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Abstract: Machine learning (ML) can help fight pandemics like COVID-19 by enabling rapid screening of large vol-
umes of images. To perform data analysis while maintaining patient privacy, we create ML models that satisfy
Differential Privacy (DP). Previous works exploring private COVID-19 models are in part based on small
datasets, provide weaker or unclear privacy guarantees, and do not investigate practical privacy. We sug-
gest improvements to address these open gaps. We account for inherent class imbalances and evaluate the
utility-privacy trade-off more extensively and over stricter privacy budgets. Our evaluation is supported by
empirically estimating practical privacy through black-box Membership Inference Attacks (MIAs). The intro-
duced DP should help limit leakage threats posed by MIAs, and our practical analysis is the first to test this
hypothesis on the COVID-19 classification task. Our results indicate that needed privacy levels might differ
based on the task-dependent practical threat from MIAs. The results further suggest that with increasing DP
guarantees, empirical privacy leakage only improves marginally, and DP therefore appears to have a limited
impact on practical MIA defense. Our findings identify possibilities for better utility-privacy trade-offs, and
we believe that empirical attack-specific privacy estimation can play a vital role in tuning for practical privacy.

1 INTRODUCTION

The COVID-19 pandemic pushed health systems
worldwide to their limits, showing that rapid detection
of infections is vital to prevent uncontrollable spread-
ing of the virus. Detecting COVID-19 in patients can
be achieved using a RT-PCR test1. Although they are
more reliable in terms of sensitivity than rapid anti-
gen tests, results can take hours to arrive, and even if
displaying negative, the virus could have already left
the throat and manifested itself in the lungs, rendering
it undetectable for either test (Albert et al., 2021).

In hospitals, chest X-rays can mitigate these draw-
backs by enabling a fast and reliable diagnosis. Fig-
ure 1 shows chest X-ray scans of healthy (top) and
COVID-19 (bottom) patients in direct comparison.
Even though patchy consolidations are recognizable
in the COVID-19 scans, such X-rays remain challeng-
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(RT-PCR) testing is broadly used for COVID-19 diagnosis.

Figure 1: Chest X-ray images of different patients extracted
from the COVID-19 Radiography Database (Chowdhury
et al., 2020; Rahman et al., 2021). COVID-19 positive scans
are characterized by patchy consolidations of the lungs.

ing to interpret. Specialists, however, are able to iden-
tify the severity of a case early on and can take mea-
sures without waiting for lab results.

Machine Learning (ML) techniques can effec-
tively assist medical professionals in an initial screen-
ing by quickly classifying large numbers of images.
However, the amount of data needed for training such
classifiers poses problems due to clinical data privacy
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Table 1: Existing solutions from related work next to our private model at ε= 1 (Müftüoğlu et al., 2020; Zhang et al., 2021; Ho
et al., 2022). The methods refer to training private models. For differentiating the tasks, we assign the classes as COVID-19
(C), Normal (N), or Pneumonia (P). A performance comparison is difficult due to the different characteristics. Baseline shows
the best non-private models. Our best private result is based on accuracy for comparison to related work. We further include
two proposed additions for filling open gaps: F1-score and MIA.

Number Accuracy in %

Related Work Method of samples Task Baseline Private ε F1? MIA?

Müftüoğlu et al. (2020) PATE on EfficientNet-B0 139 COVID-19 binary 94.7 71.0 5.98 × ×234 Normal C | N

Zhang et al. (2021)
ResNet on images from 350 COVID-19 multi-class 92.9 94.5 ? × ×DP-GAN trained in 2,000 Normal C | N | Pfederated learning 1,250 Pneumonia

Ho et al. (2022)
DP-SGD in federated 3,616 COVID-19 multi-class 95.3 68.7 39.4 × ×learning on custom CNN 10,192 Normal C | N | Pwith spatial pyramid pooling 1,345 Pneumonia

Lange et al. (ours)
DP-SGD on ResNet18 3,616 COVID-19 binary 96.8 75.2 1 ✓ ✓with tanh activation and 5,424 Normal C | Npre-training on Pneunomia

regulations, which present strict limitations to data
sharing between hospitals. All sensitive patient infor-
mation must be treated confidentially before, during,
and after processing. (Balthazar, 2018)

To complicate matters, not only the dataset itself
but also the models resulting from ML can compro-
mise privacy. Published models are vulnerable to at-
tacks, including leaking details about their training
data (Shokri et al., 2017). Such leaks allow adver-
saries to potentially deduce sensitive medical facts
about individuals in the dataset, for instance by expos-
ing a patient’s genetic markers (Homer et al., 2008).

In the case of COVID-19 detection, an attacker
could be able to reveal if a person was infected, which
would already violate privacy. While the specific risk
of X-ray-based attacks might be low, such data should
be handled with caution, especially since even with
anonymization, results can still be linked to other in-
formation like related medications. Furthermore, we
cannot rule out an attacker with internal access to im-
ages, e.g. doctors utilizing the model in a hospital.

Privacy-Preserving ML (PPML) is a collection
of methods for creating trustworthy ML models, en-
abling, for example, the development of medical ap-
plications while maintaining patient privacy. In this
work, we apply PPML that satisfies Differential Pri-
vacy (DP) (Dwork, 2008) in training a COVID-19 de-
tection model, thus limiting attacks on the resulting
classifier from incurring information leakage.

Our investigation is divided into three successive
steps: (1) First, a non-private baseline is trained to de-
tect COVID-19 versus normal (no findings) in chest
X-rays. (2) The second step then focuses on experi-
ments evaluating ML model architectures and param-
eters in private training, with the primary objective of
finding a feasible utility-privacy trade-off. (3) Finally,
model privacy is empirically assessed by attempting

to identify training data through black-box Member-
ship Inference Attacks (MIAs), examining to what ex-
tent these models leak private information.

Our Contributions Are:

• We fill open gaps from previous work (Müftüoğlu
et al., 2020; Zhang et al., 2021; Ho et al.,
2022), where Table 1 shows their characteristics
in comparison to our approach. We address the
class imbalances and analyze the utility-privacy
trade-off more extensively by evaluating multi-
ple and stricter privacy budgets. We further in-
vestigate practical privacy by empirically esti-
mating privacy leakage through black-box MIAs.
These gaps and our improvements are addressed
throughout the following sections.

• We are the first to evaluate if DP helps narrow
down MIAs on the COVID-19 detection task. We
additionally re-examine this hypothesis on a com-
mon benchmarking dataset to reveal connections
between the two datasets. Our results point to-
wards identifying the benefits from DP in defend-
ing against MIAs as task-dependent and plateau-
ing. We are able to gain better utility-privacy
trade-offs at no practical cost. These results thus
strengthen the belief that empirical privacy anal-
ysis can be a vital tool in supporting attack- and
task-specific tuning for privacy.

The following Section 2 provides an overview of
essential concepts. We then contextualize our work
by examining the existing literature in Section 3, and
we present our selected solutions to address open re-
search gaps in Section 4. Section 5 lays out our ex-
perimental setup, with their results and discussion in
Section 6. In closing, Section 7 provides conclusive
thoughts and adds an outlook to possible future work.
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2 BACKGROUND

This section establishes a basic understanding of the
relevant concepts and algorithms used in this work.

2.1 Differential Privacy

DP offers a guarantee that the removal or addition of
a single dataset record does not (substantially) affect
the outcome of any analysis (Dwork, 2008). Thus, an
attacker is incapable of differentiating from which of
two neighboring datasets a given result originates and
has to resolve to a random guess. DP’s provided guar-
antee is measured by giving a theoretical upper bound
of privacy loss, represented as the privacy budget ε.
The metric is accompanied by the probability of pri-
vacy being broken by accidental information leakage,
which is denoted as δ and depends on the dataset size.

Formally, an algorithm A training on a set S is
called (ε,δ)-differentially-private, if for all datasets D
and D’ that differ by exactly one record:

Pr[A(D) ∈ S]≤ eεPr[A(D′) ∈ S]+δ (1)

Meaningful privacy guarantees in ML should fulfill
ε ≤ 1 and δ ≪ 1/n, where n is the number of training
samples (Nasr et al., 2021; Carlini et al., 2019). The
notation ε = ∞ indicates that no DP criteria are met.

2.2 Differentially-Private Stochastic
Gradient Descent

The Differentially-Private Stochastic Gradient De-
scent (DP-SGD) algorithm introduced by Abadi et al.
(2016) takes widely used SGD and applies a gradi-
ent perturbation strategy. Gradient perturbation adds
enough noise to the intermediate gradients to obfus-
cate the largest value, since that original sample in-
hibits the highest risk of exposure. To generally
bound the possible influence of individual samples
while training, DP-SGD clips gradient values to a
predefined maximum Euclidean norm before adding
noise. The noisy gradients are then used to update the
parameters as usual. The total noise added through
the algorithm is composed over all training iterations
and determines the resulting privacy budget.

2.3 Membership Inference Attacks

In black-box MIAs, an attacker feeds data samples
to a target model and thereby tries to figure out each
sample’s membership or absence in the model’s train-
ing set based solely on the returned confidence val-
ues. This technique takes advantage of the differ-
ences in predictions made on data used for training

versus unseen data, where the former is expected to
output higher confidence values due to memoriza-
tion (Carlini et al., 2019). As proposed by Shokri et al.
(2017), such attacks can utilize multiple shadow mod-
els specifically mimicking a target model’s predic-
tions, to train an attack model able to elicit the desired
membership information. Salem et al. (2019) relaxed
the need for shadow models, by finding that simply
using the original model’s predictions on given sam-
ples can be sufficient to deduce their membership. By
revealing the membership of an individual’s record in
the dataset, an adversary might in turn disclose sensi-
tive information on them.

3 RELATED WORK

In the following, we first describe gaps left open by
related work in Section 3.1. We then show mitigation
strategies for MIAs and methods of practical privacy
analysis in Sections 3.2 and 3.3, respectively.

3.1 Private COVID-19 X-Ray Detection

In Table 1, existing works on private COVID-19 de-
tection from X-rays are summarized and compared to
our approach. There are multiple factors that impede
a fair comparison, which mainly lie in the differences
in datasets, tasks, and privacy guarantees (ε). In this
section, we show open gaps and then give elabora-
tions in Section 4 on how we address them.

Datasets. A problem regarding (Müftüoğlu et al.,
2020) is that their results are based on only a small
dataset of 139 COVID-19 scans. The COVID-19 Ra-
diography Database used by (Ho et al., 2022) and us,
provides a better basis in terms of dataset size. How-
ever, the class imbalances result in a rather skewed
data basis, which is left unaddressed but could influ-
ence MIA threat (Jayaraman et al., 2021). With the
FedDPGAN approach, Zhang et al. (2021) try to en-
large and balance their small dataset using synthetic
images, but the quality of the generated distribution is
left unanswered. This is particularly problematic be-
cause GANs trained on imbalanced input data tend to
produce data with similarly disparate impacts (Ganev
et al., 2022). As a general problem with skewness,
the mentioned works solely assess performance us-
ing accuracy, although this metric is known to under-
value false negatives for minority classes and could
favor classifiers that are actually worse in detecting
the COVID-19 minority class (Bekkar et al., 2013).

Privacy budgets. The used ε-values of 5.98 and
39.4 by Müftüoğlu et al. (2020) and Ho et al. (2022)
respectively, are significantly weaker than the privacy
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budget of ε ≤ 1, which is commonly assumed to pro-
vide strong privacy (Nasr et al., 2021; Carlini et al.,
2019). Furthermore, the results by Zhang et al. (2021)
lack comparability, since they do not provide their pri-
vacy budget. Using their parameters and noise in a
standard DP-SGD analysis results in ε > 5 ∗ 1013 for
a client after 500 rounds2 of federated training. Even
with their most private setting they still accumulate
ε = 19.6. Thus, no model adheres to ε ≤ 1 and they
instead only offer weaker or unclear guarantees.

Practical privacy. Regarding practical privacy,
prior work does not include actual attack scenarios.
It is therefore left open to what extent the provided
models and ε-guarantees retain patient privacy against
real adversaries. Such analysis helps in assessing the
defense capabilities provided by the achieved privacy
budgets and could reveal room for tuning them.

3.2 Repelling MIAs

Related work suggests multiple strategies for reduc-
ing MIA threats. Shokri et al. (2017) show that lim-
iting the model outputs to only class labels instead of
explicit confidence values can be an effective remedy.
However, in medical tasks such as COVID-19 detec-
tion, where the use case is to help medical profession-
als in diagnosing a disease, the confidence value is an
integral part that indicates how likely a patient is af-
fected. Shokri et al. (2017) also find that model archi-
tecture can contribute to MIA defense and Salem et al.
(2019) demonstrate that even the training process can
hinder MIAs through e.g. model stacking.

DP should limit and oppose the success of MIAs
by design, with Jayaraman and Evans (2019) supply-
ing the corresponding reasoning: “[DP], by defini-
tion, aims to obfuscate the presence or absence of a
record in the data set. On the other hand, [MIAs] aim
to identify the presence or absence of a record [. . .].”
Rahman et al. (2018) test this hypothesis by evaluat-
ing MIAs on different privacy levels. They find their
model’s MIA resistance to gradually increase when
lowering the allowed privacy budget and explain it
with less overfitting when adding more noise. Yeom
et al. (2018) prove that overfitting in ML models is
sufficient to enable MIAs, but at the same time show
that overfitting is not a necessary criterion, and stable
models can still be vulnerable.

3.3 Practical Privacy Analysis

Multiple works examined the possibilities of estimat-
ing the practical privacy for ML models by perform-

2They do not state their exact number of rounds but their
graphs show 500 rounds.

ing an empirical study through attacks, e.g. MIAs.
Jagielski et al. (2020) and Nasr et al. (2021) conclude
that the assumed theoretical upper bound privacy loss
for DP, given in the privacy budget ε, gives a tight
worst-case analysis on attack proneness and thereby
limits MIA success. However, in many cases actual
attacks extract significantly less information than as-
sumed by the theoretical bound, which is also sup-
ported by Malek et al. (2021) and Jayaraman and
Evans (2019). This discrepancy could possibly en-
able better utility-privacy trade-offs, but Jayaraman
and Evans (2019) warn that privacy always comes at
a cost and reducing privacy could ultimately promote
information leakage. Malek et al. (2021) propose that
a realistic lower bound on the amount of revealed in-
formation by a model can be determined by “[consid-
ering] the most powerful attacker pursuing the least
challenging goal” and that in the case of standard DP,
such would be an attacker powerful enough to suc-
cessfully perform membership inference.

4 METHODS

As seen in Section 3.1 and Table 1, related work on
COVID-19 detection lacks comparability and leaves
open research gaps. We therefore do not solely focus
on enhancing the performance of former solutions but
rather suggest improvements by filling existing gaps,
ultimately proposing the following improvements.

Datasets. Since the dataset used by us and Ho
et al. (2022) provides a good amount of COVID-19
samples, we instead aim for better handling of the
problems arising from the skewed nature of the class
distribution. In a first effort, we employ random un-
dersampling and class weights to elevate the under-
represented COVID-19 class, both in database con-
struction and in training, respectively. Furthermore,
since accuracy is not representative in cases of skewed
data, we improve the evaluation by using the more
balanced F1-score metric (Bekkar et al., 2013).

Privacy budgets. We investigate the utility-
privacy trade-off by evaluating multiple and stricter
privacy budgets of ε = [∞,10,1,0.1]. To find the best
private model and extend the pool of evaluated meth-
ods, we propose untested architectural experiments
relevant to private DP-SGD training in Section 5.4.

Practical privacy. As seen in the works discussed
in Section 3.3, we investigate the practical implica-
tions of DP regarding the defense against black-box
MIAs by undertaking an empirical analysis through
actual attacks, and therefore give a more realistic
lower bound to the resulting privacy leakage (Jagiel-
ski et al., 2020; Malek et al., 2021). We thereby
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Table 2: Summary of the experiment parameters. Each
combination from left to right constitutes a possible setup
(resulting in 2∗2∗2∗3∗4 = 96 setups).

Dataset Architecture Activation Pre-training ε

COVID-19 ResNet18 ReLU None/Standard ∞

MNIST ResNet50 tanh ImageNet 10

Pneumonia 1
0.1

provide the first attack results in the field of private
COVID-19 detection and evaluate possible room for
tuning the utility-privacy trade-off. An additional
evaluation regarding the privacy leakage of our mod-
els on the MNIST database enables us to formulate
takeways regarding similarities and disproportions re-
garding the attack-specific privacy on both datasets.
Evaluating another dataset is a first step towards gen-
eralization and MNIST is particularly interesting be-
cause related works (Rahman et al., 2018; Nasr et al.,
2021) previously investigated the connection between
DP and MIA on this task.

5 EXPERIMENTAL SETUP

In this section we provide details on the setups used
in our experiments, which are summarized in Table 2.
Reference code is available from our repository3.

5.1 Environment

We use Python with the Keras, Tensorflow, and Ten-
sorflow Privacy libraries. To enable reproducible re-
sults any random seeds are set to a fixed value of
42. Hardware-wise our machines are equipped with
64GB RAM and an NVIDIA Tesla V100 GPU.

5.2 Datasets

For a comprehensible dataset creation, we provide de-
tails on the different public datasets we used.

• The COVID-19 Radiography Database4 (Chowd-
hury et al., 2020; Rahman et al., 2021) is the most
comprehensive collection of COVID-19 chest X-
ray images, stemming from different databases
around the web. In total, this image collection
offers chest X-rays of 3,616 COVID-19 positive,
10,192 Normal, and 1,345 Pneumonia cases. For
our binary task, we omit the pneumonia sam-
ples and employ undersampling to directly reduce
class imbalances. Dataset construction takes all

3https://github.com/luckyos-code/mia-covid
4https://www.kaggle.com/tawsifurrahman/covid19-

radiography-database

COVID-19 scans but only 1.5× the amount for
Normal (5,424), resulting in 9,040 images total.
When testing hyperparameters, this ratio showed
to elevate performance (F1) and reduce privacy
risk due to less overfitting (Rahman et al., 2018).

• The Chest X-Ray Images (Pneumonia)5 (Kermany
et al., 2018) offers X-ray images divided into two
classes with 1,583 Normal and 4,273 Pneumonia
samples. Here, we again apply undersampling to
achieve similar class ratios and take all Normal
scans but just 1.5× the amount for Pneumonia
(2,374). This pneumonia dataset is also part of
the COVID-19 Radiography Database, constitut-
ing 13% (1,341) of its Normal class images. To
fix this issue and enable its use as a public dataset
for our private transfer learning approach with-
out compromising privacy, we exclude duplicates
when sampling images for the COVID-19 task.

• The ImageNet (Deng et al., 2009) is a vast col-
lection counting 14 million images and covering
20,000 categories from general (mammal) to spe-
cific (husky). Non-private models benefit from
using this massive dataset for pre-training, intro-
ducing many differentiating concepts to a neural
network before training on the target data.

• With their MNIST Database (LeCun et al., 1998),
LeCun et al. offer a large image collection of
handwritten digits. The database provides 60,000
images for training and 10,000 for testing. Even
though MNIST does not contain COVID-19 re-
lated images, it is a commonly used benchmark in
image classification and PPML, making it a per-
fect candidate for comparing results.

5.3 Pre-Processing

To build our final splits for model training, we employ
necessary sampling and pre-processing steps. Both
X-ray datasets, for COVID-19 and pneumonia, use
a train-validation-test split of 80% training, 5% val-
idation, and 15% test set. All datasets are handled
with three color channels. We therefore convert the
MNIST grey-scale images into the RGB space, as this
is vital to allow the models pre-trained on color im-
ages to still work with the input data. X-ray images
are downscaled to 224x224 pixels, while MNIST im-
ages keep their size of 28x28. Both however under-
goes an image normalization on the factor of x=1/255.

To combat overfitting, training sets are shuffled
and training images from the X-ray datasets are sub-
jected to data augmentation (Shorten and Khoshgof-

5https://www.kaggle.com/paultimothymooney/chest-
xray-pneumonia
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taar, 2019). To further reduce the imbalance regarding
Sickness (COVID-19, Pneumonia) and Normal class
frequencies, we apply class weights during training to
help artificially balance each sample’s impact. This
process yields class weights of 0.83 for the Normal
and 1.25 for the Sickness classes.

5.4 Architectural Experiments

In the following, we describe our different architec-
tural choices we used for experiments.

5.4.1 Model Size in DP-SGD

Non-private and private classification perform differ-
ently depending on the underlying model architec-
ture (Papernot et al., 2021). Performance is greatly
dependent on model size with non-private training
typically benefiting from using bigger models. Us-
ing DP-SGD, the same models can suffer from accu-
racy loss when increasing in size. Taking these find-
ings into account in our experiments, we used two
differently-sized architectures from the model fam-
ily of Residual Networks (He et al., 2016), or short
ResNets. For one, the ResNet50 with 50 layers, as
well as the ResNet18, which is smaller at 18 layers.

5.4.2 Tanh Activation

A disruptive discovery in DP-SGD research was made
by Papernot et al. (2021). In their work, they de-
termined that replacing the de facto standard ReLU
activation function with the tanh function in model
layers improves performance in DP-SGD. To achieve
this boost, they utilize the fact that the tanh activation
generally results in smaller gradients than the ReLU
function, which in turn reduces the information loss
from gradient clipping.

5.4.3 Pre-Training

A commonly applied strategy to improve perfor-
mance for non-private classification relies on pre-
training using the extensive ImageNet collection. As
another method, Abadi et al. (2016) state that DP-
SGD models can further profit from pre-training in
a domain closely related to the target task. While Im-
ageNet resembles a general choice for image-based
tasks, pre-training for pneumonia detection is closer
to our COVID-19 task due to the similarity in symp-
toms (Speranskaya, 2020; Lange, 2022).

The pre-training on the Pneumonia dataset is per-
formed using the same settings as on the COVID-19
set, while the ImageNet variants are provided by a li-

brary for Keras models6. For our tanh variants we
take the take the pre-trained ReLU models and change
the activation function in each trainable layer before
training on our target datasets.

5.5 Privacy Experiments

In this section, we elaborate on the used settings and
hyperparameters for evaluating privacy.

5.5.1 Private Training Settings

For our non-private baseline, we employ
Adam (Kingma and Ba, 2015) optimization with
batch sizes of 32 and train for 20 epochs using a
learning rate of α = 1e−3, which decays down to
a minimum of α = 1e−6 on plateaus. Afterwards,
we apply DP-SGD (or here DP-Adam) training with
a clipping norm of 1.0 and the appropriate noise to
all private models to achieve a candidate for each
ε-guarantee. DP-SGD training for COVID-19 uses
ResNet50 and ResNet18 variants with batch sizes
of 8 and 16, instead of 32 respectively. We aim at
privacy budgets of ε ≤ 1, since such values present
strong privacy guarantees (Nasr et al., 2021; Carlini
et al., 2019). We also evaluate budgets neighboring
this setting by an order of magnitude, to gain further
insights into the performance and estimated privacy
on different DP levels. Due to the dataset size, the DP
analysis uses δ = 1e−4 for COVID-19 (n = 9,040)
and δ = 1e−5 for MNIST (n = 60,000).

5.5.2 MIA Settings

For selecting the most potent MIA each run, we try
four different attack types based on logistic regres-
sion, multi-layered perceptron, k-nearest neighbors,
and threshold. These attacks are an implementation of
the single shadow model black-box attack proposed
by Salem et al. (2019), that directly relies on target
model predictions instead of training several shadow
models. Given a target model, MIAs utilize two types
of data: (1) the original training data to be inferred
and (2) unseen but similar data to differentiate non-
training data. In our case, we want to fully empower
the attacker for estimating the practical worst-case in
an optimal black-box setting (Malek et al., 2021). We
satisfy this condition by giving access to the full train-
ing and test sets with their corresponding labels, thus,
handing the attacker the largest input regarding (1)
and the most similar input regarding (2).

6https://github.com/qubvel/classification_models
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5.5.3 Measuring Privacy Leakage

Like Jayaraman and Evans (2019), our used metric
for measuring privacy leakage through MIAs is the
attacker’s membership advantage as introduced by
Yeom et al. (2018). The adversarial game is based on
an attacker’s capabilities in differentiating the mem-
bership of a sample that is chosen uniformly at ran-
dom to originate from the training set or not. The
resulting difference in True Positive Rate (TPR) and
False Positive Rate (FPR) is given as the attacker’s
membership advantage: AdvM = T PR−FPR.

Yeom et al. (2018) show that if a learning algo-
rithm satisfies ε-DP, then the adversary’s membership
advantage is bounded by AdvM ≤ eε−1 in their attack
scenario. Transferring the theorem to (ε,δ)-DP given
by Equation (1), the upper bound can be derived as:

AdvM ≤ eε −1+δ (2)

Because the theoretical assumption relies on Gaussian
distributed training errors and a balanced prior data
distribution probability, it might not provide reliable
bounds given our differing practical scenario.

Since individual MIA results are subject to vari-
ability, they need to be experimentally stabilized.
Like Malek et al. (2021), we achieve this by running
100 entire MIAs and calculating the corresponding
95% Confidence Interval (CI) for the obtained results.

6 DISCUSSION

We now revisit the open gaps from the related work
discussed in Section 3 and review the outcomes of
our proposed solutions from Section 4. We refer to
Tables 3 and 4 for our evaluation results and to Ta-
ble 1 for an organized showcase of results from re-
lated work. We evaluate our proposed improvements:

Datasets. We achieve a more balanced data ba-
sis than before by utilizing undersampling and class
weights. To evaluate on the still skewed data, we add
the F1-score metric. The advantage to accuracy is vis-
ible in the COVID-19 results, where both metrics dif-
fer regularly and F1 thus reveals models that perform
better on the minority class COVID-19. That F1 ac-
counts for the underlying class distribution is further
demonstrated on the more balanced MNIST dataset,
where accuracy and F1-score are almost identical.

Privacy budgets. In contrast to related work,
we are able to achieve working COVID-19 detection
models, while adhering to strong privacy budgets of
ε ≤ 1. By additionally evaluating different architec-
tures over multiple privacy levels, we deduce favor-
able architectural decisions for keeping good utility-

privacy trade-offs in DP-SGD. Our findings for train-
ing private models are summarized in Section 6.1.

Practical privacy. By including an empirical
study on practical privacy though MIAs, we gain in-
sights into the relationship between DP and privacy
leakage. In Section 6.2 we derive the implications
stemming from our empirical analysis. The results
allow us to improve the utility-privacy trade-off while
keeping the same practical privacy.

6.1 Building Better DP-SGD Models

With our experiments, we transfer the results from
Papernot et al. (2021) to deeper and pre-trained net-
works and are able to confirm the tanh advantage over
ReLU in low ε DP-SGD training. Our private models
with strong ε-guarantees of ε = 1 and ε = 0.1 rely
on this change, while the non-private and less private
models still prefer the ReLU activation function.

A commonality between our best performers is
that they were subjected to pre-training. While all
best non-private models are pre-trained on ImageNet,
this trend only continues in all private models on the
MNIST database. The same ImageNet-based mod-
els underperform on the COVID-19 task, when look-
ing at settings of ε = 1 and ε = 0.1, which might be
related to the different contents in both tasks. On
the COVID-19 task, we introduce task-specific pre-
training on pneumonia images, that leads to superior
performance in our most private settings.

We could not fully confirm that larger models per-
form worse in DP-SGD (Papernot et al., 2021). The
ResNet50 especially wins at the most private setting
of ε = 0.1. Model size, however, seems to play a
role, when examining the earlier failure of the private
ReLU models in the bigger ResNet50.

In summary, our results support the existing be-
lief that model architectures should be specifically
adjusted for private DP-SGD training, where estab-
lished standards from non-private training do not nec-
essarily provide the same advantages (Papernot et al.,
2021; Abadi et al., 2016). Examples are the switch
from ReLU to tanh activation and the superiority of
Pneumonia pre-training to ImageNet pre-training in
the private COVID-19 models.

6.2 Insights Regarding Practical DP

We now refer to Figure 2 that plots our estimated pri-
vacy leakage from MIAs at the different ε-budgets.

In both Figures 2a and 2b, we include the (ε,δ)-
DP bound on AdvM from Equation (2), which is based
on Yeom et al. (2018). The bound already surpasses
our plotted maximum of 0.5 AdvM long before ε = 1,

SECRYPT 2023 - 20th International Conference on Security and Cryptography

630



Table 3: Experimental results on the COVID-19 dataset. The Standard, ImageNet and Pneunomia models rely on the ReLU
activation function, which is then changed to tanh in the respective counterparts. Model variants are evaluated across multiple
DP budgets ε, where ε = ∞ translates to non-private training. They are matched by accuracy and F1-score in %, as well
as empirical privacy leakage from MIAs, measured by the membership advantage (AdvM) and given as a 95% CI over 100
attacks. If training resulted in an F1-score of 0.0, no feasible model was derived, making accuracy and attacks obsolete (NA).

ε = ∞ ε = 10 ε = 1 ε = 0.1

Variant %-Acc. %-F1 AdvM %-Acc. %-F1 AdvM %-Acc. %-F1 AdvM %-Acc. %-F1 AdvM

ResNet18

Standard 91.4 89.5 0.22–0.24 71.2 57.8 0.22–0.24 NA 0.0 NA NA 0.0 NA
ImageNet 96.8 95.9 0.25–0.27 85.5 79.4 0.25–0.27 NA 0.0 NA NA 0.0 NA

Pneumonia 92.2 89.8 0.22–0.24 71.5 57.2 0.23–0.25 70.5 54.3 0.22–0.24 71.3 61.4 0.22–0.23
tanh-Standard 85.1 82.8 0.21–0.23 71.8 67.9 0.21–0.23 71.5 62.5 0.20–0.22 68.0 63.0 0.20–0.22
tanh-ImageNet 91.4 89.8 0.22–0.24 57.5 65.2 0.19–0.21 44.5 58.9 0.20–0.22 50.8 61.0 0.19–0.21

tanh-Pneumonia 79.9 78.6 0.21–0.23 73.9 73.1 0.21–0.24 75.2 70.5 0.22–0.24 72.9 65.8 0.21–0.22

ResNet50

Standard 91.6 89.3 0.25–0.27 NA 0.0 NA NA 0.0 NA NA 0.0 NA
ImageNet 95.6 94.4 0.25–0.26 NA 0.0 NA NA 0.0 NA NA 0.0 NA

Pneumonia 91.4 89.6 0.24–0.26 NA 0.0 NA NA 0.0 NA NA 0.0 NA
tanh-Standard 78.8 78.0 0.21–0.23 72.3 63.4 0.22–0.23 70.4 62.9 0.19–0.21 68.6 62.0 0.19–0.21
tanh-ImageNet 88.8 84.9 0.23–0.25 47.9 60.1 0.19–0.21 46.0 59.3 0.19–0.21 50.8 60.7 0.19–0.21

tanh-Pneumonia 81.3 80.1 0.22–0.23 72.0 72.7 0.21–0.23 72.0 72.5 0.21–0.23 73.0 69.4 0.21–0.23

Table 4: Experimental results on the MNIST database. See Table 3 caption for details. F1-score is given as the macro average
over the 10 classes. Pneumonia pre-trained models are omitted from the evaluation, since the tasks are not closely related.

ε = ∞ ε = 10 ε = 1 ε = 0.1

Variant %-Acc. %-F1 AdvM %-Acc. %-F1 AdvM %-Acc. %-F1 AdvM %-Acc. %-F1 AdvM

ResNet18

Standard 99.5 99.5 0.18–0.20 95.9 95.9 0.18–0.20 90.2 90.1 0.19–0.21 24.3 19.9 0.13–0.15
ImageNet 99.5 99.5 0.18–0.20 95.2 95.1 0.18–0.20 38.0 35.2 0.13–0.14 14.7 12.7 0.15–0.17

tanh-Standard 99.2 99.2 0.19–0.22 95.1 95.0 0.20–0.22 92.4 92.3 0.20–0.22 72.6 71.5 0.16–0.18
tanh-ImageNet 99.0 99.0 0.19–0.21 97.8 97.8 0.19–0.20 96.7 96.7 0.19–0.21 90.9 90.8 0.18–0.20

ResNet50

Standard 99.5 99.5 0.19–0.21 16.0 14.5 0.14–0.15 12.7 11.6 0.14–0.16 10.9 9.5 0.15–0.17
ImageNet 98.5 98.5 0.19–0.21 11.2 10.1 0.14–0.16 10.0 8.9 0.15–0.17 9.5 8.0 0.14–0.16

tanh-Standard 99.3 99.3 0.19–0.21 93.3 93.3 0.18–0.20 85.0 84.7 0.20–0.22 27.6 25.4 0.13–0.14
tanh-ImageNet 99.0 99.0 0.19–0.21 97.7 97.7 0.18–0.20 96.6 96.6 0.18–0.20 93.3 93.2 0.18–0.20

which shows the large discrepancy between the theo-
retically assumed worst-case and practice. Simultane-
ously, no model actually trained for ε = 0.1 is able to
conform to the calculated bound. Such inconsisten-
cies can also be found in related work (Yeom et al.,
2018; Jayaraman and Evans, 2019). As an explana-
tion, Yeom et al. (2018) unveil that, the training set er-
ror distributions are not exactly Gaussian in practice,
sometimes leading to better attack performance than
predicted. Even though COVID-19 and MNIST have
rather opposing priors, where the former’s classes are
skewed and the latter’s roughly balanced, we see the
same inconsistencies in both evaluations. Thus, the
given theoretical bound does not seem reliable for de-
riving a limit on the real world threat in our case.

For both COVID-19 and MNIST, the leakage al-
most describes a flat line with just negligible changes
over all privacy settings. We spot a few outliers7,

7On COVID-19 the outliers are both tanh-ImageNet
models, which reduce their leakage from non-private to ε =
10, and the ResNet50 tanh-Standard doing the same from
ε = 10 to ε = 1. There is also one outlier on MNIST, where

that see a bigger drop in leakage risk, which however,
is mainly attributed to their gravely lowered perfor-
mance (>20% F1 loss) and accordingly reduced mem-
orization (Rahman et al., 2018). Even the non-private
models exhibit almost the same leakage as the pri-
vate models and thus, including DP-guarantees does
not imply the expected improvement to practical MIA
proneness. The plateau in privacy leakage can en-
able the use of lesser DP-guarantees, while still pro-
viding the same practical privacy The MNIST models
show to generally leak slightly less than on COVID-
19, leading to stronger privacy needs for COVID-
19. The existing difference in MIA risk between
COVID-19 and MNIST suggests, that privacy estima-
tion can be an important tool for assessing task- and
data-dependent threats from attacks. Thus, such esti-
mates can in turn support tuning trade-offs according
to task-specific privacy needs.

The findings suggest room for utilizing weaker
DP-guarantees on both tasks when defending against
our MIA-specific setting. Practical privacy is already

the Resnet18-tanh-Standard improves privacy at ε = 0.1.
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(a) COVID-19 (b) MNIST

Figure 2: Empirical privacy leakage results from MIAs are given as our 95% CI membership advantage (AdvM) and plotted
across the different privacy budgets. Model variants can be distinguished with the legend. We exclude data points with <50%
F1 because low performance disproportionately reduces leakage. A dotted line shows the DP bound from Yeom et al. (2018).

strong in our less private and even non-private mod-
els. We are thus able to improve the utility-privacy
trade-off on both datasets at no practical privacy cost.
We could introduce even stronger guarantees to pos-
sibly further improve MIA defense, however, this
would lead to an even bigger utility loss and in turn
result in impractical performance.

We want to emphasize that there is still a need
for strong theoretical privacy guarantees (Nasr et al.,
2021). As stated in Section 3.2, ε-guarantees from DP
limit the maximum amount of possible information
leakage. In actual attacks, however, the theoretical
ceiling might differ notably from the practical threat
as shown in this and other works presented in Sec-
tion 3.3. Thus, we would rather choose a COVID-19
model at ε = 10 than at ε = ∞, even though both ex-
hibit almost the same practical privacy levels. The
model at ε = 10 performs better than the one at ε = 1
and, in contrast to ε = ∞, still provides a provable DP
guarantee to limit future adversaries.

7 CONCLUSION

Within this piece of work, we close several open gaps
in the field of private COVID-19 detection from X-ray
images. In comparison to related work on the topic,
we improve data handling regarding imbalances, de-
liver a more robust privacy evaluation, and are the
first to investigate the implications concerning prac-
tical privacy (Müftüoğlu et al., 2020; Zhang et al.,
2021; Ho et al., 2022).

We introduce a selection of yet untested archi-
tectural ML model choices to the COVID-19 task.
Through our evaluation, we are able to compare the
setups in a common environment. Since well-known
practices from non-private training are not always
transferable to DP-SGD training, it is important to

gather a wide range of results for finding the best
models. We are therefore making a noticeable contri-
bution by exploring a range of different architectures
on the COVID-19 and MNIST tasks.

Our practical privacy analysis reveals that assess-
ing attack-specific threats from black-box MIAs in a
practical scenario helps finding appropriate privacy
attributes and can thus improve the utility-privacy
trade-off at no practical cost. On both the COVID-19
and MNIST datasets, we found just minor improve-
ments from the provided theoretical DP-guarantee re-
garding practical defense against our MIAs. Instead,
our tested models almost showed the same strong re-
pelling properties across all privacy levels—even for
non-private models. By confirming this plateau for
both datasets, we are able to reduce the required DP
guarantees for both tasks without sacrificing attack-
specific practical privacy. Our attacks are slightly
more successful on the COVID-19 task, showing that
it needs stricter privacy than MNIST and that prac-
tical privacy analysis is important for identifying the
task-specific initial MIA threat.

We still advocate the use of DP and would not
recommend to risk publishing non-private COVID-19
detection models. Instead, if justified by a practical
privacy analysis, the ε-guarantee can be tuned to a
more favorable utility-privacy trade-off that through
the inclusion of a reasonable DP-guarantee still limits
the worst-case privacy leakage from future attacks.

As a brief outlook into possible future work, it
would be beneficial to extend our evaluation by ap-
plying practical privacy analysis to more datasets, es-
pecially with different underlying tasks. Another ven-
ture could be to derive best practices and ultimately a
taxonomy regarding advantageous architectural deci-
sions when training DP-SGD models.
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Müftüoğlu, Z., Kizrak, M. A., and Yildlnm, T. (2020). Dif-
ferential privacy practice on diagnosis of covid-19 ra-
diology imaging using efficientnet. In INISTA. IEEE.

Nasr, M., Song, S., Thakurta, A., Papernot, N., and Carlini,
N. (2021). Adversary instantiation: Lower bounds for
differentially private machine learning. In S&P. IEEE.

Papernot, N., Thakurta, A., Song, S., Chien, S., and Erlings-
son, Ú. (2021). Tempered sigmoid activations for deep
learning with differential privacy. In AAAI.

Rahman, M. A., Rahman, T., Laganière, R., Mohammed,
N., and Wang, Y. (2018). Membership inference at-
tack against differentially private deep learning model.
Transactions on Data Privacy, 11(1):61–79.

Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Ki-
ranyaz, S., Kashem, S. B. A., Islam, M. T., and
Al Maadeed, S. (2021). Exploring the effect of image
enhancement techniques on covid-19 detection using
chest x-ray images. Comput. Biol. Med.

Salem, A., Zhang, Y., Humbert, M., Fritz, M., and Backes,
M. (2019). Ml-leaks: Model and data independent
membership inference attacks and defenses on ma-
chine learning models. In NDSS. Internet Society.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V.
(2017). Membership inference attacks against ma-
chine learning models. In S&P. IEEE.

Shorten, C. and Khoshgoftaar, T. (2019). A survey on image
data augmentation for deep learning. J. Big Data, 6(1).

Speranskaya, A. (2020). Radiological signs of a new coro-
navirus infection covid-19. Dia. rad. and rad., 11(1).

Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. (2018).
Privacy risk in machine learning: Analyzing the con-
nection to overfitting. In CSF. IEEE.

Zhang, L., Shen, B., Barnawi, A., Xi, S., Kumar, N., and
Wu, Y. (2021). Feddpgan: Federated differentially
private generative adversarial networks framework for
the detection of covid-19 pneumonia. Inf. Syst. Front.

Privacy in Practice: Private COVID-19 Detection in X-Ray Images

633


