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3Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics
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Abstract: Due to the inevitable contamination of thick clouds and their shadows, satellite images are greatly affected,
which significantly reduces the usability of data from satellite images. Therefore, obtaining high-quality image
data without cloud contamination in a specific area and at the time we need it is an important issue. To address
this problem, we collected a new multi-temporal dataset covering the entire globe, which is used to remove
clouds and their shadows. Since generative adversarial networks (GANs) perform well in conditional image
synthesis challenges, we utilized a spatial-temporal GAN (STGAN) to eliminate clouds and their shadows in
optical satellite images. As a baseline model, STGAN demonstrated outstanding performance in peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM), achieving scores of 33.4 and 0.929, respectively.
The cloud-free images generated in this work have significant utility for various downstream applications in
real-world environments. Dataset is publicly available: https://github.com/zhumorui/SMT-CR

1 INTRODUCTION

Cloud and cloud shadow broadly exist in remotely
sensed images(Sudmanns et al., 2020), which limit
the downstream applications relying on optical re-
motely sensed imagery including environmental mon-
itoring(Gure et al., 2009), urban planning(Matwin
et al., 2017), land cover classification(Kussul et al.,
2017)(Garnot and Landrieu, 2021)(Wurm et al.,
2019), etc. Cloud is generated by vast floating water
droplets, and cloud shadow is formed by optical linear
propagation covering. Therefore, authentic reflectiv-
ity information is destroyed within the covered areas.
According to the survey research(Mao et al., 2019),
global cloud cover reaches up to 66%. Many existing
applications rely on clear images, while those that are
polluted with clouds are often excluded. Cloud and
cloud shadow removal of RS images can significantly
improve the utilization of RS data. Over the past few
decades, numerous methods have been proposed to
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address the challenge of thick cloud removal from RS
images. Unfortunately, however, there are not suffi-
cient such baseline datasets and baselines to evaluate
so far. A multi-temporal baseline dataset for cloud re-
moval tasks should meet the following requirements:

1) The dataset should encompass a large number
of samples with global coverage, spanning diverse en-
vironmental conditions such as deserts, oceans, and
lands.

2) To minimize changes in the same geographical
area between remotely sensed (RS) images captured
at different times, the maximum time interval between
RS images should preferably not exceed one month.

3) Real cloudy images often exhibit complex
shape and color compositions, including cloud shad-
ows, which necessitate the use of an accurate cloud
and cloud shadow mask for RS images.

4) Given the variations in cloud cover and other
factors, each sample in the dataset presents a unique
level of difficulty for cloud removal. Therefore, it is
necessary to classify the samples into different levels
of difficulty to accurately evaluate the performance of
the model. To ensure that the dataset encompasses a
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diverse range of difficulties, it is important to include
samples spanning the full spectrum from easy to hard.

Traditional methods for cloud removal, such as
mean and median filters, have been widely em-
ployed to fill in missing regions of multi-temporal
remote sensing images (Helmer and Ruefenacht,
2005)(Ramoino et al., 2017)(Tseng et al., 2008).
However, these methods typically require a large
number of clear images, which may not always be
available. (Ramoino et al., 2017) utilized Sentinel-2
images spanning a period of three months, while the
changes may occur in this long time interval. (Cheng
et al., 2014) uses Markov Random Fields to leverage
spatial and temporal information, the process of find-
ing similar pixels and estimating the cloud-free values
can be time-consuming, and the MRF model requires
significant computational resources for optimization.
Another solution is to use fusion Markov Random
Field optimization for multispectral and multitem-
poral image series (Szirányi and Shadaydeh, 2013),
where instead of learning on differently located im-
age data, the same image position is applied but with
different color bandwidth and time-instant data. If we
do not have historical data about a region, then similar
cases should be found to train a deep learning solution
based on other region instances. In a recent study,
(Zhang et al., 2020) introduced a novel approach
utilizing Convolutional Neural Networks (CNNs) to
address the issue of missing data regions in multi-
temporal images. However, the method highly de-
pends on data, and it cannot reconstruct missing re-
gions without auxiliary temporal information.

Compared to previous methods, generative mod-
els show state-of-art performance while dealing with
image translation(Isola et al., 2017)(Zhu et al.,
2017)(Hettiarachchi et al., 2021)(Sharma et al.,
2019). (Sarukkai et al., 2019) use spatio-temporal
Generative Adversarial Networks to remove clouds
for cloudy image pairs. In order to achieve the desired
level of accuracy and learn the information from other
temporal images, it requires 3 multi-temporal cloudy
images with infrared images. However, large areas in
multi-temporal images are obscured by cloud cover,
which is not ideal for GANs to reconstruct accurate
and real information in training and predicting peri-
ods. To accurately evaluate the performance of mod-
els for cloud removal tasks, we create an enhanced
new dataset from sentinel-2 RS images for cloud and
cloud shadow removal tasks. The main objective
of this work is to construct a larger spatio-temporal
dataset for cloud removal and cloud shadow removal
tasks from satellite images. This dataset is collected
and constructed under specific requirements, cover-
ing global areas with various scenes such as deserts,

oceans, and lands. The time interval between any
spatio-temporal data of the same region does not ex-
ceed one month to prevent changes in the same loca-
tion. The dataset has accurate semantic segmentation
of clouds and shadows and is divided into different
levels of difficulty based on the tasks. The dataset
includes data on various difficulties as much as possi-
ble.

In the next few sections, Section 2 presents the
dataset collection and cleaning, including the prob-
lem definition and cloud detection. In Section 3, the
STGAN strategies and the experiment results are pre-
sented, followed by the evaluation, along with a de-
scription of the relevant models and training and sys-
tem information. Conclusions and future work are
drawn in Section 4.

2 DATASETS COLLECTION AND
CONSTRUCTION

2.1 Problem Definition

We define χ = Rw×h×C as the set of multi-spectral
satellite images of size (w,h) = 256×256 and C = 4
channels (bands). Let

{
X t

l ,Z
t
l

}
t,l be a collection of

random variables X t
l ,Z

t
l . X t

l ,Z
t
l ∈ χ, which represent

a pair of the clear and cloudy image at location l and
time t = 0,1, . . . . These variables have a joint underly-
ing probability distribution p(

{
X t

l ,Z
t
l

}
t,l), which de-

scribes on-the-ground changes over time and the rela-
tionship between clear and cloudy images.

We assume that X t
l changes slowly only over time,

i.e., X t
l ≈ X t−1

l ,∀t,∀l. The effect of cloud cover is the
same over time and at different locations. Our ob-
jective is to learn a model of the conditional distribu-
tion P(X t

l |Zt
l , . . . ,Z

t−T
l ), T = 2 in our dataset. How-

ever, the major challenge in such a case is that X t
l

and Zt
l never both exist, ∀t,∀l, which makes learning

P(X t
l |Zt

l ) difficult.

2.2 Collecting Data From All Over the
World

The dataset consists of two versions: the first version
contains original full images with a resolution of 10m
and 10980x10980 pixels per image, while the second
version consists of cropped images of size 256x256.
The construction process of the improved dataset is
illustrated in Figure 1.

To carry out standard preprocessing, we primarily
rely on Level-1C Sentinel-2A/B satellites. The
granules, also known as tiles, are 100x100 km2
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Figure 1: Dataset Construction Pipeline.

ortho-images in the UTM/WGS84 projection. The
European Space Agency provides a sentinel2 tiling
grid file in KML format, which can be accessed via
the official description available at the following link:
https://sentinel.esa.int/web/sentinel/missions/sentinel-

2/data-products. We utilize the global land mask
tool to verify if the central latitude/longitude of a tile
represents land or sea, as we main aim to eliminate
clouds from land images that contain more activity
information. The geographical distribution of all land
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Figure 2: Distribution of all tiles on the land in the world
map.

Figure 3: Examples from data sets, images from left to right
are temporal cloudy images pairs with t1, t2, and t3 sensing
time, heatmap of infrared images NIRt1 , NIRt2 and NIRt3 ,
clear images.

tiles is presented in Figure 2.
The present study incorporates band concatena-

tion of RGB and IR channels to exploit their comple-
mentary information. Specifically, we employ four
bands: B02, B03, B04, and B08, which have a 10m
resolution in the Sentinel2 L1C-level images. The
TCI image is composed of RGB channels with bands
02, 03, and 04. As for the B08 image, it contains
only one channel, which we concatenate into the RGB
images from the three multi-temporal images. More-
over, we convert the 16-bit images into 8 uint format
with pixel values ranging from 0 to 255. Figure 3 il-
lustrates some examples from the final dataset.

2.3 Cloud Detection

To train and evaluate our model effectively, we need
to establish certain limitations to ensure the quality of
the RS images. One such limitation is to set a lower
bound on the percentage of cloud coverage in each
image. In order to achieve this, we use cloud masks
that guides us in selecting images with a threshold on
the cloud and cloud shadow coverage percentage. To
obtain precise evaluation results, we select only those
images with a cloud coverage percentage greater than
10%. This lower bound ensures that the task is more
challenging and prevents an increase in accuracy that

is deceptive and does not fairly evaluate the model. In
addition, the cloud coverage percentage in real clear
images should be no more than 1%.

To detect clouds, cloud shadows, snow, water, and
null regions, we use the Fmask4.6(Zhu and Wood-
cock, 2012) tool, which is available at the follow-
ing link: https://github.com/GERSL/Fmask. How-
ever, due to the imprecise boundary of cloud shad-
ows, we perform a dilation operation to improve the
accuracy of the assessment. Specifically, we dilate the
cloud shadow mask by three pixels to achieve a bet-
ter estimation of coverage, while no dilation is per-
formed for clouds, snow, or water. The original out-
put cloud mask size is 5490x5490, but to match the
10m resolution of sentinel images, we use the bilin-
ear interpolation method to upscale the mask’s size to
10980x10980.

Figure 4 presents a comparison of the cloud and
cloud shadow masks obtained using the Fmask4.6
tool. From comparison, it is evident that the differ-
ence between the two masks is acceptable for further
tasks.

Figure 4: (1) is a cloudy image with an image size
10980x10980. (2) is the original output from the Fmask
tool which is up-scaled into (3) with an image size equal to
10980x10980.

2.4 Multi-Temporal Land Cover Levels

Spatio-temporal models learn the conditional proba-
bility P(X t

l |Zt
l , . . . ,Z

t−T
l ), T = 2. If a particular re-

gion in an image is occluded, the model can utilize
information from other temporal images in which the
same region is clear. The difficulty of each sam-
ple is different depending on the multi-temporal land
cover. We define Lt

l is the set of land pixels in Zt
l , and

Lt0∪t1∪t2 = Lt0 ∪Lt1 ∪Lt2 represent the multi-temporal
land cover. L has a significant impact on task dif-
ficulty, with a higher value of L resulting in tasks
that are easier to perform. We classify images in our
dataset into different multi-temporal land cover levels
from 0-100, figure 5 shows the distribution of multi-
temporal land cover levels.
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Figure 5: Distribution of multi-temporal land cover levels.

2.5 Cropped Images Dataset from
Diverse Regions

In addition to the original dataset with ultra-high res-
olution, we collected 57474 image crops with size
256x256 from 294 regions around the world for the
purposes of training and evaluating. The distribution
of the collected image pairs can be seen in Figure 6,
which shows the geographical locations of the images
on a world map.

Figure 6: Distribution of the collected image pairs in the
world map.

3 EXPERIMENT RESULTS WITH
STGAN

3.1 STGAN

The process of removing clouds and cloud shadows
from an image can be conceptualized as an image-
to-image translation problem, for which Pix2pix(Isola
et al., 2017) is a versatile conditional adversarial net-
work commonly employed in various image transla-
tion domains. To address this task, we have opted
for STGAN (Sarukkai et al., 2019), an extension of
Pix2pix that supports multiple input channels. In

Figure 7, we present the fundamental architecture of
STGAN.

Figure 7: The fundamental architecture of STGAN, in with
multiple Encoder-Decoder modules support multi-temporal
images as input.

Typically, the model training process on the
dataset requires 24 days using two Nvidia RTX3090
GPUs. Because model training is time-consuming on
the entire dataset, we randomly sample 2572 image
crops to create a subset of the data.

3.2 Hyper Parameters Setup

In contrast to a normal GAN discriminator, which
maps a 256x256 image to a single scalar output, a
PatchGAN maps a 256x256 image to an NxN array.
Latter requires fewer parameters and can handle im-
ages of arbitrary sizes. The Table 1 shows hyperpa-
rameters settings.

GANs with a conditional architecture are capable
of learning a function that maps from an observed im-
age x and a random noise vector z to an output y. This
function can be represented as G: x, z → y.

The objective function of spatio-temporal mod-
els(Isola et al., 2017) can be expressed as:

LcGAN(G,D) = Ex,y[logD(x,y)]+
Ex,z[log(1−D(x,G(x,z)))]

(1)

Where G and D denote the generator and discrim-
inator, respectively. L1 distance is:

LL1(G) = Ex,y,z[||y−G(x,z)||1] (2)

The final objective is:

G∗ = arg min min
G

max
D

LcGAN(G,D)+LL1(G) (3)

The final objective contains two parts, the first one
is the objective of cGAN, and the second part is used
to constrain the difference between fake and real im-
ages.
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Table 1: Hyperparameter Settings for STGAN Model.

Batch size GAN Loss Initial Learning Rate Iteration Generator Discriminator
20 vanilla 0.0002 400 resnet 9blocks PatchGAN
Beta 1 Lr Policy Load Size Crop Size Pool Size Norm
0.5 linear 286x286 256x256 50 batch

Figure 8: Training loss curves with 300 epochs on our own
datasets, including CGAN, L1 distance, D real and D fake.

3.3 Model Training and Model
Evaluation

We divided the 2572 image pairs into training, vali-
dation, and testing datasets at an 8:1:1 ratio, respec-
tively. Figure 8 illustrates the loss curves observed
during the model’s training process.

The SSIM(Wang et al., 2004) and PSNR metrics,
acquired from the Tensorflow library, were used to
evaluate the model. In which PSNR is a widely-used
metric for image quality assessment that gauges the
fidelity of a reconstructed image with respect to the
original cloud-free image. It is defined as follows:

PSNR = 10 · log10(
MAX2

I
MSE

) (4)

Mean-squared error (MSE) is defined as follows:

MSE =
1

mn

m

∑
i=1

n

∑
j=1

[I(i, j)−P(i, j)]2 (5)

Where I and P denote real cloud-free images and pre-
dicted images, m, and n are the height and width of
the images, respectively.

To achieve a more precise assessment of the
model’s performance during the training process, we
saved the model weights every five epochs. Figure 9
showcases the evaluation results on the test dataset,
using the PSNR and SSIM metrics for assessment.
Significantly, the model that exhibited the most ex-
ceptional performance attained a SSIM of 0.929 and
a PSNR of 33.4 at epoch 290.

Figure 10 shows the experimental results on
STGAN, including four arbitrarily chosen examples.
The first three columns of each example showcase the
temporal cloudy images captured at different times

Figure 9: Evaluation results on test data set with model
weights from 0 to 400 epochs.

Figure 10: Results of learned many-to-one mapping to gen-
erate cloud-free images given a sequence of cloudy images.

(t0, t1, and t2, respectively), while the fourth column
displays the corresponding predicted images. The last
column exhibits the authentic clear images.

4 CONCLUSIONS AND FUTURE
WORK

In this work, we build a new, global, and spatio-
temporal dataset in two versions with image size of
10980x10980 and 256x256. We have randomly se-
lected 2572 images from a total of 57474, and par-
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titioned them into the train, validation, and test sets
with percentages of 0.8, 0.1, and 0.1 respectively.
The STGAN model shows the state-of-the-art perfor-
mance in our dataset. The PSNR and SSIM reach up
to 33.4 and 0.929 respectively. We hope our dataset
will be widely used, which makes more satellite data
used for further research and applications. We have
made our dataset publicly available at the following
link: https://github.com/zhumorui/SMT-CR.

Our future work will focus on dealing with im-
ages on entire images, as opposed to cropped images.
By processing entire images, we can effectively uti-
lize global spatio-temporal information, while avoid-
ing the risk of errors that may occur at the edges of
cropped images. Furthermore, we will test and com-
pare the different state of art networks on our dataset.
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