it is essential to ex-
plain the pair generation procedure in detail. K-pairs
of N images must be generated to test the Siamese
Neural Networks on K-Shot experiments. Hence the
higher the sample of data in each category, the more
pairs can be generated. In particular, each image is
randomly paired to 1,2,5(etc.) images, as described
in (Varior et al., 2016) (Koch et al., 2015) (Qiao et al.,
2017), and a binary label is assigned to the pair. If
both images of the generated pair belong to the same
category, the label is 1; otherwise is 0. However,
randomly created pairs generally produce an imbal-
anced representation of the positive (1) and nega-
tive (0) pairs. For example, if there are 10 images
in 10 different categories, and we choose one image
from the first category with the goal being to find an-
other image from the same category, the probability

of achieving that is 9% or 0.0909. That number is only

decreasing % * % * 97—7 *.. when we try to randomly se-

lect more images from the same category for a 5-Shot
approach. Therefore, the positive pairs are dispropor-
tionately less than the negative.

In this paper, the generated pairs maintain the
same number of negative and positive images simi-
larly designed to (Shaban et al., 2017), even though
the pairs were generated randomly. For each exper-
iment, we first created the positive pairs, followed
by the same number of negative ones, reassuring an
accurate representation of the two labels [1,0] and
eliminating any label bias. Based on this study’s
testing, the final accuracy can fluctuate drastically if
the preparation of the pairs is not designed correctly.
Meaning that the model will search for the easiest so-
lution to produce the highest accuracy. That is, the
output embeddings are always far away from the com-
pared ones, and the model tends to predict a label 0
on every set because it cannot penalize the mistakes
adequately. A solution to this issue follows the pair
creation of (Varior et al., 2016). Instead of search-
ing for an image from the same category, the authors
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Figure 2: Pipeline of the study.

generated the positive pair by augmenting the initially
chosen picture. Nonetheless, in this paper, the chosen
images are always different from the comparing one
because the augmentation is applied manually and in
an earlier stage, as described in Section 3.3. This way,
the compared embedding is rarely very close, consti-
tuting even harder One-Shot and Few-Shot tasks.

4.4 Siamese Neural Network
Architecture

We created and tested different Siamese Neural Net-
works to identify the optimal number of hidden layers
needed and the activation functions for the hidden and
output layers. Also, we varied the last fully connected
(Dense) layer and the in-between filter sizes to create
a model able to extract the embedding of each input
image pair as accurately as possible. The difficulty of
the task highly correlates with the depth of the neural
network. Our proposed model does not strictly follow
any of the networks proposed in (Lake et al., 2011;
Hilliard et al., 2018; Koch et al., 2015), but it is highly
inspired by several related studies (Qiao et al., 2017;
Li et al., 2017; Vinyals et al., 2016). We tuned the fi-
nal architecture of the convolutional embedding neu-
ral networks on the datasets created. The proposed
structure of the convolutional embedding neural net-
work consists of six convolutional 2D layers. The first
two layers have a filter size of 3 by 3, and the remain-
ing of 2 by 2. The layers dimensions are increasing
gradually, starting from 50 by 50 up to 220 by 220.
Between the convolutional 2D layers, we applied
a max-pooling of (3x3) and (2x2) as depicted in (Var-
ior et al., 2016). The filters of the hidden convolu-
tional layers were tested with various sizes to elim-
inate overfitting effects. Additionally, we applied
three lasso regularizations to the fully connected layer
(512); a kernel regularization of 0.001, a bias regular-
ization, and an activity regularization. The last Dense
layer of the Embedding Network has a ReLu activa-
tion function which, compared to a linear one, pro-

duced more stable results. Lastly, the model imple-
ments the RMSprop optimizer with a 0.0001 learn-
ing rate and a decay of 0.7. The final structure of the
Siamese network consists of two identical embedding
neural networks and is illustrated in Fig. 5 (in online
appendix (Appendix, 2023)).

Each embedding network is fed with one of the
generated pairs’ images. The twin embedding net-
works (Fig. 6 in the online appendix (Appendix,
2023)) are fully connected to the final dense layer that
outputs either 1 if the pair is originated from the same
category or O if it is from a different one. The Siamese
Neural network predicts the label by calculating the
Euclidean Distance between the two embeddings, as
depicted in (Melekhov et al., 2016) and (Varior et al.,
2016). Lastly, the network calculates the loss per
pair of images via the Contrastive loss formula, as
depicted in (Hadsell et al., 2006). In this research,
similarly to previous studies, K-shot tests were per-
formed. Therefore, we generated 1 pair and 5 pairs
per image. The Siamese neural network is tested on
1-Shot and 5-Shot learning approaches with various
samples of illicit pictures for each category. Besides,
the networks were tested with more and fewer cate-
gories for each K-shot technique.

5 RESULTS

We performed two types of tests to evaluate the abil-
ity of the Siamese neural network regarding proper
embedding creation and accurate separation of them.
The models are tested on three different buckets of
data. In particular, we experimented with our mod-
els considering the shape and the actual type of il-
licit content images. Following the experimentation
techniques of (Garcia and Bruna, 2017) and (Vinyals
et al., 2016), the tests are performed on gradually in-
creased datasets. In particular, the first bucket con-
sists of 55 categories (55-way) of illicit images; each
category is represented by just one image. The sec-
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ond and third buckets use the same dataset, but each
category includes 5 and 20 images, respectively. Ad-
ditionally, the number of classes in the buckets above
was randomly reduced to identify the model’s ability
to separate a higher variety of embeddings. Hence,
the model is also trained on 10, and 25 randomly se-
lected categories. The tests were performed with 943
randomly chosen entirely new images, and the models
were trained for 100 epochs.

Table 1 illustrates the accuracy of the various tests
performed. Specifically, each model is tested on three
category volumes, 10-way, 25-way and 55-way and
for 1-Shot, 5-Shot, and 20-Shot tests. Looking at the
table, the model was fed with 1 image per category,
then 5 images per category, and finally 20 images. As
expected, the model performs better when tested with
a higher N-Shot since there are more trainable exam-
ples per category. Generally, 1-Shot tests were prone
to overfitting, whereas the overfitting effect was dras-
tically reduced in the 5-Shot and 20-Shot tests.

We can claim that the Siamese Neural Network re-
sults in higher training and validation accuracy when
more data are present. In addition, the testing accu-
racy depicts an increase of almost 30% (from 70.1%
to 99.9%) if 20 images are present (20-shot) in 10
classes (10-way), compared to just one image in each
one of them. The same pattern is visible throughout
the different category sizes, with approximately 20%
(from 66.8% to 86.7%) increase in the 25 classes (25-
way) test and 14.8% (from 71.4% to 86.2%) in the
55 classes test. These results imply that the model
can generalize better due to the increased size of the
trainable examples. Additionally, the model performs
better when the categories are reduced from 55 to 25
and 25 to 10, but the difference never exceeds 4.2%.
Meaning that the model is not affected by the number
of classes if the volume of images in each class does
not exceed the above sizes. It is worth noticing that in
the case of 1-shot, the model under-performs on test-
ing when the number of classes is reduced from 55 to
25. That occurs because the classes are randomly split
and reduced; therefore, some classes might be recog-
nized with higher precision in the 55-way bucket.

The ROC curves of the N-Shot tests conducted
on the 55-way bucket of data in Fig. 3 are in charge
of further justifying the increase in generalization
when more data are present in each category. Look-
ing at sub-figures 3a and 3b, it is safe to conclude
that when additional images are present in each of
the classes, while training, the Siamese Network can
identify more tested positive pairs/labels. The above
is visible in the ROC curve area of the last sub-figure
3c, which is equal to 86%, approximately 10% higher
compared to the first 3a.
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Table 1: The accuracy of the various tests with 10-way, 25-
way and 55-way dataset on 1-shot, 5-shot, and up to 20-shot
respectively.

1-Shot  5-Shot  20-Shot

10-way Val Accuracy 98.9% 93.8% 96.4%
Test Accuracy 70.1%  75.6%  90.9%

25-way Val Accuracy 98.7% 92.7%  92.1%
Test Accuracy 66.8%  76.2%  86.7%

55-way Val Accuracy 97.6% 862% 87.7%
Test Accuracy 71.4% 743%  86.2%

6 DISCUSSION

This section discusses the results and limitations of
the study.

6.1 Research Questions

The main objective of this research was to investigate
alternative approaches that can recognize illicit activ-
ities on the Dark Web. Specifically, this study aimed
to bypass the burden of collecting supervised large-
scale datasets using One-Shot and Few Shot learning.
Therefore, the main question was related to the abil-
ity to detect illicit Dark Web content with a limited
number of images. Our experiment showed promis-
ing results. Indeed, when considering the first sub-
questions related to using One-Shot learning tech-
niques, we can claim that Siamese Neural Networks
can recognize illicit images efficiently based on this
study’s experimentation. Indeed when testing the ac-
curacy of the model, we reach a percentage around
70%. Moving the attention to Few-Shot learning tech-
niques, i.e., SRQ2, the Siamese Neural Network pre-
sented promising generalization capabilities when the
sample was increased by just four or up to 20 images
per category. The testing accuracy reached 76.2%
on the 5 images per category dataset with 25 cate-
gories and 90.9% on the 6 to 20 images per category
dataset with ten categories. Lastly, it is worth notic-
ing that the testing accuracy stayed under 86.2% re-
gardless of the increased number of categories, 55, on
the 6 to 20 images dataset. These techniques’ usage
can be promising compared to the previous study. In
particular, Fidalgo et al. (Fidalgo et al., 2018) pro-
posed an approach for detecting illicit contents on a
small-scale dataset of approximately 700 images sep-
arated in 5 classes. The resulting accuracy in (Fidalgo
et al., 2018) is 85.6% and in (Fidalgo et al., 2019)
87.98%. Our study outperforms the aforementioned
by 3% with a 90.9% on 20-Shot tests. Finally, we
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Figure 3: The ROC curves of the 5-Shot learning tests on 55-way with 1-shot, 5-shot, and up to 20-shot respectively.

scored similar results, 86.7%, with a dataset consist-
ing of 25 classes, 20 classes more than the previous
research. Our future agenda aims at comparing the
methodology of their study.

6.2 Limitations

To the best of our knowledge, no previous study has
investigated the above techniques on illicit content.
Hence, a strait forward comparison of this study’s re-
sults with previous studies was impossible. Finally,
precise categorization and data cleaning were among
the initial burdens. Random pair generation was the
only possible solution, even though previous studies
suggest a manual selection of them. Based on our
study’s results, higher precision of labeling yields su-
perior accuracy. Although, due to the lack of expertise
regarding illicit content labeling, the categories could
not be further separated, and the pairs could not be
generated manually. To avoid possible problems in
the code, we developed our script and pipeline, we
relied on stable Python Libraries.

7 SOCIETAL IMPACT

This study aims to investigate alternative approaches
when handling small datasets. The expensive time
procedure of collecting large-scale data (images) from
Dark Web Markets, as well as the need for highly
skilled personnel responsible for illicit content label-
ing, are some of the burdens this research is trying
to bypass. We showed the ability of label-agnostic
models handling unlabeled data to identify illicit im-
ages from the Dark Web. Law enforcement agencies
can benefit from our suggested approach and could
conduct faster investigations with fewer resources and
capabilities. Moreover, the recognition speed of new
illegal substances from the Dark Web represents a key
factor in intercepting new illegal trends and persecut-
ing illicit behaviors. Our proposed approach poses the
basis for a less time-consuming system to assist law

enforcement agencies during their activities.

8 CONCLUSION

This study presents a novel approach to recogniz-
ing illicit images from the Dark Web through a rel-
atively small sample of images. We generated a new
dataset consisting of 3570 images spreading over 55
sub-classes. Then, we investigated the Siamese neu-
ral network classification methods on One-Shot and
Few-Shot experiments. Results show that Siamese
network peaked at 90.9% testing accuracy on 943
unseen images of 10 different categories. To con-
clude, this study provided a new contribution to il-
licit image recognition through label-agnostic net-
works on One-Shot and Few-Shot experiments. These
techniques could help law enforcement agencies ef-
fortlessly identify illicit activities in the Dark Web
through small data samples. The future agenda in-
cludes the comparison of other different techniques
and setting parameters.
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Figure 4: The distribution of the initial dataset. The red dots represent the categories that are excluded from the final experi-

ments.
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