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Abstract: Network intrusion detection systems are one of the key elements of any cybersecurity defensive system. Since
these systems require processing a high volume of data, using deep learning models is a suitable approach for
solving these problems. But, deep learning models are vulnerable to several attacks, including evasion attacks
and poisoning attacks. The network security domain lacks the evaluation of poisoning attacks against NIDS. In
this paper, we evaluate the label-flipping attack using two well-known datasets. We perform our experiments
with different amounts of flipped labels from 10% to 70% of the samples in the datasets. Also, different ratios
of malicious to benign samples are used in the experiments to explore the effect of datasets’ characteristics.
The results show that the label-flipping attack decreases the model’s performance significantly. The accuracy
for both datasets drops from 97% to 29% when 70% of the labels are flipped. Also, results show that using
datasets with different ratios does not significantly affect the attack’s performance.

1 INTRODUCTION

Machine Learning has been extensively used in au-
tomated tasks and decision-making problems. There
has been tremendous growth and dependence on us-
ing ML applications in national critical infrastruc-
tures and critical areas such as medicine and health-
care, computer security, spam, malware detection, au-
tonomous driving vehicles, unmanned autonomous
systems, and homeland security (Duddu, 2018). Deep
learning has shown promising results in machine
learning tasks in recent years. But, Recent studies
show that machine learning, specifically deep learn-
ing models, are highly vulnerable to adversarial ex-
amples either at training or at test time (Biggio and
Roli, 2018).

There are different kinds of attacks against
deep learning models both in the training and test
time, such as membership inference attack (Shokri
et al., 2017; Hu et al., 2022), model inversion at-
tack (Fredrikson et al., 2015), evasion attack (Szegedy
et al., 2013), and poisoning attack (Tian et al., 2022).
In a membership inference attack, the attacker aims
to break the model’s privacy and determine if a spe-
cific record is part of the model’s training set. These
attacks are significant when working with private data
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such as health or financial-related information of the
people (Truex et al., 2018; Choquette-Choo et al.,
2021). The model inversion attack is close to the
membership inference attack and aims to extract sen-
sitive features of the training samples (Zhang et al.,
2020). An evasion attack happens during the test
phase. It aims to fool the trained deep learning model
and bypass the detection by crafting adversarial ex-
amples by making small changes to the original sam-
ples of the dataset (Goodfellow et al., 2014). One of
the first attempts to make this attack was in (Dalvi
et al., 2004), where they studied this problem in spam
filtering. Attackers can also affect the model’s perfor-
mance during the training phase, such as poisoning
attacks where they try to inject poisoned data into the
training set (Wang et al., 2022).

In recent years deep learning has shown its poten-
tial in the security area, such as malware detection and
intrusion detection systems (NIDS). A NIDS aims to
distinguish between benign and malicious behaviors
inside a network(Buczak and Guven, 2015). With
the rapid growth of network traffic, interest in using
deep learning-based anomaly detection methods has
increased. These techniques can provide more effi-
cient and flexible approaches in the presence of a high
volume of data (Tsai et al., 2009; Gao et al., 2014;
Ashfaq et al., 2017).

As mentioned earlier, deep learning models are
vulnerable to attacks. Two major categories of these
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attacks in the network domain are poisoning and eva-
sion attacks (Peng et al., 2019). In the poisoning at-
tack, the goal is to manipulate the training data and
degrade the model performance. In contrast, the eva-
sion attack happens during the test phase, and the at-
tacker aims to fool the DNN model by making small
changes to the samples (Pitropakis et al., 2019).

The main contributions of this paper can be sum-
marized as follows:

• This paper evaluates the poisoning attack through
label flipping in the network attack classification
problem.

• Two well-known, and comprehensive datasets,
namely CSE-CIC-IDS2018 and CIC-IDS2017
(Sharafaldin et al., 2018) were used for our de-
tailed experiments.

• To understand the relation between the amount
of flipped labels and datasets’ characteristics with
the attack’s effect on the trained model, several
experiments in different settings were performed.

The rest of this paper is organized as follows: Sec-
tion three reviews the related works, and Section four
describes the proposed method. Section four presents
the experimental settings, and Section six contains a
detailed analysis discussion of the results. Section
seven concludes the paper.

2 RELATED WORKS

There are different adversarial attacks for machine
learning phases. Poisoning attacks are applied during
the training phase and include manipulating training
data (Schwarzschild et al., 2021). One of the poi-
soning attack methods is data injection. In data in-
jection, the attacker injects malicious inputs into the
training set to affect the model’s decision boundaries.
In a label-flipping attack, the labels of the samples in
the training set are changed while the features are re-
mained unchanged (Tabassi et al., 2019).

The attacks during the test phase are called eva-
sion attacks. Evasion attacks aim to craft malicious
inputs that can fool trained machine-learning models.
These crafted inputs are called adversarial examples.
These examples can fool deep learning models into
making wrong decisions, while a human observer can
correctly classify these examples (Goodfellow et al.,
2014; Papernot et al., 2017). Goodfellow et al. pro-
posed a fast and simple method for generating adver-
sarial examples. They called their method Fast Gra-
dient Sign Method(FGSM) (Goodfellow et al., 2014).
Some other well-known evasion attack methods are
JSMA (Papernot et al., 2016), C&W attack (Carlini

and Wagner, 2017), and Deepfool (Moosavi-Dezfooli
et al., 2016).

Most research on adversarial attacks in the net-
work domain focuses on evasion attacks. One of
the first attempts to perform an evasion attack on
network datasets was in (Warzyński and Kołaczek,
2018). They used the FGSM technique to generate
adversarial examples on the NSL-KDD dataset dur-
ing test time. In (Wang, 2018), Wang did compre-
hensive experiments on the NSL-KDD dataset using
FGSM, JSMA, Deepfool, and C&W techniques and
also measured the effect of the different selected fea-
tures on evasion attack success.

To the best of our knowledge, few works focus on
adversarial attacks during the training phase for ma-
chine learning-based network intrusion systems. In
(Apruzzese et al., 2019), Apruzzese et al. made a
label-flipping attack against a botnet dataset. In their
attack, they selected existing malicious samples and
slightly changed the value of three features, including
duration, exchanged bytes, and total packets. Then
flipped the label to benign. They performed the at-
tack against Random Forest, Multi-layer Perceptron,
and KNN. Their experiments show that the model per-
formance drops significantly after the poisoning at-
tack. Papadopoulos et al. made a label-flipping attack
against SVM based model for the Bot-IoT dataset (Pa-
padopoulos et al., 2021). They sorted the samples
based on their distance from the SVM hyperplane and
flipped the one with a smaller margin to the hyper-
plane. Their experiments showed that random and tar-
geted attacks severely affect the classification metrics.

One of the main areas for improvement of the
previous works is focusing on traditional machine-
learning techniques for performing adversarial deep-
learning attacks. Also, in most cases, researchers used
simple and outdated datasets for experimental analy-
sis and evaluation of their proposed models.

3 PROPOSED MODEL

This section explains our model for performing the
label-flipping attack against the NIDS. To execute the
attack scenario, first, we need to train the target model
on the selected datasets and conduct the proposed
label-flipping attack.

Figure 1 shows the relation of the evasion and
poisoning attack concerning the machine learning
pipeline. Evasion attack uses the trained model and
original samples from the dataset to generate adver-
sarial examples for fooling the deep learning model.
But, the poisoning attack happens before the training
phase by changing the training set.
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Figure 1: Adversarial Attack in Machine Learning.

3.1 Training the DNN Target Model

First, we train our DNN model for classifying differ-
ent network attacks. We train a multi-layer perceptron
with two hidden layers, each of them containing 256
neutrons. During the training, the inputs are 76 fea-
tures of each network flow, and the outputs are differ-
ent probability values for each attack type and benign
flow. We used RelU as our activation function and
a Dropout layer with 0.2 probability in both hidden
layers.

3.2 Label Flipping Attack

In the label-flipping attack, the attacker’s goal is to
change the labels of the samples in the training set to
decrease the performance of the deep learning model.
There are two steps in this attack. First, select the
subset of training samples and then flip the labels of
selected samples.

In probability sampling, each record in the dataset
has the same possibility of being selected. The are
four main types of probability sampling (McCombes,
2022).

• Simple Random Sampling. In this method, each
record has an equal chance of being selected. The
whole population is the sampling frame, and each
sample is selected with the same probability.

• Systemic Sampling. In systemic sampling, sam-
ples are selected at regular intervals starting from
a random start point. Since we specified the sam-
ple from a list with the same intervals, we should
be careful that there is no hidden pattern in the
provided list which may cause the sample to be
skewed.

• Stratified Sampling. This method divides the
population into subgroups (strata) based on their
relevant characteristics. The number of samples
that should be selected from each subgroup is cal-
culated based on the population proportion they

Figure 2: Different Probability Sampling Methods (Mc-
Combes, 2022).

include. Then, the samples are chosen using one
simple or systemic sampling method.

• Cluster Sampling. In cluster sampling, the pop-
ulation is divided into subgroups, but each subset
should have the same characteristics as the whole
sample. Then, either an entire cluster is selected
as the sample, or one of the other sampling meth-
ods is used to choose samples from the selected
cluster.

Since we want to have samples from all the classes
in the label-flipping attack using stratified sampling
seems appropriate. We divide the training set sam-
ples into subgroups based on their class label and use
simple random sampling to select samples from each
subgroup. Then, we change the selected sample label
to any label other than its actual label.

4 EXPERIMENTS

First, we train our DNN model for classifying net-
work attacks in the selected datasets and demonstrate
the classifier’s performance. Then, the label-flipping
attack is performed using the above procedure. To
better understand the attack, we start with flipping 10
percent of the labels and go up to 70 percent. In each
step, we keep the previously flipped labels and select
another 10 percent of actual labels to do the label flip-
ping. We do the attack for different percentages of
the flipped labels ten times and report our results’ av-
erage and standard deviation. Also, from those ten
various experiments, the one with the less effect on
the model’s performance is selected and used in the
next step.

In the selected datasets, the ratio of malicious to
benign traffic is 20 percent to 80 percent. To evalu-
ate the effect of different ratios on the deep learning
model performance in the presence of label flipping
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Table 1: Records in CIC-IDS2017 dataset.

Attack Name Number of Records
Benign 2271320
DDoS 128025

PortScan 158804
Botnet 1956

Infiltration 36
Web Attack-Brute Force 1507
Web Attack-Sql Injection 21

Web Attack-XSS 652
FTP-Patator 7935
SSH-Patator 5897

DoS GoldenEye 10293
DoS Hulk 230124

DoS Slowhttp 5499
Dos Slowloris 5796

Heartbleed 11

attack, we adjust the balance between the malicious
and benign traffic from 20-80 to 30-70, 40-60, 50-
50, 60-40, 70-30, and 80-20 in the preformed experi-
ences.

4.1 Dataset

CIC-IDS2017 (Sharafaldin et al., 2018) and CSE-
CIC-IDS2018 are used to train the DNN model and
perform the label-flipping attack. Each dataset con-
tains several network attacks. CSE-CIC-IDS2018 is
an extension to CIC-IDS2017 and contains the same
kind of attacks. They extracted more than 80 net-
work traffic features from their datasets using CI-
CFlowMeter (Lashkari et al., 2017) and labeled each
Flow as benign or attack name. The details of these
two datasets can be found in Table 1 and Table 2.

4.2 Target Model Training

We train a DNN model on both datasets and compare
its performance with other machine learning tech-
niques. The DNN model is a simple multi-layer per-
ceptron. Table 3 shows the results, which present that
our model has comparable performance with other
machine learning models.

5 ANALYSIS AND DISCUSSION

In this Section, we will analyze the experimental
results and compare the findings for the selected
datasets with different percentages of the flipped la-
bel and malicious to benign ratio.

Table 4 presents the results for the CIC-IDS2017
dataset. The first main row is the classifier’s perfor-
mance without label flipping, and each sub-row is for
the different ratio of the malicious to benign traffic in

Table 2: Records in CSE-CIC-IDS2018 dataset.

Attack Name Number of Records
Benign 13390249

Bot 286191
Infiltration 160639

Brute Force-Web 611
Brute Force-XSS 230

SQL Injection 87
FTP-BruteForce 193354
SSH-BruteForce 187589
DoS GoldenEye 41508

DoS Hulk 461912
DoS Slowhttp 139890
Dos Slowloris 10990

DDoS LOIC-HTTP 576191
DDoS LOIC-UDP 1730

DDoS HOIC 686012

Table 3: Results of the Classifiers.
Machine Learning IDS2017 IDS2018

Techniques F1-score PC RC F1-score PC RC
DT 99.84 99.76 99.92 97.70 99.73 96.14

Naive Bayes 28.47 32.43 73.75 48.29 49.48 72.79
LR 36.71 39.76 34.96 57.97 64.13 56.84
RF 96.58 99.79 94.24 94.23 99.81 90.97

DNN (Our) 97.99 92.98 88.09 97.97 97.51 97.46

the dataset. The other main rows are label-flipping at-
tack results with varying percentages of flipped labels
from 10 to 70.

As shown in Table 4, increasing the percentage
of flipped labels decreases the performance of the
deep learning model. The average accuracy is 98.06%
without flipped labels, dropping to 29.25% when 70
percent of the labels are flipped. Figure 3 shows the
model’s performance for the dataset with the 20-80
ratio and different percentages of the filliped label.
All four metrics drop significantly when the percent-
age increases from 10 to 70.

With the same percentage of the flipped labels,
when we change the ratio of malicious to benign sam-
ples, the accuracy stays almost the same, but the re-
call and F1-score increase. In the beginning, when
the distribution is 20-80, most of the selected labels
for flipping attacks are from the benign class, and the
number of actual benign samples is high enough for
the model to learn and detect them. But, with chang-
ing the training dataset toward increasing the ratio of
malicious samples, the model’s ability to detect the
benign samples in the presence of label flipping at-
tack drops while its performance for other classes in-
creases, and since in the multi-class classification, the
average is used to calculate the recall, this metric will
increase. Figure 4 shows the results for the attack with
40% flipped labels with different malicious to benign
ratios. As it is clear, with changing the distribution,
accuracy stays almost without change, but recall and
F1-score increase.

The same experiments have been done for the
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Table 4: CIC-IDS2017 Results.
Selected Labels Ratio Accuracy Precision Recall F1-score

0

20-80 97.66 95.47 87.82 89.84
30-70 98.05 95.83 87.52 89.99
40-60 97.94 93.97 91.06 91.72
50-50 98.14 95.22 94.59 94.82
60-40 97.93 96.38 91.99 93.68
70-30 98.17 97.03 90.28 92.82
80-20 98.55 95.62 94.64 94.84

10

20-80 88.08±0.21 77.62±1.57 38.44±0.37 43.28±0.38
30-70 87.94±0.20 79.28±2.53 43.46±0.12 48.60±0.15
40-60 87.84±0.16 78.90±2.58 46.80±0.16 52.25±0.26
50-50 87.87±0.08 79.37±0.52 49.29±0.12 54.91±0.19
60-40 87.99±0.02 78.76±0.48 51.69±0.12 57.50±0.19
70-30 88.26±0.03 81.68±4.19 53.52±0.06 59.41±0.07
80-20 88.55±0.06 79.50±2.27 55.72±0.81 61.53±0.72

20

20-80 78.03±0.06 66.42±3.32 30.86±0.27 33.62±0.17
30-70 77.96±0.17 69.91±0.71 35.49±0.20 38.07±0.20
40-60 77.86±0.06 70.35±2.06 38.48±0.08 41.23±0.12
50-50 77.98±0.06 70.02±0.80 40.68±0.12 43.62±0.21
60-40 78.15±0.02 70.20±0.64 42.55±0.12 45.73±0.20
70-30 78.43±0.03 70.43±0.52 44.17±0.06 47.63±0.10
80-20 78.64±0.04 70.65±0.20 45.38±0.04 49.07±0.04

30

20-80 68.23±0.7 58.05±2.74 26.33±0.14 27.75±0.13
30-70 68.09±0.04 60.57±2.93 30.64±0.08 31.34±0.09
40-60 68.07±0.06 61.39±1.51 33.41±0.04 33.99±0.12
50-50 68.22±0.02 61.59±0.66 35.53±0.9 36.15±0.17
60-40 68.36±0.02 61.08±0.44 37.25±0.04 38.06±0.07
70-30 68.59±0.02 61.80±0.44 38.54±0.06 39.50±0.11
80-20 68.80±0.02 61.68±0.16 39.51±0.02 40.76±0.03

40

20-80 58.48±0.07 47.42±1.67 22.77±0.08 23.05±0.03
30-70 58.29±0.08 52.06±2.63 26.67±0.14 26.10±0.07
40-60 58.34±0.05 50.18±2.47 29.43±0.05 28.38±0.09
50-50 58.40±0.03 52.86±1.49 31.37±0.04 30.07±0.07
60-40 58.57±0.04 51.92±1.44 32.97±0.08 31.63±0.15
70-30 58.77±0.02 53.22±0.48 34.17±0.04 32.98±0.06
80-20 58.94±0.04 52.78±0.30 34.89±0.05 33.98±0.08

50

20-80 48.69±0.03 39.01±0.1 19.69±0.11 18.84±0.06
30-70 48.54±0.07 41.13±2.71 23.18±0.14 21.51±0.05
40-60 48.58±0.04 40.08±1.58 25.84±0.03 23.43±0.05
50-50 48.65±0.02 43.70±2.17 27.66±0.02 24.83±0.03
60-40 48.76±0.02 42.24±1.62 29.12±0.05 26.09±0.11
70-30 48.96±0.02 53.22±0.48 34.17±0.04 32.98±0.06
80-20 49.07±0.04 43.98±0.18 30.68±0.04 27.96±0.05

60

20-80 38.96±0.02 31.19±0.23 17.00±0.05 14.96±0.05
30-70 38.84±0.04 32.04±1.45 19.93±0.13 17.19±0.07
40-60 38.90±0.04 31.64±0.12 22.30±0.02 18.82±0.05
50-50 38.95±0.02 33.49±2.02 23.98±0.01 20.00±0.03
60-40 39.03±0.01 32.83±1.51 25.27±0.01 20.96±0.02
70-30 39.13±0.03 33.54±1.54 26.13±0.05 21.79±0.10
80-20 39.20±0.03 34.97±0.16 26.48±0.02 22.37±0.04

70

20-80 29.22±0.06 22.91±1.22 14.41±0.1 11.13±0.09
30-70 29.15±0.03 24.40±2.94 16.65±0.05 12.94±0.11
40-60 29.17±0.02 23.80±0.11 18.84±0.06 14.19±0.07
50-50 29.25±0.01 25.03±1.84 20.00±0.01 15.21±0.02
60-40 29.27±0.02 25.55±2.86 21.03±0.01 15.93±0.03
70-30 29.35±0.01 25.19±1.37 21.69±0.01 16.52±0.02
80-20 29.40±0.02 27.02±2.93 21.92±0.02 16.95±0.06
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Figure 3: CIC-IDS2017 Results for Dataset with 20-80 Ma-
licious to Benign Ratio.

CSE-CIC-IDS2018 dataset, and the results are re-
ported in Table 5. The percentage of flipped labels
are increased from 10 to 70, and for each value, the
experiments are done with different ratio of the ma-
licious to benign samples. Similar to the results of
the CIC-IDS2017 dataset, the model’s performance
drops when the percentage of the flipped labels is in-
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Figure 4: CIC-IDS2017 Results with 40% Flipped Labels.

creased. The average accuracy drops from 97.36%
with no flipped labels to 29.2% when 70% of the la-
bels are flipped. In Figure 5, decreasing performance
metrics are clearly shown for the dataset with the 20-
80 ratio.

The results for each percentage of the flipped label
are the same as CIC-IDS2017. The accuracy stays al-
most unchanged, and the F1-score and recall increase
significantly. In Figure 6, you see how accuracy, pre-
cision, recall, and F1-score change when the ratio of
the dataset changes from 20-80 to 80-20.

Analysis and comparison of the results for both
datasets show that, as expected, the label-flipping at-
tack severely affects the deep learning model. In-
creasing the number of flipped labels decreases the
model’s performance significantly. Also, the accuracy
stays the same with changing the ratio of the samples
in the dataset. But, some improvements happen in re-
call and F1-score.

6 CONCLUSION

With the increase of using deep learning models in
network security problems, these models’ vulnerabil-
ities have gained more attraction among researchers.
Deep learning models are susceptible to several at-
tacks, including evasion attacks and poisoning at-
tacks. Many works tried to evaluate evasion attacks
in the network security domain, but there needs to be
studied regarding poisoning attacks.

This paper investigates the effect of label-flipping
attacks in the network domain. CSE-CIC-IDS2018
and CIC-IDS2017 (Sharafaldin et al., 2018), two
well-known network intrusion detection datasets, are
selected for performing the label-flipping attack. Af-
ter the preprocessing step, we trained a DNN model
as the target model for the attack. We select a subset
of samples in each step using stratified sampling to
flip the labels. The attack was made by changing the
percentage of the flipped labels from 10 to 70 for the
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Table 5: CSE-CIC-IDS2018 Results.
Selected Labels Ratio Accuracy Precision Recall F1-score

0

20-80 95.87 91.53 81.64 83.58
30-70 98.27 91.80 88.69 89.48
40-60 97.96 91.13 92.03 90.97
50-50 97.66 91.71 92.17 91.51
60-40 97.71 92.46 94.02 92.82
70-30 97.05 92.19 92.41 91.81
80-20 97.01 92.54 94.07 92.94

10

20-80 88.71±0.27 82.66±0.74 46.49±0.62 53.16±0.44
30-70 88.32±0.15 82.75±0.52 55.61±0.34 60.11±0.31
40-60 87.90±0.16 82.62±0.51 59.22±0.33 62.81±0.38
50-50 87.48±0.21 82.79±0.58 61.96±0.16 64.95±0.29
60-40 87.91±0.04 83.17±0.25 65.58±0.09 68.60±0.12
70-30 87.26±0.08 83.09±0.41 65.94±0.27 68.57±0.38
80-20 87.29±0.05 83.65±0.36 68.27±0.10 70.69±0.13

20

20-80 78.87±0.19 73.21±0.42 35.69±0.49 41.71±0.36
30-70 78.40±0.11 73.41±0.39 44.97±0.12 49.20±0.15
40-60 78.15±0.03 73.31±0.31 49.42±0.08 52.50±0.11
50-50 77.86±0.08 73.56±0.37 52.51±0.18 54.90±0.18
60-40 78.05±0.4 73.91±0.17 55.87±0.08 57.90±0.13
70-30 77.47±0.07 73.66±0.37 57.09±0.10 58.46±0.15
80-20 77.56±0.05 74.34±0.38 59.30±0.10 60.55±0.14

30

20-80 68.99±0.16 63.49±0.90 28.79±0.27 33.39±0.34
30-70 68.63±0.06 64.59±0.32 37.44±0.02 40.83±0.06
40-60 68.36±0.11 64.40±0.39 41.83±0.13 44.15±0.18
50-50 68.03±0.14 64.38±0.19 45.00±0.16 46.49±0.18
60-40 68.27±0.02 64.58±0.21 48.41±0.04 49.38±0.07
70-30 67.76±0.09 64.48±0.15 49.93±0.12 50.14±0.13
80-20 67.79±0.08 64.77±0.16 51.96±0.10 51.99±0.16

40

20-80 58.98±0.44 54.21±1.12 23.40±0.71 26.45±0.88
30-70 58.81±0.02 55.24±0.26 31.35±0.04 33.64±0.06
40-60 58.53±0.09 55.21±0.29 35.38±0.11 36.75±0.11
50-50 58.31±0.03 55.18±0.18 38.59±0.05 39.10±0.09
60-40 58.49±0.07 55.64±0.33 41.79±0.08 41.70±0.07
70-30 58.04±0.10 55.28±0.05 43.44±0.15 42.61±0.16
80-20 58.11±0.03 55.47±0.03 45.30±0.04 44.27±0.08

50

20-80 48.88±0.35 44.62±0.89 19.27±0.49 20.51±0.69
30-70 48.99±0.6 45.95±0.22 26.20±0.06 27.20±0.10
40-60 48.72±0.11 45.86±0.33 29.73±0.12 29.99±0.12
50-50 48.58±0.05 46.09±0.18 32.71±0.05 32.16±0.08
60-40 48.70±0.06 46.49±0.28 35.56±0.07 34.48±0.05
70-30 48.33±0.09 46.23±0.11 37.14±0.11 35.35±0.11
80-20 48.45±0.01 46.36±0.04 38.83±0.01 36.87±0.01

60

20-80 39.23±0.35 36.02±0.85 16.40±0.47 16.05±0.61
30-70 39.05±0.33 36.67±0.49 21.52±0.36 21.09±0.48
40-60 39.00±0.07 36.85±0.20 24.65±0.07 23.74±0.08
50-50 38.87±0.07 36.85±0.18 27.16±0.07 25.61±0.06
60-40 38.99±0.01 37.22±0.12 29.55±0.01 27.55±0.02
70-30 38.72±0.06 37.21±0.23 30.98±0.07 28.41±0.05
80-20 38.81±0.02 36.95±0.85 32.30±0.02 29.64±0.05

70

20-80 29.40±0.12 26.46±1.08 13.82±0.15 11.63±0.25
30-70 29.18±0.28 27.13±0.66 17.37±0.29 15.47±0.36
40-60 29.15±0.29 27.70±0.35 19.68±0.28 17.60±0.29
50-50 29.15±0.08 28.00±0.17 21.66±0.07 19.16±0.12
60-40 29.30±0.01 27.95±0.72 23.49±0.01 20.75±0.02
70-30 29.04±0.04 28.00±0.19 24.49±0.04 21.47±0.05
80-20 29.18±0.00 28.11±0.02 25.48±0.00 22.48±0.01
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Figure 5: CSE-CIC-IDS2018 Results for Dataset with 20-
80 Malicious to Benign Ratio.

different ratios of the malicious to benign samples in
the datasets.

The reported results show that, as expected, the
label flipping attack can severely affect the deep
learning-based IDS performance, and some measures
should be in place to defend against these attacks.
Also, the malicious to the benign ratio of the samples
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Figure 6: CSE-CIC-IDS2018 Results with 40% Flipped La-
bels.

in the datasets may have minor effects on the attack’s
success. Still, in general, the model’s performance
always drops in the presence of the label-flipping at-
tack.

While the researchers are showing more interest
in using deep learning models in network intrusion
detection systems, they should pay more attention to
the security of these models and their vulnerabilities
against evasion and poisoning attacks. In (Moham-
madian et al., 2022; Mohammadian et al., 2023), we
evaluated the deep learning-based network intrusion
detection systems in the presence of evasion attacks,
and here we did the same for the label-flipping attack.
For future work, we will combine these attacks into a
more complex, sophisticated framework for attacking
deep learning-based NIDS. Also, researchers should
work on finding techniques to defend against these at-
tacks and help maintain the model’s performance.
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Warzyński, A. and Kołaczek, G. (2018). Intrusion detec-
tion systems vulnerability on adversarial examples. In
2018 Innovations in Intelligent Systems and Applica-
tions (INISTA), pages 1–4. IEEE.

Zhang, Y., Jia, R., Pei, H., Wang, W., Li, B., and Song,
D. (2020). The secret revealer: Generative model-
inversion attacks against deep neural networks. In
Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 253–261.

Evaluating Label Flipping Attack in Deep Learning-Based NIDS

603


