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Abstract: Diabetic Retinopathy (DR) is an eye disease with complications, if left untreated grow, split into four grades: 
mild, moderate, severe, and proliferative. We propose to (1) compare and evaluate three different recently 
used deep learning models: EfficientNet-B5, Swin Transformer, and Hybrid-EfficientNetB0-SwinTF (HES) 
on the APTOS 2019 dataset’s fundus and early fused (EF) weighted gaussian blur fundus. (2) Evaluate three 
fine-tuning and pre-processing schemes on the best model. And (3) choose the best model-scheme per 
modality and perform late fusion on them to get the final DR grade. Results show that our best method, late 
fusion HES model, results in F1-socre of 81.21%, accuracy of 81.83%, and AUC of 96.30%. We propose 
using late fusion HES model in population-wide diagnosis to assist doctors in Morocco to reduce DR burden.   

1 INTRODUCTION 

Diabetic Retinopathy (DR) an eye disease caused by 
diabetes, as of 2015, has affected 1 over 3 people 
according to the Moroccan League for the Fight 
against Diabetes. In 2018, the Moroccan Ministry of 
Health and Social Protection announced that more 
than 2 million citizens aged 18 and over are diabetic, 
with 50% unaware of the disease, and an estimation 
of 15,000 children affected. To detect such a disease, 
doctors perform routine eye screening using Slit-lamp 
– a tool that is rarely found in middle-income 
countries. Recent advances in technology brought a 
respectably accurate and affordable tool called digital 
fundus photography (Begum et al., 2021). DR affects 
a high number of citizens and it keeps growing as the 
number of diabetic patients grows, diagnosing it early 
helps avoid blindness and further complications (Teo 
et al., 2021). The solution resides in a wide spread 
diagnosis which is difficult to perform using 
restricted resources. This fact pushed researchers to 
investigate the use of artificial intelligence to help 
increase and speed up the diagnostic process 
(Sebastian et al., 2023). Most frequently used deep 
learning (DL) models for DR grading (i.e., 
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classification into no DR, mild, moderate, severe, or 
proliferative DR) listed in (Sebastian et al., 2023), 
between 2017 and 2022, are: ResNet, VGG, 
InceptionV3, DenseNet, and EfficientNet based 
models; with EfficientNet being more present in 
2022. Using the APTOS 2019 dataset (APTOS) 
(APTOS 2019 Blindness Detection | Kaggle, n.d.) of 
fundus images for DR grading, (Shahriar Maswood et 
al., 2020) train EfficientNet-B5 by optimizing the 
Quadratic Weighted Kappa  (QWK) score and Mean 
Squared Error, and achieve an accuracy of 94.02%. 
(Karki & Kulkarni, 2021) train EfficientNet (B1 to 
B6) using different image resolutions, select the best 
of these variants (i.e., B1, B2, B3, B5), and use a 
weighted ensemble of these variants for the final 
prediction to achieve a QWK of 0.924377. (Canayaz, 
2022) train EfficientNet and DenseNet models for 
feature extraction (results in 512 features). Then feed 
these extracted features to the wrapper methods to 
reduce the number of these features. Finally, the 
newly chosen features are fed to the SVM and 
Random Forest algorithms for classification. Using 
the Kaggle DR dataset, (Lazuardi et al., 2020) 
preprocess the fundus images using the Contrast 
Limited Adaptive Histogram Equalization (CLAHE) 
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and center-cropping steps and combine them with 
progressive resizing training process using the 
EfficientNet B4 and B5 architectures; and obtain an 
accuracy of 83.88%. Recent work leverages the 
robustness of vision transformer (ViT) models for DR 
grading using different schemes (Gu et al., 2023; Sun 
et al., 2021; Yao et al., 2022): (Sun et al., 2021) 
propose a novel lesion-aware transformer (LAT) 
using an encoder-decoder structure to jointly grade 
and discover lesions. The novelty resides in using 
weakly supervised lesion localization via the 
transformer decoder, and lesion region importance 
and diversity to learn specific lesion filters using only 
image-level labels. On the Messidror-1 dataset, LAT 
scored 96.3% on area under the curve (AUC). (Yao et 
al., 2022) develop FunSwin, a Swin Transformer (Liu 
et al., 2021) based model, and reduce data imbalance 
by introducing data enhancements through rotation, 
mirroring, CutMix (Yun et al., 2019) and MixUp 
(Zhang et al., 2018). FunSwin scores an accuracy of 
84.12% on the Messidor dataset. Gu et al. (Gu et al., 
2023) propose a model composed of two blocks: 
feature extraction block (FFB) and a grading 
prediction block (GPB).  FFB uses the classical ViT 
model to extract the features from the fundus images 
with its fine-grained attention. The GBP module, 
generates class-specific features using spatial 
attention. The results on the DDR dataset (Li et al., 
2019) are an accuracy of 82.35%. In practice, to gain 
further clarity, DR and fundus eye diseases diagnosis 
require the use of other medical imaging modalities: 
fluorescein angiography (FA), and Multicolor 
imaging (MC). Few research works have been 
developed to leverage some of these modalities 
(Hervella et al., 2022; Song et al., 2021; Tseng et al., 
2020):  (Tseng et al., 2020) propose two fusion 
architectures similar to ophthalmologist’s diagnostic 
process, late fusion and two-stage early fusion. Using 
the lesion and severity classification models, the late 
fusion approach combines these two models in 
parallel using postprocessing; while the two-stage 
early fusion combines them sequentially. These two 
approaches are trained on three Taiwanese hospitals 
datasets for DR severity grading, evaluated on the 
Messidor-2 dataset and scored 84.29% in accuracy. 
(Song et al., 2021) perform Multicolor DR detection 
(DR, no DR) using the multimodal information 
bottleneck network (MMIB-Net). The MMIB-Net 
uses the information bottleneck theory to compute the 
joint representation of different imaging modalities 
collected using the Multicolor imaging tool a 
confocal scanning laser ophthalmoscope (cSLO) that 
generates 16 images (8 for each eye) composed of 
Blue, Green, Infrared Reflectance and Combined-

Pseudo color fundus images. The proposed model 
uses ResNet-50 as backbone and scored an accuracy 
of 94.30% on private collected data. (Hervella et al., 
2022) perform DR grading using the fundus and FA 
modalities, by first pre-training on the unlabeled 
multimodal Isfahan dataset using their proposed 
Multimodal Image Encoding (MIE) approach. Then, 
using the fundus modality from a labeled dataset 
(IDRiD and Messidor), the pre-trained model is fine-
tuned for DR grading. Finally, after pre-training and 
fine-tuning, the neural network uses the fundus 
modality to perform DR severity classification. On 
IDRiD, MIE scores an accuracy of 65.05%. 

From the studies listed previously, a trend of pre-
processing, use of large or private datasets, and 
training of different architectures in parallel (model 
ensembles or fusion) emerges. Meanwhile, for 
multimodal models and datasets they are scarce and 
in most cases the data is private; which could be 
related to the high cost needed for collecting such 
diversified modalities, storing them and ensuring 
patients data privacy. Another new emerging trend 
resides in the use of ViT models, due to their 
robustness and efficient attention mechanisms. But 
the classical ViT architectures require large amounts 
of data and computing resources to train; enters Swin 
Transformer, a ViT architecture optimized for 
relatively small data and less demanding computing 
resources. In this work we propose to leverage all of 
the previously used powerful elements (i.e., 
preprocessing, relatively small dataset, ViT, and 
multimodality) to train and compare the most recently 
used EfficientNet architecture with Swin 
Transformer and their hybrid combination: Hybrid-
EfficentNetB0-SwinTF (Henkel, 2021); using the 
fundus, and the fusion of the Weighted Gaussian Blur 
Fundus (WGBF) (El-Ateif & Idri, 2022) with the 
fundus modality using the Discrete Wavelet 
Transformation (Naik & Kunchur, 2020) to obtain the 
early fused (EF) Fundus-WGBF modality. We 
evaluate the performance of these three models on 
this two different modalities using (1) six metrics: 
accuracy, sensitivity, specificity, F1-score, and AUC; 
along with (2) Scott-Knott Effect Size Difference 
(SK-ESD) (Tantithamthavorn et al., 2019) statistical 
test to cluster these models and find the best in terms 
of F1-score; on (3) the APTOS dataset. Then we 
further compare the best performing under different 
settings: fine-tuning, and preprocessing. Finally, we 
choose the most performant models per modality 
(fundus and EF), fine-tune them, and combine them 
using the late fusion approach.  

In brief, the objective of this study is to evaluate 
whether the integration of preprocessing techniques 
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with multimodality and image fusion, trained on a 
mid-sized dataset, could enhance the overall 
performance. 

The remainder of this paper is organized as 
follows: Section 2 presents the data used and its 
preparation process. In section 3, we detail our 
approach. Section 4 lists our results and their 
discussion. Finally, section 5 concludes the paper and 
lays out our future work. 

2 DATA PREPARATION 

The models are trained and evaluated on the APTOS 
2019 Blindness Detection dataset with the publicly 
available labels. The dataset contains fundus images 
provided by Aravind Eye Hospital in India and is split 
into 5 DR grades: (grade 0) No DR counts 1,805, 
(grade 1) Mild counts 370, (grade 2) Moderate counts 
999, (grade 3) Severe counts 193, and (grade 4) 
Proliferative DR counts 295 fundus images. Note that 
for the models training we split these reported 
numbers into: train (80% of 2930: 2344), validation 
(20% of 2930: 586) and test (20%: 732) sets for the 
1st and 2nd training phases, as for the 3rd phase we use 
only the train (80%: 2930) and test (20%: 732) sets; 
while replicating the class imbalance by using scikit-
learn stratified k-fold method. Additionally, we resize 
the fundus images to 512x512 and remove the black 
background to leave the fundus only. Moreover, to 
avoid overfitting we perform for the Hybrid-
EfficentNetB0-SwinTF and late fusion models the 
following data augmentations: horizontal flip, 0.1 
height and width shift range, 20° rotation, 0.1 shear 
range, and 0.1 zoom range. Finally, for all the models, 
we normalize the data by dividing the pixels by 255 
to keep them into the range of 0 to 255. 

In the following we detail how we generated the 
second modality early fused (EF) Fundus-WGBF 
modality and expand on the pre-processing 
performed to experiment with performance 
enhancement of the best classified models for the 
fundus and EF modalities. Figure 1 showcases all of 
these processes by DR grade: fundus, its pre-
processing, WGBF, EF and its pre-processing.   

2.1 Second Modality 

To generate the early fused (EF) Fundus-WGBF 
modality we at first generate the Weighted Gaussian 
Blur Fundus (WGBF) from the fundus images using 
the method followed in (El-Ateif & Idri, 2022): (1) 
crop the image to remove the black background, (2) 
resize the image to 512x512, and (3) apply the 

Graham algorithm (Graham, 2015) that serves to 
subtract the local average color and map 50% gray to 
this local average so as to enhance the blood vessels 
and DR lesions. After that we apply the Discrete 
Wavelet Transformation (DWT) algorithm (Naik & 
Kunchur, 2020) with the mean method using as input 
the fundus and WGBF images of a respective patient 
to obtain the early fused (EF) Fundus-WGBF 
modality. The DWT helps capture the best aspect 
from the fundus (color distribution and fundus 
structure) and WGBF modalities (i.e., enhanced 
blood vessels and DR lesions), respectively.  

2.2 Pre-Processing 

In previous work (Canayaz, 2022; Karki & Kulkarni, 
2021; Lazuardi et al., 2020; Shahriar Maswood et al., 
2020), pre-processing the fundus images helped 
improve significantly the studied models 
performance by enhancing the images quality. To test 
if the models trained replicate the same results, we 
perform the following: For the fundus modality we 
apply: (1) median blur (aperture=5), (2) gamma 
correction (gamma=1.7), and (3) CLAHE with clip 
limit equal to 2.0 and tile gride size of 80 by 80. For 
the EF modality, we apply: (1) gamma correction 
(gamma=1.5), and (2) CLAHE with clip limit equal 
to 2.0 and tile gride size of 60 by 60. 

 

Figure 1: Data samples of fundus, pre-processed fundus, 
WGBF, EF, and pre-processed EF by DR grade. 

3 EXPERIMENTAL SETUP 

We train and evaluate three different models: 
EfficientNet-B5 (ENetB5), Swin Transformer (STF), 
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and Hybrid-EfficientNetB0-SwinTF (HES); using the 
fundus, and EF modalities. We perform this training 
in three phases: Phase 1: We train using 5-fold 
stratified cross validation (CV) on the train, and 
validation sets EfficientNet-B5, Swin Transformer, 
and Hybrid-EfficientNetB0-SwinTF for each of the 
fundus and EF, respectively. Then we evaluate and 
compare on the 5-fold CV test set; and pick the two 
best models, based on the F1-score, figuring in 1st and 
2nd cluster of SK-ESD. Phase II: The best models per 
modality (i.e., Fundus HES, and EF HES) are then 
compared and trained on the 5th fold based on 
accuracy following four schemes for each modality: 
(1) fine-tuning using weights saved in Phase I (FT0), 
(2) fine-tuning using weights from Phase I while 
unfreezing the last 20 layers of ENetB0 (FT1), (3) 
fine-tuning using weights from Phase I while 
unfreezing the last 20 layers of ENetB0 and freezing 
STF blocks (FT2), (4) training on pre-processed 
fundus and EF data. Phase III: We take the best from 
these four schemes (i.e., FT2 Fundus (no pre-
processing train and test) and EF (pre-processed train 
and test) HES model) and use the FT2 scheme to train 
these two models in parallel and average their 
predictions to get the final DR grade, to perform what 
is called late or decision level fusion.  Hereafter, we 
detail the four models’ architectures with their 
training and testing processes, the empirical process, 
statistical methods and performance metrics used to 
evaluate the models.  

3.1 Modeling 

We use the ImageNet pre-trained EfficientNet-B5 
(Tan & Le, 2019) (ENetB5) from the EfficientNet 
family. EfficientNet models are convolutional neural 
networks with uniform scaling faculties of width, 
depth, resolution using compound coefficients. In the 
classification layer of this model, we use: Global 
Average Pooling 2D, Dropout (0.5), Dense (1024 
nodes, and ReLU as activation), and the output layer 
composed of a Dense layer with 5 nodes and Softmax 
as activation function. We freeze all of its layers apart 
from the classification part and train using Adam 
optimizer and categorical cross entropy as loss. 
ENetB5 uses as input 456x456 images and batch size 
of 32. 

From the ViT family of models we use Swin 
Transformer (Liu et al., 2021) (STF) a hierarchical 
ViT using shifted windows scheme to improve self-
attention computation efficiency to non-overlapping 
local windows and provide cross-window connection. 
The model takes 224x224 in input shape, 4x4 in patch 
size, 0.03 in dropout rate, 8 in number of heads, 96 in 

embedding dimension, 1024 in number of nodes for 
multilayer perceptron (MLP), 7 in window size, 1 in 
shift size, 0.1 in label smoothing for the categorical 
cross entropy loss, and batch size of 32. 

The 3rd model we train is Hybrid-EfficientNetB0-
SwinTF (HES) (Henkel, 2021), see Figure 2, 
composed of ImageNet pre-trained ENetB0 using the 
AdvProp (Xie et al., 2020)–an adversarial training 
approach used to prevent overfitting by treating 
adversarial examples as additional examples– 
weights in its head, STF in its body, and a Dense layer 
with 5 nodes and Softmax activation as output. In the 
classification head of STF we define: Global Average 
Pooling 1D, Alpha Dropout (0.5), and Batch 
Normalization. While for ENetB0 we define: Global 
Average Pooling 2D, Alpha Dropout (0.5) and use 
sparse categorical cross entropy as loss with no label 
smoothing. The model takes as input 384x384 sized 
images, batch size of 8, patch size of 2x2, dropout of 
0.5, 8 in number of heads, embedding dimension of 
64, 128 for MLP, 2 in window size, 1 in shift size and 
24x24 STF image dimension. We retrieve 
‘block6a_expand_activation’ output of the ENetB0 
model to reduce the image size of fundus and EF from 
384x384 to 24x24 to reduce features size and get a 
better representation of DR grades. Both HES and 
STF models use AdamW optimizer with 1e-3 in 
learning rate, and 0.0001 in weight decay. 

For the late fusion model, we use FT2 of HES of 
fundus and EF, train them on train and test split (2930 
train and 732 test) in parallel and average their 
predictions to get the final output. But for EF HES we 
use the SGD optimizer (learning rate of 1e-4) instead 
of AdamW and train on pre-processed EF with their 
respective weights.  

All models are trained for 50 epochs, using reduce 
learning rate on plateau and early stopping that 
monitor the validation loss. 

 

Figure 2: Hybrid-EfficientNetB0-SwinTF (HES) model 
architecture. 
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3.2 Empirical Process 

The empirical process followed is split into three 
phases: 

1) Phase I: Cluster the fundus and EF three 
models (ENetB5, STF, HES) using SK-ESD 
based on F1-score to select the best model by 
modality. 

2) Phase II: Train and compare the best models 
from (1) following FT0, FT1, FT2, pre-
processing schemes using accuracy as 
performance metric. 

3) Phase III: Pick the best approach from (2) for 
fundus and EF respectively, train them in 
parallel, average their predictions and report 
sensitivity, specificity, precision, and F1-
score by DR grade and accuracy and weighted 
average of one versus rest AUC.  

3.3 Statistical Methods and 
Performance Metrics 

We hope you find the information in this template 
useful in the preparation of your submission. In phase 
I we trained and evaluated the three models using 5-
fold stratified CV, and clustered the models by 
modality using Scott-Knott Effect Size Difference 
(SK-ESD) (Tantithamthavorn et al., 2019) statistical 
test based on F1-score. In phase II we reported the 
accuracy values of the 5th fold. In phase III, we 
reported the scores of six metrics for each DR grading 
to evaluate the performance of the best models: 
accuracy, sensitivity, specificity, precision, F1-score, 
and weighted average one versus rest AUC score. 
These first five metrics are defined in Eqs.1–5 
respectively: 

Accuracy = 
୘୔ା୘୒

୘୒ା୘୔ା୊୔ା୊୒
 (1)

Sensitivity = Recall = 
୘୔

୘୔ା୊୒
 (2)

Precision = 
୘୔

୘୔ା୊୔
 (3)

F1 = 2  
ୖୣୡୟ୪୪ ൈ ୔୰ୣୡ୧ୱ୧୭୬

ୖୣୡୟ୪୪ ା ୔୰ୣୡ୧ୱ୧୭୬
 (4)

where: TP: true positive. FP: false positive. TN: true 
negative, and FN: false negative. 

4 RESULTS AND DISCUSSION 

In this section we lay out the results of phase I, II, and 
III for the three models ENetB5, STF and HES (phase 
I), HES fundus and EF trained using different fine-

tuning schemes and pre-processing (phase II), as well 
as late fusion HES of best fundus and EF HES (phase 
III). Figure 3 lays out the results of SK-ESD 
clustering of all three trained models from phase I by 
modality based on F1-score (to account for class 
imbalance). Table 1 reports accuracy scores and loss 
of phase II experiments. Table 2, 3 and 4 record the 
results of best results from phase II (Table 2 and 3) of 
FT2 HES and phase III (Table 4) late fusion HES 
using precision, sensitivity, F1-score, and specificity 
by DR grade. Table 5 lays out the comparison 
between our best proposed model and state-of-the-art 
trained on the APTOS dataset. In the following we 
layout these results and discuss what they entail. 

4.1 Unimodal Results 

Figure 3 shows that the best ranking model according 
to SK-ESD is Fund_HES or fundus Hybrid-
EfficentNetB0-SwinTF as it appears in the first 
cluster. In second place we find the EF_HES or EF 
Hybrid-EfficentNetB0-SwinTF model. Apart from 
HES and ENetB5 models where the fundus 
outperformed EF, for STF the EF modality 
outperformed the fundus one. This result may be 
related to the propriety of ViT models that are robust 
to changes in images. In conclusion, for phase I, the 
best ranking models are fundus HES and EF HES 
with an F1-score of 78.62% and 76.53%, 
respectively. 

For phase II, we train fundus and EF HES models 
using different schemes of fine-tuning and pre-
processing of fundus and EF by using saved weights 
from phase I HES per modality. From Table 1, the 
best approach reported in terms of accuracy and loss 
is HES model trained using pre-processed EF with 
Stochastic Gradient Descent (SGD) optimizer instead 
of AdamW (Loshchilov & Hutter, 2019) and non-pre-
processed fundus with previously set AdamW 
optimizer (as we previously trained it after pre-
processing and by changing to SGD optimizer and it 
provided worse results) on the train set and evaluated 
on the validation and test sets with an accuracy of 
92.35% for fundus and 88.39% for EF. The change of 
the optimizer helped improve the training process by 
improving the research for optimal parameters by 
slowly decreasing the learning rate through SGD. As 
for EF pre-processing, it improved the DR lesions 
detection by smoothing the features and equilibrating 
the color distribution. Meanwhile, FT2 approach 
helped train the ENetB0 module further for better 
feature extraction using convolutions while keeping 
the best representation from Swin blocks. 
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Figure 3: Fundus and EF SK-ESD F1-score results, with 
Fund referring to the fundus modality and EF referring to 
the early fused Fundus-WGBF DWT modality. 

Table 1: Accuracy in % (loss) results for HES model on 
fundus and EF modalities, respectively. 

*PrepEF stands for pre-processed EF and SGD references to 
using SGD optimizer. 

4.2 Late Fusion Results 

In phase III, we retrained the fundus HES (weighted 
F1-score = 76%) and EF HES (weighted F1-score = 
77%) on the train and test sets (the validation set was 
added to the train set) on the 5th fold so as to get the 
respective weights to train the late fusion model. The 
late fusion HES model consists of training in parallel 
HES fundus (with AdamW) and HES pre-processed 
EF (with SGD) using these new weights and 
following the FT2 scheme. Finally recuperating the 
predictions from FT2-HES-Fundus and FT2-HES-
PrepEF and averaging them to get the final DR 
grading. As exposed in Table 2, 3 and 4, the F1-score 
of late fusion HES equal to 81.21% 
(accuracy=81.83%, AUC=96.30%) is better than the 
average F1-score of phase I (on Train: Test) fundus 
and EF HES equal to 76.50% (accuracy=76.03%, 
AUC=94.55%) and average F1-score of phase II-FT2 
fundus and PrepEF equal to 60.96% (accuracy = 
80,46%, AUC=89,81%). Table 2 and 3 show that 
each model II-FT2 HES of fundus and EF modalities 
compensated for the weaknesses of the other model 

through the late fusion approach. Although, the scores 
for the mild, severe, and proliferative are still below 
70%; but based on the number of samples available 
for these classes (74/732, 39/732, 59/732, 
respectively) the provided results are promising.  

Table 2: Metrics results of FT2 fundus HES model per DR 
grade. 

Table 3: Metrics results of FT2 pre-processed EF HES 
model per DR grade. 

Table 4: Metrics results of late fusion HES model per DR 
grade. 

4.3 Comparison with State-of-the-Art 

In terms of accuracy compared to state-of-the-art 
model (Canayaz, 2022) that used nature-inspired 
wrappers with EfficientNet and scored an accuracy of 
96.32%, our best model late fusion HES accuracy is 
less than ~14.49% on the APTOS dataset. The 
difference in performance could be due to the 
interesting method presented by (Canayaz, 2022) 
along with the different pre-processing approach 

Phase Fundus 
HES (%) 

EF HES 
(%)

II-Pre-processing on Train: 
Val: Test 

72.40 
(2.06) 

73.50 
(2.16)

II-FT0 on Train: Val: Test 
73.50 
(2.55) 

86.75 
(1.14)

II-FT1 on Train: Val: Test 
89.10 
(1.05) 

87.84 
(0.93)

II-FT2 on Train: Val: Test 
92.35 
(0.46) 

86.75 
(0.87)

II-FT2 (PrepEF with SGD*) 
on Train: Val: Test 

92.35 
(0.46) 

88.39 
(0.69)

I on Train: Test  
76.23 
(1.88) 

75.82 
(1.75)

II-FT2 (PrepEF with SGD*) 
on Train: Test 

81.83 
(1.53) 

79.09 
(0.77)

DR grade Precision 
(%) 

Specificity 
(%) 

F1-
score 
(%) 

Sensitivity 
(%) 

No DR 97.52 97.57 97.79 98.06
Mild 43.09 89.36 53.81 71.62

Moderate 77.14 94.00 63.72 54.27
Severe 27.78 92.50 36.04 51.28

Proliferative 67.65 98.37 49.46 38.98
Weighted 
average

80.35 95.56 76.90 76.23 

DR grade Precision 
(%) 

Specificity 
(%) 

F1-
score 
(%) 

Sensitivity 
(%) 

No DR 64.45 46.63 78.21 99.45
Mild 17.21 84.65 21.43 28.39

Moderate 100.00 100.00 04.90 02.51
Severe 25.00 96.97 20.90 17.95

Proliferative 45.00 98.37 22.78 15.25
Weighted 
average

65.67 71.83 45.02 54.78 

DR grade Precision 
(%) 

Specificity 
(%) 

F1-
score 
(%) 

Sensitivity 
(%) 

No DR 96.75 96.77 97.80 98.90
Mild 51.37 91.94 61.20 75.68

Moderate 77.35 92.31 73.68 70.35
Severe 52.94 98.85 32.14 23.10

Proliferative 64.29 97.03 62.61 61.02
Weighted 
average

81.94 95.20 81.21 81.70 
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undertaken (i.e., masks created according to a 
tolerance value). As for the second-best model 
(Shahriar Maswood et al., 2020), that train to 
optimize the QWK score and Mean Squared Error, it 
outperformed our model by 11.50%. From these 
results we conclude that leveraging preprocessing, 
multimodality, and image fusion does not result into 
model performance improvement as would be 
expected. But, as transformer models are more robust 
in comparison with convolution models, further 
development and validation on real world datasets is 
still needed for further conclusions. 

Table 5: State-of-the art comparison with best resulting 
model using the APTOS dataset. 

5 CONCLUSION AND FUTURE 
WORK 

In this work we proposed to train and compare three 
different models: EfficientNetB5, Swin Transformer, 
and Hybrid-EfficientNetB0-SwinTF according to 
three phases and using different schemes (fine-tuning 
and pre-processing) for the fundus and early fused 
fundus with its preprocessing. The best models from 
fundus and early fused modality were trained in 
parallel and their predictions were averaged to predict 
the final DR grade as a late fusion process. Although 
the results were promising with an accuracy of 
81.83%, compared to state-of-the-art (Canayaz, 
2022) (accuracy=96.32%), our late fusion model still 
needs fine-tuning. In future work, we aim to improve: 
the data quality by introducing a more diverse and 
grades enriched dataset from different hospitals, the 
pre-processing process by proposing a dynamic 
approach (changes depending on image quality), and 
optimization of the late fusion approach by reducing 
the numbers of parameters; and perform further 
validations on local datasets.   
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