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This work investigates and evaluates defense strategies against property inference attacks (PI1As), a privacy
attack against machine learning models. While for other privacy attacks like membership inference, a lot of
research on defense mechanisms has been published, this is the first work focusing on defending against PIAs.
One of the mitigation strategies we test in this paper is a novel proposal called property unlearning. Extensive
experiments show that while this technique is very effective when defending against specific adversaries, it
is not able to generalize, i.e., protect against a whole class of PIAs. To investigate the reasons behind this
limitation, we present the results of experiments with the explainable Al tool LIME and the visualization
technique t-SNE. These show how ubiquitous statistical properties of training data are in the parameters of a
trained machine learning model. Hence, we develop the conjecture that post-training techniques like property
unlearning might not suffice to provide the desirable generic protection against PIAs. We conclude with a
discussion of different defense approaches, a summary of the lessons learned and directions for future work.

1 INTRODUCTION

The term machine learning (ML) describes a class
of self-adapting algorithms which fit their behavior
to initially presented training data. It has become a
very popular approach to model, classify and recog-
nize complex data such as images, speech and text.
Due to the high availability of cheap computing power
even in smartphones and embedded devices, the pres-
ence of ML algorithms has become a common sight
in many real-world applications. At the same time,
issues related to privacy, security, and fairness in ML
are increasingly raised and investigated.

This work! focuses on ML with artificial neu-
ral networks (ANNSs). After an ANN has been con-
structed, it can “learn” a specific task by processing
big amounts of data in an initial training phase. Dur-
ing training, the connections between the network’s
nodes (or neurons) are modified such that the perfor-
mance of the network regarding the specified task in-
creases. After a successful training phase, the model,
i.e., the network, is able to generalize, and thus en-
ables precise predictions even for previously unseen
data records. But while the model needs to extract
meaningful properties from the training data to per-
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form well in its dedicated task, it usually “remem-
bers” more information than it needs to (Song et al.,
2017). This can be particularly problematic if training
data contains private and sensitive information such
as intellectual property or health data. The unwanted
manifestation of such information, coupled with the
possibility to retrieve it, is called privacy leakage.
In recent years, a new line of research has evolved
around privacy leakage in ML models, which inves-
tigates privacy attacks and possible defense mecha-
nisms (Rigaki and Garcia, 2020).

In this paper, we focus on a specific privacy attack
on ML models: the property inference attack (PIA),
sometimes also called distribution inference (Ate-
niese et al., 2015; Ganju et al., 2018). Given a trained
ML model, PIAs aim at extracting statistical proper-
ties of its underlying training data set. The disclosure
of such information may be unintended and thus dan-
gerous as the following example scenarios show:

1. Computer networks of critical infrastructures have
collaboratively trained a model on host data to detect
anomalies. Here, a PIA could reveal the distribution
of host types in the network to refine a malware attack.

2. Similarly, a model within a dating app has been
trained on user data to predict good matches. Another
competing app could use a PIA to disclose properties
of the customer data to improve its service, e.g., the
age distribution, to target advertisements more pre-
cisely.
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If such models are published or leaked to the public on
other channels, PIAs can reveal secrets of their train-
ing data. These secrets do not need to be in obvious
correlation to the actual model task, like the property
host type in the anomaly detection model of exam-
ple 1.

1.1 Contributions

To the best of our knowledge, we are the first to eval-
vate defense strategies against property inference at-
tacks (PIAs), such as a novel approach called prop-
erty unlearning. Our goal with property unlearning is
to harden a readily trained ANN, further called tar-
get model, against PIAs, i.e., against the adversarial
extraction of one or more predefined statistical prop-
erties in the training data set of a target model. The
idea is to deliberately prune chosen properties from a
target model, while keeping its utility as high as pos-
sible, thus protecting the privacy of the data set used
for training.

Property unlearning is designed for the white-box
attack scenario, where the adversary has full access
to the internal parameters of a target model which are
learned during the training phase. We have conducted
thorough experiments which show that (a) property
unlearning allows to harden ANNSs against a specific
PI attacker with small utility loss but (b) it is not pos-
sible to use the approach to completely prune a prop-
erty from a trained model, i.e., to defend against all
PI attackers for a chosen property in a generic way.

Consequently, we have conducted further exper-
iments with the explainable Al tool LIME (Ribeiro
et al.,, 2016) and the visualization framework t-
SNE (Van der Maaten and Hinton, 2008). Both pro-
vide evidence for the conjecture that properties are
ubiquitous in the trained weights of an ANN, such
that complete pruning of a property from a trained
ANN is not possible without greatly limiting its util-
ity.

In the full version of this paper, we additionally
investigate the impact of simple training data prepro-
cessing steps such as adding Gaussian noise to images
of a training data set on the success rate of PIAs. This
is meant as an inspiration for possible alternatives
to techniques such as differential privacy, which has
been established as a de-facto standard against many
privacy attacks with the exception of PIAs (Rigaki
and Garcia, 2020; Suri et al., 2022).

1.2 Organization of This Paper

Sect. 2 briefly explains ANNs, ML privacy attacks,
our threat model and PIAs. Sect. 3 deals with an
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overview of related work. Our defense strategy prop-
erty unlearning is presented in Sect. 4. Sect. 5 de-
scribes our property unlearning experiments, includ-
ing our findings regarding its limitations. We further
experimentally explore the reasons for these limita-
tions via the explainable Al tool LIME and t-SNE vi-
sualization in Sect. 6. We summarize and discuss our
findings in Sect. 7. Directions for future work are pro-
vided in Sect. 8, and Sect. 9 concludes this paper.

2 BACKGROUND

Notation. We denote the set of integers [k] =
{1,...,k}. Properties of a data set are denoted as
blackboard bold, e.g., A and B. Replacing the
property-subscript with an *, we reference all possi-
ble data sets DS, e.g., DS, means both DS, and DSp.
An absolute increase of x percent points is denoted as
+x%P.

2.1 Artificial Neural Networks

An artificial neural network (ANN) consists of in-
terconnected neurons, organized in multiple layers.
Inputs are propagated through the network layer by
layer. For this, each neuron has an associated weight
factor w and a bias term b. A (usually non-linear) ac-
tivation function 6 computes each neuron’s output on
a given input, specifically for a neuron n and input x:
n=oc(w-x+b)

Prior to training an ANN, all neurons are individ-
ually initialized with random weights and biases (also
called parameters). Ultilizing a labeled training data
set in an iterative training process, e.g., batch-wise
backpropagation, these parameters are tuned such that
the network predicts the associated label to its given
input. The speed of this tuning process, respectively
its magnitude per iteration, is controlled by the learn-
ing rate. The higher the learning rate, the more the
parameters are adapted in each round.

2.2 Machine Learning Privacy Attacks

In general, privacy attacks against ML models extract
information about training data of a target model M
or the target model itself from its trained parameters.
Some attacks, like membership inference (Shokri
et al., 2017) extract information about a single record
from a ML model. Other attacks try to recover the
model itself (Papernot et al., 2017) or to recover
the training data set or parts of it (Fredrikson et al.,
2015). In contrast, this paper focuses on property in-
ference attacks (P1As), which reveal statistical prop-
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erties of the entire training data set. This is not to be
confused with attribute inference attacks, e.g., (Song
and Shmatikov, 2020), which enable the adversar-
ial recovery of sensitive attributes for individual data
records from the training data set.

2.3 Threat Model

In the remainder of this paper, the following threat
model is assumed: A model owner has trained and
shared the model of an ANN. The owner wishes to
keep their training data and its property A or B (a sta-
tistical property of the training data) secret. An ex-
ample may be a company that has trained a model on
its customer data and does not want to disclose any
demographic information about their customers. If an
attacker gets access to this model, they can perform a
PIA and reconstruct the demographics of its training
data, breaching the desired privacy. In another sce-
nario, an attacker might want to gather information
about a computer network before launching a mal-
ware attack. Such networks are often monitored by
intrusion detection systems (IDS), which have been
trained on network traffic to detect unusual behavior.
Having access to this IDS model, the attacker could
infer the OS most computers are running on in the
system, or even detect specific vulnerabilities in the
network, as demonstrated in (Ganju et al., 2018).

We assume that the attacker has full white-box
access to the target model M. This means that the
attacker can access all parameters and some hyper-
parameters of M: The adversary has a complete
overview of the ANN architecture and can access the
values of all weights and biases, as well as other use-
ful hyperparameters of M such as the batch size dur-
ing training, the learning rate and the number of train-
ing epochs. This helps the adversary to tailor their
shadow models (see Sect. 2.4) as close to the tar-
get model as possible. In contrast, an adversary in a
black-box scenario typically has oracle-access to the
target model M, allowing only to send queries to M
and to analyze the corresponding results, i.e., the clas-
sification of a data instance.

As assumed in previous defenses against privacy
attacks (Nasr et al., 2018; Song and Mittal, 2021;
Tang et al., 2021), the attacker can access parts of the
target model’s training data, or knows a distribution of
the training data, but cannot access the whole training
data set. Information about the training data may also
be reconstructed like in (Shokri et al., 2017), which is
just as effective for privacy attacks (Liu et al., 2022).
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Figure 1: Property inference attack (PIA).
2.4 Property Inference Attacks (PIAs)

(Ateniese et al., 2015) were the first to introduce
PIAs, with a focus on hidden Markov models and sup-
port vector machines. In this paper, we refer to the
state-of-the-art PIA approach by (Ganju et al., 2018)
who have adapted the attack to fully connected neural
networks (FCNNs), a popular sub-type of ANNs. In
a typical PIA scenario, an adversary has access to a
trained ML model called farget model M , but not its
training data. By using the model at inference time,
a PIA enables the adversary to deduce information
about the training data which the model has learned.
Since the adversary’s tool for the attack is a ML model
itself, we call it adversarial meta classifier A. Thus,
the adversary attacks the target model M by utiliz-
ing the meta classifier A4 to extract a property from its
training data.

A  PIA typically involves the
steps (Ganju et al., 2018), see also Fig. 1:

following

1. Define (at least) two global properties about the
target model’s training data set, e.g., A and B. A
successful PIA will show which property is true or
more likely for the training data set of the given target
model.

2. For each defined property, create an auxiliary data
set DS, i.e., DSj and DSp. Each auxiliary data set
fulfills the respective property.

3. Train multiple shadow models on each auxiliary
data set DS,. Shadow models have the same architec-
ture as the target model. Due to the randomized nature
of ML training algorithms the weights and biases of
every model have different initial values.

4. After training the shadow models, use their result-
ing parameters (weights and biases) to train the ad-
versarial meta classifier 4. During this training, the



meta classifier 4 learns to distinguish the parameters
of target models that have been trained on data sets
with property A and data sets with property B, re-
spectively. As a result, 4 is able to determine which
of the properties A or B is more likely to be true for
the training data of a given target model.

For example, suppose the task of a target
model M is smile prediction with 50000 pictures of
people with different facial expressions as training
data. For a PIA, the adversary defines two proper-
ties A and B about the target model’s training data
set, e.g.,

A:proportion of male:female data instances 0.7:0.3

B :male and female instances are equally present.

Given M, the task of the adversary is to decide which
property describes M ’s training data set more accu-
rately. As mentioned in step 2., the adversary first
needs to create two auxiliary data sets DS, and DS,
with the male:female ratios as described in the proper-
ties above. After training shadow models on the aux-
iliary data sets, the adversary uses the trained weights
and biases of the shadow models to train the adversar-
ial meta classifier 4, which is ready for the adversar-
ial task after its training.

The meta classifier can also be easily extended to
more than two properties: For k properties, the adver-
sary needs k auxiliary training data sets, trains shadow
models in k groups and constructs A4 as a classifier
with k outputs instead of two.

3 RELATED WORK

This section briefly summarizes related work in the
area of ML privacy attacks and defenses.

PIA Defense Strategies. Effective universal de-
fense mechanisms against PIAs have not been dis-
covered yet (Rigaki and Garcia, 2020). Differential
privacy (Dwork et al., 2006) is a promising approach
against other privacy attacks like membership infer-
ence (Rigaki and Garcia, 2020; Suri et al., 2022).
However, it only slightly decreases the success rate
of PIAs, since it merely limits the impact of each sin-
gle input, but does not influence the presence of gen-
eral properties in the training data set (Ateniese et al.,
2015; Liu et al., 2022; Zhang et al., 2021).

(Ganju et al., 2018) propose node multiplicative
transformations as another defense strategy. As long
as an ANN uses ReL.U or LeakyReLU as an activa-
tion function, it is possible to multiply the parameters
of one layer by some constant and dividing the con-
stants connecting it to the next layer by the same value
without changing the result. Although they claim
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that this might be effective, this strategy is limited to
ReLU and LeakyReLU activation functions and re-
quires changes in the model architecture. In contrast,
the approaches we test in this paper do not require any
changes to the target model and do not require specific
activation functions.

Other PIA Attacks. (Melis et al., 2019) explore PTAs
in the context of collaborative learning: Herein, the
adversary is a legitimate party in a collaborative set-
ting, where participants jointly train a ML model via
exchanging model updates — without sharing their lo-
cal and private data. The authors present an active
and a passive method to infer a property of the train-
ing data of another participant by analyzing the shared
model updates of other participants.

Focusing on a black-box scenario, (Zhang et al.,
2021) study both single- and multi-party PIAs for tab-
ular, text and graph data sets. While their attack does
not need access to the parameters of a target model,
several hundreds of queries to the target model are
needed for the attack to be successful.

An advanced PIA by (Mahloujifar et al., 2022) in-
troduces poisoning as a way to ease the attack in a
black-box scenario. This requires the adversary to
control parts of the training data. In this adversarial
training data set, the label of data points with a target
property A are changed to an arbitrary label /. After
training, the distribution of a target property can then
be inferred by evaluating multiple queries to the tar-
get model — loosely summarized, the more often the
label [ is predicted, the larger the portion of samples
with property A is in the training data set.

(Song and Shmatikov, 2020) propose a very sim-
ilar attack to property inference, which we call at-
tribute inference: They assume a ML target model
which is partly evaluated on-premise and partly in the
cloud. Their attribute inference attack reveals proper-
ties of a single data instance, e.g., whether a person
wears glasses on a photo during the inference phase.
In contrast, we focus on PIAs which reveal global
properties about a whole training data set.

4 PROPERTY UNLEARNING

In this section we elaborate on our novel defense strat-
egy against PIAs, which we call property unlearning.
An overview of the approach is given in Figure 2.

As a prerequisite, an adversarial classifier 4 needs
to be constructed. This is achieved as described in
Sect. 2.4: constructing one auxiliary data set DS for
each property A and B, and training a set of shadow
models for each property with the corresponding data
sets DS, and DSp. Note that when creating an adver-
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Figure 2: Property unlearning as a defense strategy against
PIAs.
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sary as a preparation for protecting one’s own model,
the auxiliary data sets DS, and DSp can trivially
be subsets of the original training data of the target
model, since the model owner has access to the full
training data set. This yields a strong adversarial ac-
curacy as opposed to an outside adversary who might
need to approximate or extract this training data first.
The same holds for white-box access to the model,
which is straightforward for the owner of a model.
Hence, the training of a reasonably good adversarial
meta classifier 4 (> 99% accuracy) as a first step of
property unlearning is easily achievable for the model
owner (see Sect. 5). As a second prerequisite, the tar-
get model M, which the owner wants to protect, also
needs to be fully trained with the original training data
set — having either property A or B.

To unlearn the property from M, we use back-
propagation. As in the regular training process, the
parameters of the target model M are modified by cal-
culating and applying gradients. But different from
original training, property unlearning does not opti-
mize M towards better classification accuracy. In-
stead, the goal is to disable the adversary A4 from ex-
tracting the property A or B from M while keeping
its accuracy high.

In practice, the output of the adversarial meta-
classifier A4 is a vector of length 2 (or: number of
properties k) which sums up to 1. Each value of the
vector corresponds to the predicted probability of a
property. As an example, the output [0.923,0.077]
means that the adversary 4 is 92.3% confident that
‘M has property A, and only 7.7% to have property B.
Thus, property unlearning aims to disable the adver-
sary from making a meaningful statement about M,
i.e., an adversary output of [0.5,0.5] is pursued — or
more generally [%, e %] for k properties.

Algorithm 1 shows pseudocode for the property
unlearning algorithm. The termination condition for
the while-loop in line 5 addresses the ability of the
adversary A: As long as A4 is significantly more con-
fident for one of the properties, the algorithm needs
to continue. After calculating the gradients g au-
tomatically via TensorFlow’s backtracking algorithm
in line 6, the actual unlearning happens in line 7.
Here, the gradients are applied on the parameters
of model M, nudging them to be less property-
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Algorithm 1: Property unlearning for a target model M, us-
ing property inference adversary A4, initial learning rate /r,
and set of properties P = {A,B,...}.

1: procedure PROPUNLEARNING(M, 4, Ir, P)

2: k< |P| > number of properties (default 2)
3 Y+ A(M) > original adv. output |[Y| =k
4: leti € [k]

5: whileﬂi:Yi>>%orY,~<<%d0
6 g <+ gradients for M s.t. Vi: Y; — %

7 M’ « apply gradients g on M with [r

8 Y+ 4A(M’) 1 update adversarial output
9: if ADVUTLT(Y') < ADVUTLT(Y) then
10: MY < M"Y’

11: else
12: Ir<1r/2 b retry with decreased Ir

13: end if

14: end while

15: return M

16: end procedure

17: function ADVUTLT(adv. output vector Y)

18: k<« |Y| > number of properties (default 2)

19: return née[}()](ﬂY, ) > biggest diff. to }
1

20: end function

T
0.5 - »
ll learning rate -18-10
E 0.4 M adv. util. decrease °
Ei B adv. util. increase ||6-107" E
= 0.3} o0
g £
5 4-107* §
3 0.2 g
]
S0l fit 12104
a B
0 | I | | | | 8 a2 0

1 2 3 4 5 6 7 8
round of property unlearning

Figure 3: A visualized example of the decreasing adver-
sarial utility during property unlearning with one adversary
for a single target model M. In each round, the adversar-
ial utility of M either decreases further towards the goal
of O (green bar), or the unlearning round is repeated with
a smaller learning rate (after a red bar). The final result of
round 8 is a completely unlearned target model M with an
adversarial utility close to 0, see Algorithm 1.

revealing.

As described in Sect. 2.1, the learning rate con-
trols how much the gradients influence a single step.
If the parameters have been changed foo much, the
current M’ gets discarded and the gradients are reap-
plied with half the learning rate (see line 12 and vi-
sualization in Fig. 3). Reducing the learning rate to
its half has yielded the most promising results in our
experiments.

The effect of property unlearning in between
rounds of the algorithm is measured by the adversar-



ial utility, see lines 17-20. We calculate the adversar-
ial utility by analyzing the adversary output Y. Recall
that Y is a vector with k entries, with each entry Y; rep-
resenting the adversarially estimated probability that
the underlying training data set of the target model
M has property i. The adversarial utility is defined
by the largest absolute difference of an entry Y; to %
(see line 19). Remember that the goal of property un-
learning is to nudge the parameters of M such that the
output of the adversary is close to % for all k entries in
the output vector Y. The condition in line 9 therefore
checks whether the last parameter update from M to
M’ was useful, i.e., whether the adversarial utility has
decreased. Only if this is the case, the algorithm gets
closer to the property unlearning goal. Otherwise, the
last update in M is discarded and the next attempt is
launched with a lower learning rate. A visualization
of an exemplary run is given in Fig. 3.

S PROPERTY UNLEARNING
EXPERIMENTS

To test property unlearning in practice, we have con-
ducted extensive experiments with different data sets.

Adversarial Property Inference Classifier. As de-
scribed in Sect. 2.4, we use the attack approach
by (Ganju et al., 2018). This means that each instance
of an adversary 4 is an ANN itself, made up of mul-
tiple sub-networks ¢ and another sub-network p. Per
data set, we train one such adversarial meta classi-
fier 4, which is able to extract the respective proper-
ties A and B from a given target model.

Depending on the number of neurons in a layer of
the target model, our sub-NNs ¢ consist of 1-3 layers
of dense-neurons, containing 4—128 neurons each. In
the adversarial meta classifier 4, the number of layers
and number of neurons within the layers are propor-
tionate to the input size, i.e., the number of neurons
in the layer of the target model. These numbers are
evaluated experimentally, such that the meta classi-
fiers perform well, but do not offer more capacity than
needed (which would encourage overfitting).

Our sub-network p of A4 consists of 2-3 dense-
layers with 2—16 dense-neurons each. In our experi-
ments the output layer always contains two neurons,
one for each property A and B. For each of the three
data sets in the next section, we apply the following
steps to prepare for property unlearning:

* Design appropriate target model M for task.

* Extract two auxiliary data sets DS, and DSy for
each property A and B.
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e Use each DS, and DSp as training data for 2000
shadow models. Shadow models have the same
architecture as the target model M.

* Design and train an adversarial meta classifier 4
on parameters of shadow models.

This adversarial model 4 may then be employed
in our property unlearning algorithm (see Sect. 4).

Data Sets and Network Architectures. We use
three different data sets to evaluate our approach, as
summarized in Table 1. For each data set and aux-
iliary data set DS,, we train 2000 shadow models
and 2000 target models. For faster training and a
more realistic scenario, the auxiliary data sets DS, are
smaller. While the shadow models are used to train
the adversaries 4, the target models M are the sub-
jects of our experiments, i.e., we apply property un-
learning on these target models and measure the re-
sulting privacy-utility trade-off. The shadow models
and target models share the same architecture per data
set.

MNIST: is a popular database of labeled handwritten
digit images. As in (Ganju et al., 2018), we distort
all images with Gaussian noise (parameterized with
mean = 35, sd = 10) in a copy of the database. We
choose the property of having original pictures with-
out noise (Aynysy) and pictures with noise (Byvzst)-
Our models for the MNIST classification task are
ANNs with a preprocessing-layer to flatten the im-
ages, followed by a 128-neurons dense-layer and a
10-neuron dense-layer for the output.

Census: is a tabular data set for income prediction.
The property inference attack aims at extracting the
ratio of male to female persons in the database, which
is originally 2:1. The auxiliary data set for prop-
erty Acensus DSac,,,,, has a male:female ratio of 1:1,
DSg.,,.., the original ratio of 2:1. The architecture of
the Census models consists of one 20-neurons dense-
layer and a 2-neurons output dense-layer.

UTKFace: contains over 23000 facial images. We
choose gender recognition as the task for the target
models M. Concerning our choice of properties,
we create a data set consisting only of images with
ethnicity White from the original data set for prop-
erty Ayrkx. The data set for property Byrg is com-
prised of images labeled with Black, Asian, Indian,
and Others.

For UTKFace gender recognition, we use a convo-
lutional neural network (CNN) architecture with three
sequential combinations of convolutional, batch nor-
malization, max-pooling and dropout layers, leading
to one dense-layer with 2 neurons.
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Table 1: The data sets used for the experiments. init.=initial, distrib.=distribution.

Experiment Data set Size Target Property |DS,| Shadow model  Init. PIA
accuracy accuracy
EMNIST (LeCun et al., 1998) 70K Gaussian noise 12K 88.3-94.5% 100%
EcCensus Census Income Data Set 48K gender distrib. 15K 84.7% 99.3%
Furk (Zhang et al., 2017) 23K race distrib. 10K 88.0-88.3% 99.8%
s T 1 e R RS ] L U R high certainty in all instances before unlearning, see
§ $ 3 Fig. 4a. After unlearning, the adversary cannot in-
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Figure 4: Each experiment before and after property un-
learning, depicting the certainty of adversary A4 in classify-
ing A and B. The dashed lines represent the avg. accuracy
before property unlearning was applied on 2000 target mod-
els.

— —
0.9 |2 -

5 0.95 I > S . E

s S =08t T

= 09f b =2 %

=} =}

) [+] gosal | T o7l ]

3 0851 4L 12 3

g ¥ 2 3 S 0.6 Al 4

s : A * %

Z Z 0.82 1 4 =

s osf 4+ - o5l 1l |
1 1 1 1 1 1 L 1 O 1 1 i
A B AB A B AB A B AB

(@) Emnist (0) Ecensus (©) Eurk

Figure 5: Each experiment before and after property un-
learning regarding the accuracy loss of the target models
M. The dashed lines represent the average accuracy val-
ues before property unlearning was applied on 2000 target
models.

5.1 Experiment 1: Property unlearning

In this section we experimentally evaluate the per-
formance of property unlearning to defend against a
specific PIA adversary. For each of the data sets de-
scribed above, we have trained 2000 test models in
the same way we have created the shadow models.
We refer to these test models as target models.

The figures in this section contain boxplot-graphs.
Each boxplot consists of a box, which vertically spans
the range between the first quartile Q; and the third
quartile O3, i.e., the range between the median of the
upper and lower half of the data set. The horizon-
tal line in a box marks the median and the diamond
marker indicates the average value.

MNIST. For the MNIST experiment Epnsy, the
adversary classifies the properties A and B with
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noise to the training data, hence the affected models
perform worse in general.

Census. Property unlearning was also successfully
applied in the Ecensys €xperiment to harden the tar-
get models Mcesus against a PT adversary Acepsus, S€€
Fig. 4b. Note that the performance of Aceys is not
ideal for property A, classifying some of the instances
incorrectly. However, 99.3% of the 2000 instances
were classified correctly by the adversary before prop-
erty unlearning. As desired, the output of Acepgys is
centered around 0.5 for both properties after property
unlearning. The magnitude of the target models’ ac-
curacy loss is small, with an average drop of 0.1%P
for property A (84.8% to 84.7%) and 0.3%P (84.6%
to 84.3%) for property B, see Fig. 5b.

UTKFace. In the Eyrx experiment, property un-
learning could be successfully applied to all mod-
els (see Fig. 4c) to harden the target models against
PIAs. On average, the accuracy of the target models
dropped by 1.3%P (from 88.2% to 86.9%) for mod-
els trained with the data set DS, and by 0.1%P (from
87.9% to 87.8%) for target models trained with DSp,
see Fig. 5c. This yields an average accuracy drop of
0.8%P across the target models for both properties
(from 88.1% to 87.3%).

5.2 Experiment 2: Iterative Property
Unlearning

In the previous section, the results of Experiment 1
have shown that property unlearning can harden a
target model M against a single PI adversary, i.e.,
a specific adversarial meta classifier 4 (see Figure
2). The setup of Experiment 2 aims to improve
that by generalizing the unlearning. Therefore, the
same target model M is unlearned iteratively against



Em-En-

T backpropagation

mm BN - -

? backpropagation

m -
m -

Figure 6: In reference to Fig. 2, iterative property unlearn-
ing works by performing single property unlearning for n
different adversarial meta classifier instances A4 iteratively
on a target model M (), The resulting target model M () is
then evaluated by additional m instances of 4.

a range of different adversary instances 4 (see Fig-
ure 6). The results of our experiments are based
on 200 target models. We unlearn each initial tar-
get model M ©) iteratively for n different adversar-
ial meta classifiers 4;, where n = 15. After that,
the resulting iteratively unlearned target model M ("
is tested by another distinct adversarial meta clas-
sifier. To increase the significance of our results,
we choose to test the resulting target model M (")
with m =5 additional distinct adversarial meta classi-
fiers. Furthermore, we apply a 4-fold cross validation
technique to this constellation of in total 20 distinct
adversarial classifiers. Finally, the results are plot-
ted in boxplots similar to Experiment 1: Here, each
boxplot is visualizing 200 (target models) x4 (folds) *
5 (adversary outputs in a fold) = 4000 data points.

The shadow models which were used to train the
20 adversaries A have been grouped such that the 5
testing adversaries’ training set is disjunct from the
training set of the 15 adversaries used for unlearn-
ing. The order of the 15 adversaries for unlearning
has been chosen randomly for each of the 200 target
models M.

The overall results on the MNIST data set in Fig-
ure 7 show the iterative unlearning process for prop-
erty A and B. Each column on the x-axis represents
an iteration step of the iterative unlearning procedure.
On the y-axis, the prediction of the adversary regard-
ing the corresponding property is plotted, which is
ideal for property A and B to be 0 and 1, respectively.
The goal of property unlearning is y = 0.5, such that
the attacker is not able to distinguish the property.
Clearly, the second column shows that after applying
property unlearning once, a distinct adversary, i.e.,
not the adversary which was involved in the unlearn-
ing process, is still able to infer the correct property
for most target models M. The plots show that after
about ten iterations of property unlearning, the aver-
age output of the 5 testing adversaries converges to-
wards an average of prediction probability 0.5 (for
both properties A and B). While this could be mis-
interpreted as ultimately reaching the goal of prop-
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Figure 7: Results of iterative unlearning experiment for
property A (left) and B (right). For each of the 200 tar-
get models M, the predictions of all 5 testing adversaries
are plotted along the y-axis before unlearning (first column)
and after each unlearning iteration (other 15 columns).
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Figure 8: Individual adversary outputs after all 15 unlearn-
ing iterations for property A target models. Recall that be-

fore unlearning, all adversaries have correctly inferred prop-
erty A by outputting y = 0.

erty unlearning, we introduce Figure 8 which paints a
more fine-grained picture of the last column of Figure
7. Here, each of the four plots contain five indepen-
dent boxplots corresponding to the five distinct test
adversaries in one fold of the cross validation process.
Each boxplot presents the prediction results of one
adversary for the 200 independently unlearned target

models ﬂ\/[i(ls) of the experiment.

While the plots of Figure 7 suggest that the adver-
saries’ outputs are evenly spread across the interval
[0,1] with both an average and median close to 0.5,
Figure 8 shows that this is only true for the indistinct
plot of all 4 experiments with 5 testing adversaries
each. We want to point out three key observations:

1. Most adversaries do not have median outputs near
0.5 after 15 unlearning iterations.

2. For some adversary instances A, target models
have been “over-unlearned” by the 15 iterations with
their output clearly nudged into opposite of their orig-
inal output, e.g., adversary 3 in Fig. 8d.

3. Most importantly, other adversaries are still cor-
rectly inferring the property for most or even all
200 target models with high confidence after the 15
unlearning iterations, e.g., the second adversary in
Fig. 8a.

319



SECRYPT 2023 - 20th International Conference on Security and Cryptography

5.3 Experiment Discussion

Recall our goal for property unlearning: We want to
harden target models in a generic way, such that arbi-
trary PI adversaries are not able to infer pre-specified
properties after applying property unlearning.

Experiment 1 (single property unlearning) shows
that property unlearning is very reliable to harden tar-
get models against specific adversaries. However, Ex-
periment 2 (iterative property unlearning) indicates
that single property unlearning fails to generalize, i.e.,
protect against all PI adversaries of the same class.
This is shown in Experiment 2 by putting each tar-
get model through 15 iterations of property unlearn-
ing with one distinct adversary per iteration. After
this, some adversaries are still able to infer the orig-
inal properties of all target models (see third key ob-
servation in Sect. 5.2). This means that in the worst
case, i.e., for the strongest adversaries, 15 iterations
of property unlearning do not suffice — while for other
(potentially weaker) adversaries, 15 or even less iter-
ations are enough to harden the models against them.
In conclusion, property unlearning does not meet our
goal of being a generic defense strategy, i.e., protect-
ing against a whole class of adversaries instead of a
specific adversary.

6 EXPLAINING PI ATTACKS

To explore the reasons behind this limitation of
property unlearning, we use the explainable Al tool
by (Ribeiro et al., 2016): LIME (Local Interpretable
Model-agnostic Explanations) allows to analyze deci-
sions of a black-box classifier by permuting the values
of its input features. By observing their impact on the
classifier’s output, LIME generates a comprehensible
ranking of the input features.

Recall that in the previous experiment (Sect. 5.2),
we have seen that adapting the weights of a target
model M s.t. an adversarial meta-classifier 4; can-
not launch a successful PIA does not defend against
another adversarial meta-classifier 4, trained for the
same attack. Therefore, we use LIME to see whether
different meta-classifiers 4; and 4, rely on the same
weights of a target model M to infer A or B.

For comprehensible results, we use LIME images.
We convert the trained parameters of an MNIST tar-
get model M into a single-dimensional vector with
length 101770, so LIME can interpret them as an
image. For segmentation, we use a dummy algo-
rithm which treats each weight of M (resp. pixel)
as a separate segment of the ’image’. This is nec-
essary because unlike in an image, neighboring ’pix-
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Figure 9: LIME produced, partial heat maps of different
meta-classifier instances 4; and A, for the same MNIST
target model M. Dark pixels represent parameters with
high impact on the decision of A4, yellow pixels imply a
low impact.

els” of M’s weights do not necessarily have semantic
meaning. For reproducible and comparable results,
we have initialized all LIME instances with the same
random seed.

LIME Results. We have instantiated LIME with two
property inference meta-classifiers 4; and A4, to ex-
plain their output for the same MNIST target model
instance M. The output of LIME is a heat map rep-
resenting the weights and biases of M, see Fig. 9.
For practical reasons, we have only visualized the first
784 pixels of the heat map and transformed them to
a two-dimensional space. Although A4; and 4, are
trained in the same way and with the same shadow
models (see Sect. 5), the two heat maps for classifying
the property of the same target model M in Fig. 9 are
clearly different: While some of M’s weights have
similar importance, i.e., the heat map pixels have a
similar color, many weights have very different im-
portance for the two adversarial meta classifiers A4,
and 4,.

To understand why meta-classifiers can rely on
different parts of target model parameters to infer a
training data property, we analyze the parameter dif-
ferences induced by such properties on an abstract
level.
t-SNE (¢-Distributed Stochastic Neighbor Embedding
(Van der Maaten and Hinton, 2008)) is a form of di-
mensionality reduction which is useful for clustering
and visualizing high-dimensional data sets. In partic-
ular, the algorithm needs no other input than the data
set itself and some randomness.

In the t-SNE experiment, the input data set is
comprised of the trained weights and biases of the
shadow models. We apply this to the three data sets
MNIST, Census and UTKFace. As before, we use
2000 shadow models (1000 with property A and 1000
with property B). Our goal is revealing to which ex-
tend the trained parameters are influenced by a statis-
tical property of the training data set. In particular,
if the data agnostic approach t-SNE is able to cluster
models with different properties apart, we can assume
the influence of a property on model parameters to be
significant.
t-SNE Results. As depicted in Fig. 10, t-SNE has
produced a well defined clustering for the two image
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Figure 10: t-SNE visualization of MNIST (left), Census
(center) and UTKFace (right) models. Each yellow dot rep-
resents a model with property A, each purple dot a B model.

data sets MNIST and UTKFace: models trained with
property A training data sets (yellow dots) are placed
close to the center of the visualization, while prop-
erty B models (purple dots) are mostly further from
the center. This indicates that the properties, defined
in Sect. 5 for MNIST and UTKFace, heavily influ-
ence the weights and biases of the trained models.
In fact, without any additional information about the
parameters or the properties of the underlying train-
ing data sets, t-SNE is able to distinguish the models
by property with surprisingly high accuracy. Based
on these results, one could construct a simple PI ad-
versary A"SVE by measuring the euclidean distance £
of a target model from the center of the t-SNE clus-
tering. If £ is below a certain threshold for a target
model M, A"SNE infers property A, otherwise it in-
fers property B. For MNIST, 4"SVE has 86.7% ac-
curacy based on our experiment, while the UTKFace
A"SNE has 72.0% accuracy. We stress that these two
ASNE are solely based on the t-SNE visualization of
the model parameters, no training on shadow models
is needed.

However for Census, t-SNE has not clustered
models with different properties of their training data
sets apart (see second visualization in Fig. 10). In
contrast to the other two data sets MNIST and UTK-
Face, Census is a tabular data set. It also may be that
the properties defined in Sect. 5 have a smaller immi-
nent impact on the weights and biases during train-
ing. We leave a more profound analysis of possible
reasons for the different behavior of the t-SNE visu-
alization on the three data sets for future work.

7 DISCUSSION

We now discuss our results to yield insights for fu-
ture research in the yet unexplored field of defending
against PIAs.

Choosing the Right Defense Approach. We have
introduced defense mechanisms at different stages
of the ML pipeline. Both property unlearning ex-
periments are positioned after the training and be-
fore its prediction phase, respectively its publica-
tion. In contrast, the preprocessing approach is ap-
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plied prior to the training. Since most ML algorithms
require several preprocessing steps, implementing a
defense mechanism based on preprocessing training
data could be easily adapted in real-world scenar-
ios. At least for tabular data, our preprocessing ex-
periments (see full paper (Stock et al., 2022)) have
shown a good privacy-utility trade-off, especially the
artificial data approach. Nevertheless, depending on
the organization and application scenario of a ML
model, a post-training approach like property unlearn-
ing might have its benefits as well. Further exper-
iments could test the combination of both pre- and
post-training approaches. Since both of them are
not promising to provide the generic PIA defense we
aimed for, we assume the combination of both does
not significantly improve the defense. Instead, we
suggest to focus further analyses on other approaches
during the training, as laid out in Sect. 8.

Lessons Learned. With our cross-validation exper-
iment in Sect. 5.2, we have shown how PI adver-
saries react to property unlearning in different ways.
Some adversaries could still reliably infer training
data properties after 15 property unlearning iterations,
while other adversaries reliably inferred the wrong
property after the same process. This shows that it is
hard to utilize a post-training technique like prop-
erty unlearning as a generic defense against a whole
class of PI adversaries: After all, one needs to de-
fend against the strongest possible adversary while
simultaneously being careful not to introduce addi-
tional leakage by adapting the target model too much.
Depending on the adversary instance, most of our tar-
get models clearly show one of these deficiencies after
15 rounds of property unlearning.

Our t-SNE experiment in Sect. 6 shows that at
least for image data sets, statistical properties of
training data sets have a severe impact on the
trained parameters of a ML model. This is in line
with the LIME experiment, which shows how two PI
adversaries with the same objective focus on differ-
ent parts of target model parameters. If a property
is manifested in many areas of a model’s parameters,
PI adversaries can rely on different regions. This im-
plies that completely pruning such properties from a
target model after training is hard to impossible, with-
out severely harming its utility.

8 FUTURE WORK

Preprocessing Training Data. We have not tested
training data preprocessing in an adaptive environ-
ment yet, where the adversary would adapt to the pre-
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processing steps and retrain on shadow models with
preprocessed training data as well. Intuitively, this
would weaken the defense while costing the same
utility in the target models. Additionally, as the tech-
nique with most potential for defending against PIAs
for tabular data, the generation of artificial data could
be further explored: One could adapt the synthesis al-
gorithm s.t. statistical properties are arbitrarily mod-
ified in the generated data set. A similar goal is pur-
sued in many bias prevention approaches in the area
of fair ML.

Adapting the Training Process. Another method
from a similar area called fair representation learning
is punishing the model when learning biased informa-
tion by introducing a regularization term in the loss
function during training, e.g., (Creager et al., 2019).
As a defense strategy against PIAs, one would need
to introduce a loss term which expresses the current
property manifestation within the model and causes
the model to hide this information as good as possible.
In theory, this would be a very efficient way to pre-
vent the property from being embedded in the model
parameters. Since it would be incorporated into the
training process, the side effects on the utility of the
target model should be low.

Post-Training Methods. (Liu et al., 2022) experi-
ment with knowledge distillation (KD) as a defense
against privacy attacks like membership inference.
The idea is to decrease the number of neurons in an
ANN in order to lower its memory capacity. Unfortu-
nately, the authors do not consider PIAs — it would be
interesting to see the impact of KD on their success
rate.

9 CONCLUSION

In this paper, we performed the first extensive anal-
ysis on different defense strategies against white-box
property inference attacks. This analysis includes a
series of thorough experiments on property unlearn-
ing, a novel approach which we have developed as a
dedicated PIA defense mechanism. Our experiments
show the strengths of property unlearning when de-
fending against a dedicated adversary instance and
also highlight its limits, in particular its lacking abil-
ity to generalize. We elaborated on the reasons of this
limitation and concluded with the conjecture that sta-
tistical properties of training data are deep-seated in
the trained parameters of ML models. This allows PI
adversaries to focus on different parts of the param-
eters when inferring such properties, but also opens
up possibilities for much simpler attacks, as we have
shown via t-SNE model parameter visualizations.
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Apart from the post-training defense property un-
learning, we have also tested different training data
preprocessing methods (see full paper version (Stock
et al., 2022)). Although most of them were not di-
rectly targeted at the sensitive property of the training
data, some methods have shown promising results. In
particular, we believe that generating a property-free,
artificial data set based on the distribution of an orig-
inal training data set could be a candidate for a PIA
defense with very good privacy-utility tradeoff.
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