
Performance of a K-Means Algorithm Driven by Careful Seeding 

Libero Nigro a and Franco Cicirelli b  
1Engineering Department of Informatics Modelling Electronics and Systems Science, University of Calabria, Rende, Italy 

2CNR-National Research Council of Italy–Inst. for High Performance Computing and Networking (ICAR), Rende, Italy 

Keywords: K-Means Clustering, Seeding Procedure, Greedy K-Means++, Clustering Accuracy Indexes, Java Parallel 
Streams, Benchmark and Real-World Datasets, Execution Performance. 

Abstract: This paper proposes a variation of the K-Means clustering algorithm, named Population-Based K-Means (PB-
K-MEANS), which founds its behaviour on careful seeding. The new K-Means algorithm rests on a greedy 
version of the K-Means++ seeding procedure (g_kmeans++), which proves effective in the search for an 
accurate clustering solution. PB-K-MEANS first builds a population of candidate solutions by independent 
runs of K-Means with g_kmeans++. Then the reservoir is used for recombining the stored solutions by 
Repeated K-Means toward the attainment of a final solution which minimizes the distortion index. PB-K-
MEANS is currently implemented in Java through parallel streams and lambda expressions. The paper first 
recalls basic concepts of clustering and of K-Means together with the role of the seeding procedure, then it 
goes on by describing basic design and implementation issues of PB-K-MEANS. After that, simulation 
experiments carried out both on synthetic and real-world datasets are reported, confirming good execution 
performance and careful clustering. 

1 INTRODUCTION 

K-Means (Lloyd, 1982) (MacQueen, 1967) (Jain, 
2010) is a classical clustering algorithm very often 
used, for its simplicity and efficiency, in such data 
analysis and pattern recognition application domains 
as image segmentation, text analysis, medicine, 
bioinformatics, machine learning and so forth.  

The goal of K-Means is to optimize partitioning 𝑁 
data points 𝑋 = {𝑥௜}௜ୀଵே , e.g. 𝑥௜ ∈ 𝑅஽, in 2 ≤ 𝐾 ≪ 𝑁 
groups (clusters) in such a way that points in a same 
cluster are similar to one another, and points in 
different clusters are dissimilar. The similarity is 
often expressed by the Euclidean distance. Each 
cluster has a representative point which is its centre 
or centroid. K-Means aims to minimize the Sum-of-
Squared Errors (𝑆𝑆𝐸) cost (see later for details), also 
said the distortion index (a sort of internal variance in 
clusters). 

In the last years, K-Means properties were 
thoroughly studied (Fränti & Sieranoja, 2018, 
2019)(Vouros et al., 2021). A critical issue is the 
initialization of centroids (seeding procedure), which 
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can significantly affect the quality of the clustering 
solution. However, fundamental is its local strategy 
of management of centroids which implies K-Means 
often gets stuck in a local sub-optimal solution. More 
sophisticated clustering algorithms like Random 
Swap (Fränti, 2018)(Nigro et al., 2023)  
and genetic/evolutionary approaches (Fränti, 
2000)(Baldassi, 2020, 2022a), try to remedy this 
situation by adopting a global strategy of centroids 
evolution, which can favour the achievement of a 
solution close to the optimal one, although with a 
greater computational cost. 

This paper proposes Population-Based K-means 
(PB-K-MEANS) which borrows ideas from Random 
Swap and the evolutionary algorithm underlying 
Recombinator-K-Means (Baldassi, 2020, 2022a). 
Similarly to Recombinator-K-Means, an initial 
population of representative centroid solutions is 
built, by running classical K-Means together with the 
Greedy K-Means++ (g_kmeans++) (Celebi et al., 
2013)(Baldassi, 2020, 2022a) seeding, which has 
been proved to be effective in generating careful 
(from the point of view of the 𝑆𝑆𝐸  cost) 
configurations of centroids which are locally refined 
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by K-Means. Then, in the same logic of Random 
Swap (Fränti, 2018)(Nigro et al., 2023), K-Means 
with g_kmeans++ is repeatedly executed upon the 
population of solutions, thus combining centroids 
belonging to different solutions, until a satisfying 
solution minimizing the 𝑆𝑆𝐸 cost is achieved. As in 
Random Swap, the more is the number of repetitions, 
greater is the chance of picking a combined solution 
close to the optimal one. 

To cope with the potential inefficiency when 
dealing with large datasets, PB-K-MEANS makes a 
systematic use of parallelism. The tool is currently 
implemented in Java using parallel streams and 
lambda expressions (Nigro, 2022)(Urma et al., 2018), 
thus is capable of exploiting the computing potentials 
of today’s multi/many-core machines. 

The paper reports the experimental results of 
applying PB-K-MEANS to synthetic and non-
synthetic datasets. The simulation results confirm that 
PB-K-MEANS can ensure reliable clustering and good 
execution performance. 

The paper is organized as follows. Section 2 gives 
a review of the background work concerning K-
Means and the role of the seeding methods. The 
section also covers basic concepts of Random Swap 
and Recombinator K-Means, as well as some external 
indexes often used to evaluate the quality of a 
clustering. Section 3 describes the PB-K-Means 
algorithm together with some implementation issues 
in Java. Section 4 proposes an experimental setup for 
PB-K-Means, composed of challenging synthetic and 
real-world datasets, and the results gained by 
practical applications of the tool. The time efficiency 
of the new algorithm is demonstrated too. Finally, 
conclusions are presented with an indication of on-
going and future work. 

2 BACKGROUND 

The following gives a summary of basic concepts of 
clustering by K-Means (Lloyd, 1982) (MacQueen, 
1967) (Jain, 2010) (Vouros et al., 2021), Random 
Swap (Fränti, 2018) (Nigro et al., 2023) and 
Recombinator-K-Means (Baldassi, 2020, 2022a) 
which have influenced the design of the algorithm 
proposed in this paper. 

2.1 K-Means 

The classical version of K-Means is the so-called 
Lloyd’s algorithm illustrated in Alg. 1. In step 1, the 
initial centroids are defined by a seeding procedure 
(e.g., random).  

Step 2 creates partitions of points according to 
current centroids. Each point 𝑥௜  is assigned to the 
cluster 𝐶௝ identified by nearest centroid 𝜇௝: 𝜇௝ = 𝑛𝑐(𝑥௜),  𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛ଵஸ௝ஸ௄(𝑑൫𝑥௜, 𝜇௝൯) 

where 𝑑൫𝑥௜, 𝜇௝൯  denotes the Euclidean distance 
between 𝑥௜ and 𝜇௝. In step 3, centroids are updated as 
the mean point of each cluster:  𝜇′௝ = 1ห𝐶௝ห ෍ 𝑥௜௫೔∈஼ೕ  

Steps 2 and 3 are iterated until a termination criterion 
is met. For example, when the new centroids {𝜇′௝}௝ୀଵ௄  
almost “coincide” with previous ones {𝜇௝}௝ୀଵ௄ , within 
a certain numeric tolerance, convergence is reached 
and K-Means can terminate. Otherwise, termination 
follows after a maximum number of iterations have 
been executed. 

Algorithm 1: The Lloyd’s K-Means. 

Input: the dataset 𝑋 and the number of clusters 𝐾. 
Output: final centroids and associated points partition. 
1. Initialize centroids by some method (e.g., random). 
2. Assign points of 𝑋 to clusters according to the nearest 
centroid. 
3. Update centroids as the mean point of each cluster. 
4. Check termination. If not termination, repeat from 2.

 
An execution of K-Means aims at minimizing the 𝑆𝑆𝐸 cost: 𝑆𝑆𝐸 = ∑ ∑ 𝑑(𝑥௜, 𝜇௝)ଶ௫೔∈஼ೕ ௄௝ୀଵ  with 𝜇௝ = 𝑛𝑐(𝑥௜) 
Practically, the normalized mean of 𝑆𝑆𝐸 , that is 𝑛𝑀𝑆𝐸, can be used:  𝑛𝑀𝑆𝐸 = 𝑆𝑆𝐸𝑁 ∗ 𝐷 

It is worthy of note the difficulty, in general, of 
optimizing the 𝑆𝑆𝐸 (or 𝑛𝑀𝑆𝐸) , due to its highly 
non-convex character. Clustering solutions are then, 
necessarily, approximations of the optimal solution. 

2.2 Seeding Methods 

Centroids should be initialized (Fränti & Sieranoja, 
2018, 2019) (Vouros et al, 2021) so as to not coincide 
with outliers or noise points. Moreover, centroids 
should be far away from each other in order to avoid 
splitting, wrongly, a big cluster into multiple smaller 
clusters. Different ways exist to initialize centroids, 
as reported in the following. 
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Random. Random seeding is the usual default choice. 
In this case, centroids are initialized by uniform, 
randomly selecting K points of the dataset X: {𝜇௝ ← 𝑥௜, 𝑖 = 𝑢𝑛𝑖𝑓_𝑟𝑎𝑛𝑑(1. . 𝑁)}௝ୀଵ௄  

Of course, a random selection does not ensure any 
property of centroids and cost minimization. Only in 
the case centroids are chosen near to the ideal 
position, the solution gets close to the optimal one. 
Therefore, using K-Means with random seeding 
normally requires the algorithm to be repeated a 
certain number of times (Repeated K-Means) so as to 
select, in the end, the solution which minimizes the 𝑛𝑀𝑆𝐸 cost. 

K-Means++. It defines centroids incrementally 
(Arthur & Vassilvitskii, 2007), as indicated in the 
Alg. 2. Let 𝐷(𝑥௜) be the minimal distance of point 𝑥௜ 
from the currently defined 𝐿 centroids, 1 ≤ 𝐿 ≤ 𝐾. 

Algorithm 2: The K-Means++ seeding. 

1. Define the first centroid in a random way: 
    𝜇ଵ ← 𝑥௝, 𝑗 ← 𝑢𝑛𝑖𝑓_𝑟𝑎𝑛𝑑(1. . 𝑁)     𝐿 ← 1 
2. Associate to each point 𝑥௜  the probability of being 
    chosen as the next centroid as: 𝜋(𝑥௜) = 𝐷(𝑥௜)ଶ∑ 𝐷(𝑥௝)ଶே௝ୀଵ  

    Next centroid is a point 𝑥∗ ∈ 𝑋, not previously chosen, 
    selected probabilistically by a random switch based 
    on the values of {𝜋(𝑥௜)}௜ୀଵே  
    𝐿 ← 𝐿 + 1,  𝜇௅ ← 𝑥∗ 
3. If 𝐿 < 𝐾, repeat from step 2. 

 
K-Means++ tends to distribute more evenly the 
centroids in the data space, and guarantees centroids 
are selected far away from each other. 

Greedy K-Means++ (g_kmeans++). It is an 
improvement (Celebi et al., 2013) (Baldassi, 2020, 
2022a) of K-Means++, shown in Alg. 3.  

At each step of a centroid selection, 𝑆 attempts are 
made so as to ensure the next candidate centroid is not 
only distinct and far away from previously chosen 
points, but it will contribute to minimal cost 
increment (the greedy step) in the centroid 
configuration. 

In this work, as in (Baldassi, 2020), the adopted 
value of the parameter 𝑆 is ⌊2 + 𝑙𝑜𝑔𝐾⌋, which is a 
trade-off between the improved seeding and the extra 
computational cost.  
 

 

 

Algorithm 3: The Greedy_K-Means++ seeding. 𝜇ଵ ← 𝑥௝, 𝑗 ← 𝑢𝑛𝑖𝑓_𝑟𝑎𝑛𝑑(1. . 𝑁) 𝐿 ← 1 𝑑𝑜{  costBest ← ∞  candBest ←?  𝑟𝑒𝑝𝑒𝑎𝑡 𝑆 𝑡𝑖𝑚𝑒𝑠 {   select a point 𝑥∗ ∈ 𝑋 with K-Means++ procedure   partition 𝑋 according to {𝜇ଵ, 𝜇ଶ, … , 𝜇௅, 𝑥∗}    cost = 𝑛𝑀𝑆𝐸()   𝑖𝑓(cost < costBest) {    candBest ← 𝑥∗    costBest ← cost   }  }  𝐿 ← 𝐿 + 1  𝜇௅ ← candBest } 𝑤ℎ𝑖𝑙𝑒( 𝐿 < 𝐾 ) 
 
It should be noted that, despite its careful seeding, 

g_kmeans++ has a greater computational cost than K-
Means++ and, as always, it cannot guarantee that 
selected centroids hit the optimal ones. A side benefit, 
though, experimentally observed, is that specific 
centroids, here called “exemplars”, in different 
configurations/runs, can thicken around the optimal 
centroid positions (ground truth). This property can 
purposely be exploited to improve clustering. 

2.3 Random Swap 

The K_Means behaviour is constrained by its initial 
seeding. Centroids are then refined by a local 
strategy. A typical example occurs when, e.g., 
multiple centroids are wrongly associated with a same 
big cluster which is well-separated from smaller 
clusters. The former centroids are unable to move to 
a smaller cluster which is without a centroid. More in 
general, centroids cannot move between clusters far 
away (Fränti & Sieranoja, 2019). What should be 
required is a global strategy to drive centroids 
management. 

Random Swap (Fränti, 2018) initializes centroids 
by random seeding. Then it makes a given number of 
swap iterations. At each swap, a centroid is randomly 
chosen which gets replaced by a randomly selected 
point in the dataset: 𝑐௦  ←  𝑥௜ , 𝑠 = 𝑢𝑛𝑖𝑓_𝑟𝑎𝑛𝑑(1. . 𝐾), 𝑖 = 𝑢𝑛𝑖𝑓_𝑟𝑎𝑛𝑑(1. . 𝑁) 

If the new centroid configuration, locally refined 
by a few K-Means iterations, implies a lesser 𝑛𝑀𝑆𝐸 
cost than the previous configuration, it becomes 
current, and the algorithm continues with the next 
swap iteration. Otherwise, the previous configuration 
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and partitioning are restored and a new swap is 
started. 

For its modus operandi, Random Swap can 
naturally explore all the data space and then is 
capable, with a suitable number of iterations, of 
finding a solution close to the optimal one in practical 
cases (Nigro et al., 2023). 

2.4 Recombinator K-Means 

It is based on an evolutionary algorithm (Baldassi, 
2022a) which maintains a population of individuals 
(configurations), initialized to the whole dataset. New 
generations are then created by a recombination 
mechanism followed by a local optimization through 
K-Means as in Random Swap, until a convergence 
criterion is met. 

More in particular, at each generation, first 𝐽 
centroid configurations (solutions) are created by 
executing 𝐽  times K-Means with g_kmeans++ 
seeding (in reality, an adapted version of 
g_kmeans++ with a weighting mechanism is actually 
used). Each individual centroids configuration, 
refined by a few iterations of Lloyd’s K-Means, is 
kept along with its 𝑆𝑆𝐸 cost. Finally, the population 
is updated by keeping just the 𝐽  best solutions, 
according to their cost, which emerge among 
previous and newly generated solutions.  

Weights, initialized by a uniform vector, mirror 
priorities tied to configurations costs, which are 
updated after each generation, to drive the selection 
process of the next centroid in g_kmeans++. 

The net effect of processing a generation is to 
(re)combine centroid points of different solutions, so 
as to compose new solutions with a lower cost. 

The approach ensures that the average 𝑆𝑆𝐸 cost of 
the population monotonically decreases with the 
advancement of generations, with the population 
which eventually coalesces to a single solution thus 
providing a natural stopping criterion. 

Recombinator K-Means is implemented in Julia 
and has been successfully applied to both synthetic 
and non-synthetic datasets. 

2.5 Accuracy Clustering Indexes 

Besides the 𝑆𝑆𝐸 internal cost, often the quality of a 
clustering solution can also be checked by some 
external measure. An important measure is the 
Cluster Index (𝐶𝐼) proposed in (Fränti et al., 2014). It 
captures the dissimilarity between two centroid 
solutions. The use of 𝐶𝐼  is effective when, e.g., a 
synthetic dataset provided of ground truth (𝐺𝑇) 

information (centroids and/or partitions) is 
considered.  

The 𝐶𝐼 expresses the degree by which an achieved 
solution 𝐶 is close to the 𝐺𝑇. Formally, each centroid 𝜇 in 𝐶 is mapped onto the centroid point of 𝐺𝑇 which 
has minimal distance from 𝜇 . Dissimilarity is then 
computed by the number of points in 𝐺𝑇 (“orphans”) 
upon which no point of 𝐶 is mapped on.  

In a similar way, 𝐺𝑇  is mapped onto 𝐶  and the 
number of orphans in 𝐶  is then counted. The 𝐶𝐼(𝐶, 𝐺𝑇) value is the maximum number of orphans 
in the two ways of mapping. Of course, a 𝐶𝐼 = 0 is a 
precondition for a “correct” clustering solution, that 
is one which is structurally near to 𝐺𝑇.  

When partitions (labels) are provided as ground 
truth (Fränti & Rezaei, 2016), the Jaccard distance 
(Nigro et al., 2023) between two partitions can be 
used for mapping and counting the orphans. 

Obviously, non-synthetic datasets are normally 
without ground truth. Anyway, it can happen that a 
“golden” solution obtained by using some 
sophisticated clustering algorithm can exist, thus 
allowing checking the accuracy, through the 𝐶𝐼, of a 
particular solution achieved by using a specific 
algorithm. 

3 PB-K-MEANS 

The design of Population-Based K-Means (PB-K-
Means) proposed in this paper (see Alg. 4), was 
inspired by Recombinator K-Means (Baldassi, 2020, 
2022a). However, the following are key differences 
between the two algorithms. PB-K-Means rests on the 
basic g_kmeans++ seeding (see Alg. 3). In addition, 
the evolutionary iterations are simply realized by 
Repeated K-Means executions always fed by 
g_kmeans++.  

The Alg. 4 gives a sketch of the two steps of PB-
K-Means which depend on two parameters: 𝐽, which 
is the number of required candidate solutions to 
initialize the population ℘ from the dataset 𝑋, and 𝑅 
which is the number of repetitions of K-Means with 
g_kmeans++ toward the identification of a final 
solution. The notation run(K-Means, g_kmeans++, 
X) indicates that K-Means, with g_kmeans++ seeding, is 
applied to the points of the entire dataset 𝑋. In the step 2, 
K-Means with g_kmeans++ is applied to the solution 
points in the population ℘. The cost 𝑛𝑀𝑆𝐸 is instead 
computed on the 𝑋  dataset points just partitioned 
according to cand (candidate solution or centroids 
configuration) by K-Means. 
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Algorithm 4: The PB-K-Means Operation. 

1. Setup population. 
 initialize ℘ to an empty list 
 𝑟𝑒𝑝𝑒𝑎𝑡 𝐽 𝑡𝑖𝑚𝑒𝑠{ 
  cand ← run (K − Means, g_kmeans++, X) 
  append cand to ℘ 
 } 
2. Recombination.  
 costBest 
 candBest? 
 𝑟𝑒𝑝𝑒𝑎𝑡 𝑅 𝑡𝑖𝑚𝑒𝑠{ 
  candrun (K − Means, g_kmeans++,℘) 
  costnMSE(cand, X) 
  𝑖𝑓( cost < costBest ){ 
   costBestcost 
   candBestcand 
  } 
 } 

From the g_kmeans++ seeding, each solution 
found in the step 1 has, in general, few chances to hit 
the optimal solution but, as anticipated in section 
2.1.1, it can contain “exemplars”, that is centroids 
close to the optimal ones. Exemplars in different 
solutions tend to accumulate in dense regions around 
ground truth centroids. In the step 2, an exemplar in a 
peak has a probability of being selected by 
g_kmeans++ which depends on the numerosity of the 
dense area. On the other hand, when one such an 
exemplar is chosen, the probability of selecting as 
next centroid a point in the same peak area or in its 
nearness is very low because g_kmeans++ ensures 
centroid candidates are far away from each other. As 
a consequence, the 𝑅 repetitions in step 2 have good 
chances of finding a solution close to the optimal one 
in many practical cases (see later in this paper).  

The values of 𝐽  and 𝑅  depend on the handled 
dataset. Roughly speaking, in many cases 𝐽 does not 
need a high value since the careful seeding ensured 
by g_kmeans++. On the other hand, the more are the 𝑅 repetitions, the greater is the probability of hitting 
a solution close to the optimal one. 

When applying PB-K-Means to some challenging 
datasets, the clustering accuracy can possibly be 
improved by generating the population of 𝐽 solutions 
each one extracted as the best one in a batch of few 
repetitions. 

3.1 Implementation Issues 

Current Java implementation of PB-K-Means aims at 
fulfilling the challenging goal of enabling parallel 
execution of as many as possible recurrent operations, 
including the partitioning and the centroids update 

steps of K-Means (see Alg. 1), the calculation of the 𝑆𝑆𝐸 (or 𝑛𝑀𝑆𝐸)  cost, the underlying operations of 
g_kmeans++ and so forth. Toward this, parallel 
streams and lambda expressions (Urma et al., 2018) 
(Nigro, 2022) (Nigro et al., 2023) are used.  

A parallel stream is managed by the fork/join 
mechanism which enables an array/collection like the 
dataset, the population, the centroids vector and so 
forth, to be split into multiple segments, to spawn 
separate threads for the independent processing of the 
various segments and, finally, to combine the results 
provided by the threads. Lambdas expressions are the 
functional units which specify, in a compact and 
effective way, the operations to accomplish on a data 
stream. 

The use of such popular parallelism can be easy to 
use in the practical case, but it requires the designer 
to absolutely avoid the use of shared data in lambda 
expressions which could introduce subtle data 
inconsistency problems thus making useless results. 

PB-K-Means supporting classes include a 
fundamental 𝐺 class which exposes such global data 
as 𝑁  (numerosity of the dataset), 𝐷  (number of 
dimensions of data points), 𝐾  (number of 
clusters/centroids), 𝑆  (accuracy degree of 
g_kmeans++), 𝐽 (population size), 𝑅 (number of runs 
of Repeated K-Means), as well as the available 
seeding methods, and the external names and 
corresponding methods for the dataset, ground truth, 
population and so forth to load. The helper 𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡  class supports common operations like 
the Euclidean distance, provides some reference 
methods (equivalent to lambda expressions) used by 
point stream operations and so forth. 

To give an idea of the actual Java programming 
style, the Alg. 5 portrays an excerpt of the 
kmeans++/g_kmeans++ methods, which concerns the 
calculation of the common denominator (see Alg. 2) 
of the probabilities of points in the dataset to be 
selected as the next centroid. Similar calculations 
occur when processing the population. 

First a stream (a view, not a copy) pStream is 
extracted from the dataset. The value of the G PARALLEL  parameter allows to distinguish if pStream  has be operated in parallel or not. For 
demonstration purposes, the following assumes PARALLEL = true.  
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Algorithm 5: An excerpt of kmeans++/g_kmeans++. 

… 
final int l=L; 
Stream<DataPoint> pStream= 
 (PARALLEL) ? Arrays.stream(dataset).parallel() :  
 Arrays.stream(dataset); 
DataPoint ssd=pStream //sum of squared distances 
 .map( p->{ 
  p.setDist(Double.MAX_VALUE); 
  for( int k=0; k<l; ++k ) { //existing centroids 
   double d=p.distance(centroids[k]); 
   if( d<p.getDist() ) p.setDist(d);  
  } 
  return p; } ) 
 .reduce( new DataPoint(), DataPoint::add2Dist,  
  DataPoint::add2DistCombiner );  
double denP=ssd.getDist();  
//common denominator of points probability 
… 
//random switch 
… 

The intermediate map  operation on pStream 
processes in parallel the points of the dataset, by 
storing into each point p  its minimal distance to 
existing centroids (from 1. . L). This is realized as part 
of the Function  lambda expression of the map 
operation.  

The fact that each point only modifies itself is 
worthy of note, because it avoids modifications of any 
shared data. 

The map operation returns a new stream which is 
operated by the reduce  terminal operation. It is reduce that concretely starts the parallel processing 
which includes the map  executions. The reduce 
operation asks the underlying threads to add, squared, 
the point distances as part of the reference method 
add2Dist of the 𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡 class. The partial results 
of the threads are finally combined, by the reference 
method 𝑎𝑑𝑑2𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑟  of 𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡 , by adding 
them and returning a new 𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡  ssd , whose 
distance field holds the final calculation. 

The calculations in Alg. 5 are then followed by a 
random switch based on the point probabilities, which 
actually selects the (not already chosen) next 
centroid. 

4 EXPERIMENTAL SETUP 

It has been noted in (Fränti & Sieranoja, 2018, 2019) 
that K-Means is well-suited to clustering regular 
datasets with spherical clusters, and that the quality of 
the clustering improves as the overlapping degree 
increases. Cluster overlapping, indeed, facilitates 
centroids movement during the iterations.  

This paper argues that K-Means, and also PB-K-
Means, are more effective when dealing with datasets 
where good clustering corresponds to the 
minimization of the 𝑆𝑆𝐸  cost. Therefore, a more 
approximate solution is to be expected when the 
clustering quality does not follow the cost 
minimization. 

In the following PB-K-Means is applied to two 
classes of datasets: synthetic (benchmark) and non-
synthetic or real-world datasets. Benchmark datasets 
(Repository, 2023) are shown in Table 1. They all 
come with ground truth centroids, except for the 
worms cases which have instead ground truth 
partitions (labels). Differently from (Baldassi, 2020, 
2022a), data are processed in the original unscaled 
format. A description of the used datasets follows. 𝐴3  contains 7500  2-d points distributed around 
50 spherical clusters. 𝑆3  contains 5000 2-d points 
distributed in 15 Gaussian clusters with moderate 
overlap. 

Table 1: Synthetic datasets selected for the experiments 
(Repository, 2023). Dataset N D K𝐴3 7500 2 50𝑆3 5000 2 15𝐷𝑖𝑚1024 1024 1024 16𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒 6500 2 8𝐵𝑖𝑟𝑐ℎ1/2/3 100000 2 100𝑊𝑜𝑟𝑚𝑠_2𝑑 105600 2 35𝑊𝑜𝑟𝑚𝑠_64𝑑 105000 64 25𝐷𝑖𝑚1024  is a high-dimensional dataset with 
1024 points and 16 well-separated Gaussian clusters. 𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒 admits 6500 2-d points distributed in 8 
Gaussian clusters organized in two well-separated 
groups respectively of 2000 and 100 points per 
cluster.  
 

 
 
 
 
 
 
 

 
Figure 1: The 𝐵𝑖𝑟𝑐ℎ3 dataset (Repository, 2023). 𝐵𝑖𝑟𝑐ℎ  datasets contain 105 2-d points which are 

distributed into 100 clusters organized on a 10x10 
grid (𝐵𝑖𝑟𝑐ℎ1), or according to a sine curve (𝐵𝑖𝑟𝑐ℎ2) 
or in an irregular way in 𝐵𝑖𝑟𝑐ℎ3 (see Fig. 1). 𝐵𝑖𝑟𝑐ℎ1 
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and 𝐵𝑖𝑟𝑐ℎ2 have spherical clusters of the same size. 𝐵𝑖𝑟𝑐ℎ3 is very challenging because clusters have a 
random size and occupy random locations. 

Also challenging are the chosen two worm-
shaped datasets. 𝑊𝑜𝑟𝑚𝑠_2𝑑 (see Fig. 2) contains 35 
individual clusters in 2-dimensional space. 𝑊𝑜𝑟𝑚𝑠_64𝑑 contains 25 clusters in 64-dimensional 
space.  

The worm shapes start at a random position and 
move in a random direction. At each step, points are 
drawn from a Gaussian distribution whose variance 
increases gradually with each step. The direction of 
movement is continually altered to an orthogonal 
direction. In the 64𝑑 case, the orthogonal direction is 
randomly selected at each step. 

 

 
 
 
 
 
 
 
 
 

Figure 2: The 𝑊𝑜𝑟𝑚𝑠_2𝑑 dataset (Repository, 2023). 

The group of real-world datasets used for checking 
the PB-K-Means behaviour, is listed in Table 2. All 
of them refer to image data processing. They 
characterize by their high dimensionality and/or the 
high number of required clusters.  

The 𝐵𝑟𝑖𝑑𝑔𝑒 dataset (non-binarized version), the 𝐻𝑜𝑢𝑠𝑒  dataset (8 bits per color version), and the 𝑀𝑖𝑠𝑠 𝐴𝑚𝑒𝑟𝑖𝑐𝑎 dataset (frame 1 vs 2 version) were 
downloaded from the (Repository, 2023) web site. 
These datasets come without ground truth 
information.  

The 𝑂𝑙𝑖𝑣𝑒𝑡𝑡𝑖  dataset, from AT&T Laboratories 
Cambridge, represents a facial recognition case. It 
consists of 40 human subjects of which 10 different 
poses are available. Each image is coded as 64𝑥64 =4096 pixels. The 𝑂𝑙𝑖𝑣𝑒𝑡𝑡𝑖 tested version is provided 
with ground truth information (both centroids and 
partition labels). 

All the execution experiments were carried out on 
a Win11 Pro, Dell XPS 8940, Intel i7-10700 (8 
physical cores + 8 virtual ones), CPU@2.90 GHz, 
32GB Ram, Java 17.  

 
 
 

Table 2: Real-world datasets selected for the experiments. Dataset N D K𝐵𝑟𝑖𝑑𝑔𝑒 4096 16 256𝐻𝑜𝑢𝑠𝑒 34112 3 256𝑀𝑖𝑠𝑠 𝐴𝑚𝑒𝑟𝑖𝑐𝑎 6480 16 256𝑂𝑙𝑖𝑣𝑒𝑡𝑡𝑖 400 4096 40
4.1 A First Example 

As a first case, the 𝐴3  dataset (see Table 1) was 
chosen to compare the performance of PB-K-Means 
to that achievable using classical Repeated K-Means 
under different seeding. 𝐴3 was first investigated by Repeated K-Means (RKM),  separately using Random (RKMR),  K-
Means++ (RKM୏୑ାା)  and Greedy K-Means++ (RKMGKM++)seeding.  

K-Means was repeated 104 times and the minimal 
value of the nMSE  cost (nMSE୫୧୬),  and the 
corresponding CI  value (CI୫୧୬ (୬୑ୗ୉) ), the minimal 
value of the CI (CI୫୧୬) and the corresponding value 
of the cost (nMSE୫୧୬ (େ୍)), the average CI (avg_CI) 
value and the success_rate, that is the number of runs 
in which a CI = 0 was sensed divided by 104, were 
observed.  

 
Figure 3: The 𝐴3 synthetic dataset (Repository, 2023). 

For completeness, the Parallel Execution Time (PET) 
in msec, required by Repeated K-Means to terminate 
its runs was also measured. Results are collected in 
Table 3. 

Table 3: Experimental results about the 𝐴3 dataset. RKMୖ RKM୏୑ାା RKMୋ୏୑ାା nMSE୫୧୬ 2.15E6 1.93E6 1.93E6 CI୫୧୬ (୬୑ୗ୉) 1 0 0 CI୫୧୬ 1 0 0 nMSE୫୧୬ (େ୍) 2.15E6 1.93E6 1.93E6 avg_CI 6.64 4.13 1.64 success_rate 0% 0.04% 5.45% PET(s) 101 163 969 
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Table 5: PB-K-Means results on the synthetic datasets in Table 1. Dataset min (nMSE) CI୫୧୬ (୬୑ୗ୉) min (CI) nMSE୫୧୬ (େ୍) avg_CI success_rate 𝑆3 1.69E9 0 0 1.69E9 0 100% 𝐷𝑖𝑚1024 0.26 0 0 0.26 0 100% 𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒 1.65E7 0 0 1.65E7 0 100% 𝐵𝑖𝑟𝑐ℎ1 4.64E8 0 0 4.64E8 0 100% 𝐵𝑖𝑟𝑐ℎ2 2.26E6 0 0 2.28E6 0 100% 𝐵𝑖𝑟𝑐ℎ3 1.86E8 12 11 1.87E8 13.29 0% 𝑊𝑜𝑟𝑚𝑠_2𝑑 1.75E4 8 6 1.77E4 7.7 0% 𝑊𝑜𝑟𝑚𝑠_64𝑑 2.14E6 0 0 2.14E6 0.95 6% 

As one can see from Table 3, the use of g_kmeans++ 
seeding makes it possible for RKM to outperform the 
cases where kmeans++ or the random seeding are 
adopted. Revealing are the estimates of the average CI and of the success rate. It is confirmed, in all the 
three cases, that for the 𝐴3, the minimum value of the CI always occurs at the minimum of the nMSE cost. 

The results in the column of RKMୋ୏୑ାା coincide 
with the results documented, e.g., in (Baldassi, 2020) 
(Nigro et al., 2023). 

Table 4 reports the results observed when using 
PB-K-Means, e.g., with J = 25  and R = 1  for the 
first step (see Alg. 4), and R = 40 for the second step. 
For the first step, which builds the population of 
solutions, only the PET was annotated. The results of 
the second step indicate that PB-K-Means fully solves 
the 𝐴3  dataset because there is a success-rate of 
100% and the value of CI is always 0. The minimal 
value of nMSE is the same as in the RKMୋ୏୑ାା case. 

Table 4: PB-K-Means results on the 𝐴3 dataset. 

 PB − K − Means, (J = 25, R = 1), R = 40 PET௦௧௘௣ିଵ(s) 2.4 nMSE୫୧୬ 1.93E6 CI୫୧୬ (୬୑ୗ୉) 0 CI୫୧୬ 0 nMSE୫୧୬ (େ୍) 1.93E6 avg_CI 0 success_rate 100% PET௦௧௘௣ିଶ(s) 2.2 

Table 4 also shows the time efficiency of PB-K-
Means with respect to the brute-force approach of 
Repeated K-Means (see Table 3).  

4.2 Synthetic Datasets Results 

Table 5 collects the experimental results observed 
when applying PB-K-Means to the synthetic datasets 
introduced in Section 4 (see Table 1). All these 
datasets have a success_rate of 0% when clustered 

with classical K-Means, as also documented in 
(Fränti & Sieranoja, 2018). 

The 𝑆3, 𝐷𝑖𝑚1024 and 𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒 datasets were 
studied with PB-K-Means by using J = 25 and R = 1 
for the first step (single executions of K-Means with 
g_kmeans++ seeding), and R = 40  for the second 
step (see Alg. 4). The remaining, more challenging, 
datasets were analyzed by using J = 25 with R = 10 
for the first step (each one of the J solutions emerges 
as the best one in a batch of 10 executions), and R =100 for the second step. 

Except for the 𝐵𝑖𝑟𝑐ℎ3  and 𝑊𝑜𝑟𝑚𝑠_2𝑑 , all the 
other synthetic datasets have the lowest value of CI 
(which is synonymous of “correct” clustering) at the 
minimal nMSE  cost. 𝐵𝑖𝑟𝑐ℎ3  and 𝑊𝑜𝑟𝑚𝑠_2𝑑  are 
examples of datasets where good clustering does not 
follow from the optimization of nMSE. This property 
is explored in more detail with Random Swap in 
(N23). 

All the obtained results for 𝐵𝑖𝑟𝑐ℎ3  and 𝑊𝑜𝑟𝑚𝑠_2𝑑  datasets agree with similar results 
reported in (Nigro et al., 2023) and (Sieranoja & 
Fränti, 2019). For example, in (Sieranoja & Fränti, 
2019), using a powerful and efficient clustering 
algorithm based on density peaks (Rodriguez & Laio, 
2014) (Nigro & Cicirelli, 2022), an average value of 7.5 was predicted for the CI value on 𝑊𝑜𝑟𝑚𝑠_2𝑑.  

In (Nigro et al., 2023) it is discussed as 𝑊𝑜𝑟𝑚𝑠_64𝑑 , although the higher dimensionality, 
can be correctly clustered by Random Swap. The 
same result was achieved by PB-K-Means as shown 
in Table 5. 

4.3 Real-World Datasets Results 

For each real-word dataset in Table 2, the minimal nMSE cost was measured by applying PB-K-Means 
with J = 25  and R = 1  for the first step, and R =100 for the second step.  

The results are reported in Table 6, and are in good 
agreement with similar results available in (Baldassi, 

SIMULTECH 2023 - 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

34



2020), where the 𝑆𝑆𝐸 = (𝑁 ∗ 𝐷) ∗ 𝑛𝑀𝑆𝐸  cost was 
adopted. 

Table 6: PB-K-Means results for the real-world datasets in 
Table 2 - (J = 25, R = 1) for the first step, and R = 100 for 
the second step. Dataset min(nMSE)𝐵𝑟𝑖𝑑𝑔𝑒 166.34𝐻𝑜𝑢𝑠𝑒 9.21 𝑀𝑖𝑠𝑠 𝐴𝑚𝑒𝑟𝑖𝑐𝑎 5.22 𝑂𝑙𝑖𝑣𝑒𝑡𝑡𝑖 0.0071
For the 𝑂𝑙𝑖𝑣𝑒𝑡𝑡𝑖 dataset, which is equipped of ground 
truth information, a success_rate of 0%, a CI = 6 at 
the minimum value of nMSE , a minimum CI = 4 
value which occurs at the nMSE of about 0.0072, and 
an average value of CI about 6.91, were measured. 

4.4 Time Efficiency 

The computational efficiency of PB-K-Means  
was checked, in a case, on the non-synthetic 𝑀𝑖𝑠𝑠 𝐴𝑚𝑒𝑟𝑖𝑐𝑎  dataset (see Table 2) using a 
population of J = 25 solutions, and by 100 runs of 
the second step of the algorithm (see Alg. 4), 
separately in parallel (parameter PARALLEL = true) 
and in sequential (PARALLEL = false) mode.  

It is important to note that the two versions of the 
program execute exactly the same operations. 

The total elapsed time tET  (in msec) for the 
parallel case (tET௉) and the serial case (tETௌ), needed 
by the PB-K-Means recombination step to complete, 
were measured as reported in Table 7.  
Table 7: Parallel and sequential elapsed times of PB-K-
Means on 𝑀𝑖𝑠𝑠 𝐴𝑚𝑒𝑟𝑖𝑐𝑎  (8 physical cores+8 virtual 
cores). 𝑀𝑖𝑠𝑠 𝐴𝑚𝑒𝑟𝑖𝑐𝑎 PB-K-Means, 2nd step,  J = 25 , R =100 tETௌ (msec) 3678951 tET௉ (msec) 418883 

The speedup was then estimated as follows:  speedup = tETୗ tET୔⁄ = 3678951 418883ൗ = 8.78. 

5 CONCLUSIONS 

This paper proposes Population-Based K-Means (PB-
K-Means), a new variant of the K-Means algorithm 
(Lloyd, 1982) (MacQueen, 1967) (Jain, 2010) which 
owes to careful seeding provided by Greedy K-
Means++ (g_kmeans++) method (Celebi et al., 2013) 

(Baldassi, 2020). PB-K-Means significantly 
improves the clustering accuracy while ensuring an 
efficient execution. It was inspired by Recombinator 
K-Means (Baldassi, 2020, 2022a), a recent 
evolutionary K-Means algorithm also based on 
g_kmeans++. A key difference from Recombinator 
K-Means is PB-K-Means simplicity.  

PB-K-means is articulated in two steps: in the first 
one a population of 𝐽  solutions (centroid 
configurations) is built using Lloyd’s K-Means with 
g_kmeans++. In the second step, a certain number of 
Repeated K-Means executions with g_kmeans++ are 
used which recombine the population centroids 
toward a careful solution. 

The paper demonstrates the reliable and efficient 
clustering capabilities of PB-K-Means by applying it 
to challenging synthetic and real-world datasets. 

The prosecution of the research aims to address 
the following points. 

First, to port the PB-K-Means implementation 
currently based on Java parallel streams (Nigro, 
2022) (Nigro et al., 2023) (Urma et al., 2018), on top 
of the Theatre actor system (Nigro, 2021) which 
permits a better exploitation of the parallel resources 
offered by modern multi/many-core machines 
(Cicirelli & Nigro, 2022). 

Second, to experiment the population and 
recombination steps of PB-K-Means in the Parallel 
Random Swap tool (Nigro et al., 2023), which is 
expected to require fewer swap iterations while 
providing careful clustering. 

Third, to possibly improve PB-K-Means by 
exploiting concepts from the “refine” seeding 
algorithm proposed in (Bradley and Fayyad, 1998) 
and the pairwise-nearest-neighbor smoothing 
approach described in (Baldassi, 2022b). 
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