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Abstract: Freshwater ecosystems are primarily impacted by climate, land use and land cover changes, and over-
abstraction. Satellite Earth observation (SEO) data and technologies are key in environmental modelling and 
support decisions. These technologies combined with machine learning (ML) are a powerful approach for 
modelling freshwater ecosystems at a multiscale level. The goal of this study is to present a set of reference 
data and guidelines that can be used to estimate the water and wetness probability index (WWPI) in different 
spatial and temporal scales. To find the best model’s predictors, sensitivity analyses were carried out in a 
predictive ML model implemented in a transnational river basin district (Portugal – Spain), the Tagus Basin. 
Satellite imagery, satellite-derived data, biophysical variables, and landscape characteristics were the 
explanatory variables evaluated in the sensitivity analyses, and some of them were included in the framework 
as a reference source of spatial data. 

1 INTRODUCTION 

Anthropogenic and environmental changes threaten 
the existence of ecosystems that depend directly or 
indirectly on the presence of water in a landscape 
(Mpakairi et al., 2022). Those ecosystems are 
biodiversity hotspots that require access to water to 
maintain the communities of plants and animals, the 
ecological processes they support, and the services 
they provide (Shi et al., 2014). In dry periods, there is 
less water in rivers, and over-exploitation depletes the 
natural water table and affects these vulnerable 
ecosystems (Sharma et al., 2018).  

The status of water resources degradation and 
scarcity gets worse as human activities directly cause 
an increase in the local drying initiated by climate 
(Kløve et al., 2014). Adverse atmospheric conditions 
impact water resource availability, compounding the 
challenge of integrated water management, 
concerning quality, quantity, and ecosystem support 
(Novo et al., 2018). In face of climate change and 
ever-more intensive land use, conceptual models, and 
quantitative assessments of surface and groundwater 
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interactions with the environment are needed (Yang 
et al., 2021).  

The increasing global demand for water for 
agriculture, domestic, and industrial needs, requires 
integrated management of natural resources (Almeida 
& Cabral, 2021). Therefore, there is a lack of 
knowledge on the existence of conceptual 
frameworks and guidelines useful to model 
freshwater ecosystems (Cui et al., 2021). The process 
of acquiring geospatial data is the most challenging 
part of environmental modelling (Meddens et al., 
2022). Frameworks to support data-driven modelling 
must incorporate the knowledge that facilitates spatial 
and spatiotemporal data acquisition and baselines that 
guide conceptualization and model implementation 
(Nti et al., 2022). 

When there are few or no guidelines for sources 
of spatial data and environmental applications, 
searching and applying exhaustively all the 
possibilities is not a feasible option because, even 
with very sophisticated computers, the running time 
needed would be unacceptable, or could not add any 
value for the model in terms of quality. Several 
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studies have been developing methodologies for 
modelling water ecosystems using remote sensing 
and machine learning, such as Kundu et al. (2022) 
detecting water richness change, Mpakairi et al. 
(2022) assessing spatiotemporal variation of 
vegetation heterogeneity in groundwater-dependent 
ecosystems, and Sharma et al. (2018) estimating 
impacts on the water resources from crop irrigation. 
In synthesis, we observe that some of the previously 
proposed approaches solve the problem very well, but 
none of them was presenting possible sources of 
global spatial data and performed a sensibility 
analysis of their use and applications in modelling 
water ecosystems.  

The Copernicus Land Monitoring Services 
(CLMS) provides the basis for integrated analysis of 
the main drivers of land use change to inform about 
Europe’s natural resources and their status 
(Copernicus Programme, 2023). It offers information 
services based on satellite Earth observation freely 
and openly accessible to its users, only requiring 
registration and referencing. In the portfolio of the 
High-Resolution Layers (HRL) under the Experts and 
National Products archive, exist five thematic layers 
on land cover characteristics at 10m spatial 
resolution, covering 39 European countries. The HRL 
Water and Wetness (WAW) 2018 datasets are based 
on imagery covering the period 2012-2018. They 
were created based on satellite imagery, including 
ESA’s Sentinel-1 and Sentinel-2 satellites and 
spectral indices such as the Normalised Difference 
Water Index (NDWI) and its modified version 
mNDWI, as well as the Normalised Difference 
Vegetation Index (NDVI).  

The goal of this study is to present a set of 
reference data and application guidelines that support 
reproducing the WWPI with accuracy. For that, we 
developed machine learning (ML) models and 
performed sensitivity analyses to find the best 
predictors. The ML models were implemented in a 
transnational river basin district (Portugal – Spain), 
the Tagus Basin. Satellite imagery, satellite-derived 
data, biophysical variables, and landscape 
characteristics were the explanatory variables 
evaluated in the sensitivity analyses. 

The framework comprises a set of global open-
access data, that can be used to model freshwater 
ecosystems at multiscale (spatial and spatiotemporal). 
The outcomes of this research would increase our 
understanding of the use and replicability of the 
Copernicus data, and knowledge in implementing 
data-driven models based on SEO data in different 
years and locations. The developed framework 
comprises a set of baselines for predicting the spatial 

distribution of water and wetness status and 
conditions allowing the assessment of the impacts of 
drivers of changes on freshwater ecosystems. 

2 MATERIALS & METHODS 

2.1 Study Area 

The Tagus Basin in Portugal is the most important 
source of water in the country due to its productivity, 
and quality of water (Ribeiro, 1998). The river basin 
resources are responsible for economic and 
demographic expansion through the years 
(Mendonça, 1990). 

The extensive network drainage promotes easy 
access to water and supports the development of 
intensive agriculture (Almeida, 2020), such as 
annually harvested plants including flooded crops 
such as rice fields and other inundated croplands, and 
permanent crops such as vineyards, fruit trees and 
olive groves (Novo et al., 2018). Forest and 
seminatural areas are represented by mixed forest and 
transitional woodland/shrub (Ramos et al., 2017).  

Due to its strategic location in the surroundings of 
Lisbon, the most populated region of the country, 
there is a growing need for changes in land use to 
develop artificial surfaces such as urban fabric, road 
and rail networks, airports, dump sites and industrial 
areas (Mendes et al., 2015), which is compromising 
water resources and dependent ecosystems in the 
basin. 

2.2 Data Source 

2.2.1 Dependent Variable 

The necessary data to implement a learning machine 
process is commonly divided into training, validation, 
and test datasets (Domingos, 2012). The training data 
are the predictors, the validation dataset is used to 
control the learning process and the test dataset is 
employed to assess the learner's performance. To 
predict continuous values such as the Water and 
Wetness Probability Index (WWPI), regression tasks 
were carried out. The target in the regression models 
is the response variable, also known as dependent 
variable. 

The WWPI is a raster displaying the occurrence 
of water and wet areas as an index on a scale between 
0 (only dry observations) to 100 (only water 
observations) (Copernicus Programme, 2023). It 
indicates the degree of wetness in a physical sense, 
independently of the actual vegetation cover. The 
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landscape elements included in the datasets are 
permanent and temporary open water bodies, 
temporarily inundated areas, wet agricultural fields, 
and transitional coastal water bodies (European 
Environment Agency, 2023). 

2.2.2 Explanatory Variables 

The main goal of this study is to find the best 
predictors to enable an accurate reproducibility of the 
WWPI dataset. A wide variety of data such as satellite 
imagery, satellite-derived data, biophysical variables, 
and landscape characteristics, were evaluated through 
sensitivity analysis.  

Single bands from Sentinel-2 images and satellite-
derived indices were the first predictors evaluated in 
the sensitivity analysis. This satellite has a high-
resolution multispectral sensor acquiring and 
recording information in 13 bands: visible (VIS with 
4 bands), near-infrared (NIR with 6 bands) and 
shortwave infrared (SWIR with 3 bands). This 
instrument can detect small differences in spectral 
signatures, as they have contiguous bands with small 
bandwidths (<20 nm), and consequently acquire more 
accurate information (Hunter et al., 2020). The 
Sentinel-2 mission is providing data from 2015 until 
2025 with a temporal resolution of 5 days, and spatial 
resolution of 10, 20 and 60m.  

The combination of algebraic operations in pre-
established bands leads to the definition of indices 
that allow highlighting certain information (i.e., 
water, vegetation, soil, minerals, etc.). Spectral-
derived indices result from combinations of two or 
more spectral bands designed for the enhancement of 
specific objects (Kuenzer et al., 2014). NDVI, NDWI 
and Normalized Difference Moisture Index (NDMI) 
were calculated and included as predictors.  

Climate variables, such as precipitation and 
evapotranspiration combined with topography are 
important drivers in water modelling (Ringersma et 
al., 2003). The annual precipitation was obtained 
from the WorldClim database (Fick & Hijmans, 
2017) and the Global Potential Evapotranspiration 
(Global-PET) and the Global Aridity Index (Global- 
Aridity) from the Consortium of Spatial Information, 
Global-Aridity and Global-PET Database (Trabucco 
& Zomer, 2019). Global data precipitation was 
obtained from spatial interpolation of nearly 60 000 
weather stations providing monthly climate data. The 
datasets have a spatial resolution of approximately 
1 km2. Reference evapotranspiration and global 
aridity were derived from the WorldClim 
precipitation model and have the same spatial 
resolution and temporal scale. 

Topographic data are globally available from 
NASA through the Shuttle Radar Topography 
Mission (SRTM). The dataset was released in the year 
2000 with approximately 30m pixel resolution. 
Table 1 lists the datasets used to estimate WWPI, 
specifying the source of data and the pixel resolution. 

Table 1: Description of the datasets, its source and pixel 
resolution. 

Data Source Pixel 
resolution

Satellite Data Copernicus Open Access 
Hub 

(https://scihub.copernicus. 
eu/) 

10m 

Digital Elevation 
Model (DEM) 

NASA Shuttle Radar 
Topography Mission  

(https://www.earthdata.na
sa.gov/) 

30m 

Average Annual 
Precipitation 

(mm)

WorldClim 
(https://worldclim.org/) 

1km 

Global Potential 
Evapotranspiration 
(Global-PET) (mm)

Consortium of Spatial 
Information-CSI 

(http://www.cgiar-csi.org) 

1km 

Global Aridity 
Index (Global-

Aridity)

Consortium of Spatial 
Information-CSI 

(http://www.cgiar-csi.org) 

1km 

2.3 Model Design 

In regression problems, the target values are 
continuous, and the machine consistently improves 
learning to better fit the model. The expected output 
was a predictive spatial model implemented in a 
geographic information system using ArcGIS Pro 
2.9.0 software (ESRI, 2022). The task was to build a 
regression model using a non-parametric approach 
that enables the replicability of the WWPI with 
accuracy. The relationship between explanatory 
variables and the response variable was modelled 
through the tool Train Random Trees Regression 
Model.  

The Random Trees algorithm is an adaptation of 
the Decision trees (DT) (Breiman, 1984) in a GIS 
environment. It is a nonparametric approach that 
iteratively divides a dataset into increasingly smaller 
subgroups using the same splitting decision (Zhang et 
al., 2019). The decisions are made according to the 
rank order of importance, optimized by a randomized 
procedure (Mallinis et al., 2020). DT can inherently 
handle nonlinear relationships, mixed predictor 
categories, and data gaps, and are resistant to outliers 
and the effects of collinearity (Osborne & Alvares-
Sanches, 2019). The disadvantage of the DT is related 
to the models’ fitness and instability due to the 
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propagation of errors down through subsequent splits 
in the tree (Breiman, 2001). 

The input datasets comprising the explanatory 
variables and the target were in raster data format. As 
the cell size affects the training result and the 
processing time, this parameter was set up in the 
environment settings to make sure that the training 
process will keep the pixel size of 10m, as same as the 
target. The Percent Samples for Testing was set to 
20%, meaning that one-fifth of the training sample 
was used to measure the error for interpolation in 
space, called test location points. This parameter 
evaluates three types of errors: errors on training 
points, errors on test points, and errors on test location 
points. The maximum number of trees, the maximum 
tree depth and the maximum number of samples were 
set by default with values of 50, 30 and 100000, 
respectively. The maximum depth of each tree refers 
to the number of rules each tree is allowed to create 
to come to a decision.  

Evaluating regression performance is crucial to 
understand how well the model is fitted and explained 
by independent variables. Coefficient of 
determination (R-squared) and regression error (Re) 
were the metrics used to detect bias and the 
proportion of variance of the response variable. A 
table containing information describing the 
importance of each predictor used in the model was 
provided as output by the tool, as well as scatterplots 
of training data, test data, and test location data, and 
the regression definition file contains attribute 
information, statistics, and model performance. 

2.4 Sensitivity Analysis 

Sensitivity analyses were carried out following the 
process shown in Figure 1.  
The diagram flow has three main steps: modelling the 
relationship between the response variable and 
predictors, measuring the model’s performance, and 
optimizing the model. To build the best framework a 
set of global environmental variables were modelled, 
the goodness of fit was checked, and the model was 
optimized as needed. This process was applied twice, 
on a satellite image sensed on 25/04/2018 and another 
on 18/08/2018.  

Table 1: Description of the explanatory variables included 
in each model test. 

Model Exploratory variable 
M1 Satellite data (Single bands) 
M2 Satellite-derived data (NDVI, NDWI, NDMI)
M3 M1 + M2 
M4 M3 + Digital Elevation Model (m)
M5 M4 +Average annual precipitation (mm)
M6 M5 + Average annual potential 

evapotranspiration (mm) 
M7 M6 + Annual aridity index 

2.5 Models Deployment 

The most skilled model resulting from the sensitivity 
analysis was deployed in two different scenarios. One 
was applying the framework to model landscape 
water resources on a Sentinel-2 image sensed on  

 
Figure 1: Diagram flow of sensitivity analysis. 
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29/01/2022, called temporal deployment. The second 
deployment was on an image taken on 23/08/2018 in 
another area (decimal geographic bounding box - 
Longitude: west = 350.99 and east = 352.28; and 
Latitude: south = 38.75 and north = 39.75), what was 
called a spatial deployment. Satellite-derived indices 
were calculated for both images to apply the 
framework. 

3 RESULTS 

3.1 Sensitivity Analysis 

The outputs of the training process were analysed to 
measure the goodness of predictions. The tool checks 
for three types of errors: errors on training points, 
errors on test points, and errors on test location points. 
Table 3 shows the models’ performance with values 
for the regression error (Re) at train locations (80% of 
all locations) and test locations (20% of all locations), 
and R-squared for training data, test data and test 
locations. The models are grouped by image date 
sensed, where sp refers to the image taken on 
25/04/2018 and sm on 18/08/2018.  

Table 3: Models performance grouped by image date 
sensed. Legend: TrTr (training data at training locations), 
TeTr (test data at training locations), and TeTe (test data at 
test locations), Re (regression error). 

 TrTr TeTr TeTe
Model Re R2 Re R2 Re R2

M1_sp 1.289 0.960 2.904 0.872 3.913 0.894
M2_sp 1.827 0.924 3.751 0.777 5.258 0.809
M3_sp 1.278 0.960 2.925 0.871 3.908 0.892
M4_sp 1.004 0.957 2.490 0.820 3.413 0.851
M5_sp 0.901 0.961 2.134 0.841 3.001 0.850
M6_sp 0.801 0.962 1.980 0.800 2.706 0.811
M7_sp 0.801 0.966 1.980 0.820 2.827 0.825
M1_sm 1.218 0.954 2.488 0.848 3.541 0.878
M2_sm 1.675 0.909 3.189 0.739 4.491 0.779
M3_sm 1.191 0.951 2.455 0.835 3.431 0.886
M4_sm 0.887 0.953 2.220 0.785 3.108 0.772
M5_sm 0.771 0.958 1.950 0.805 2.652 0.824
M6_sm 0.725 0.962 1.816 0.814 2.571 0.829
M7_sm 0.722 0.962 1.830 0.789 2.490 0.839

The best performance was in model M7 for both 
dates. Models’ predictors were the single bands, 
spectral indices, topography, precipitation, potential 
evapotranspiration, and aridity index. The image 
sensed on 18/08/18 has better results regarding Re 
than the first image. 

Figure 2 is describing the importance of each 
predictor used in the models. The variables with the 
highest values are more correlated to the target and 
more relevant to the model. Values range between 0 
and 1, and the sum of all the values equals 1. 

Topography was the predictor that most 
contribute to both models (M7_sp and M7_sm). The 
predictors’ importance varies widely between 
models. All variables showed to be important for the 
models, except for the single band B2 in the model 
M7_sm, and B3, B4 and NDMI for M7_sp.  

 
Figure 2: Predictors’ importance for the best model in each 
group of sensitivity analysis tests. 

3.2 Models Deployment 

The framework was deployed to evaluate the 
temporal and spatial goodness of fit of the selected 
model. The ML regression tool measured R-squared 
and regression errors (Re) as the main evaluation 
measures of the goodness of predictions. The 
comparison of the true values with predicted values 
was done in terms of errors (standard error of the 
regression), the proportion of variance (R-squared) 
and plotting the residuals over targets. The first 
deployment was applying the framework at the study 
area but on another date (29/01/2022).  

Figure 3 displays a scatterplot of predictions over-
reference values and the residual plot. The R-squared 
is comparable with those obtained in the sensitivity 
analysis, with results showing very closed values, and 
the residual plot presenting few outliers, especially on 
the test data at test locations and training locations. 
Meaning that in locations where the WWPI detected 
no water (WWPI equals zero), the model predicted 
some degree of wetness. This can be explained by 
analysing the sensed date, which is from a 
Mediterranean wet season (29/01/2022), and on that 
day these locations could be flooded, or the soil 
moisture was higher than it used to be in the spring 
and summer. 

The framework performance was also evaluated 
by deploying it using a satellite image from another 
area. Figure 4 shows the scatterplot of predictions 
over observed values and the residual plot of the 
spatial deployment.  
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Figure 3: Scatterplot and residual plot of the temporal 
deployment applying the framework. 

Comparing both deployments, the R-squared was 
better at applying the framework in the same study 
area rather than applying it to the other region. We 
also analysed R-squared and Re for test data at 
training locations and test data at test locations, and 
the overall results were better in the study area. The 
residuals are presenting some outliers, but more 
sparsely than the residual plot of the first deployment.  

4 DISCUSSIONS 

Water diversion and livestock grazing are threatening 
the functionality of many natural systems, which 
increases the impacts that a warmer climate may 
bring. When inland wetlands, rivers, and lakes, gets 
fragmented and become hydrologically inconsistent, 
the values they produce change, and can rapidly 
decrease. Assessing water resources at an appropriate 
management scale is a necessary step for the 
sustainable management of natural resources. 

The HRL developed by CLMS are designed for 
use by a broad user community as the basis for 
environmental and regional analyses and for 
 

 
Figure 4: Spatial deployment at the study area applying the 
framework. 

supporting political decision-making (European 
Environment Agency, 2023). They include 
geographical information on land cover and its 
changes, land use, vegetation state, water cycle and 
earth surface energy variables freely available at the 
European scale.  

They were built based on high-resolution satellite 
data globally available. High spatial resolution 
sensors represent a smaller area of land, but with 
more detail and accuracy (Liang & Wang, 2019). 
However, higher resolution implies larger files, more 
loading, viewing, and processing time and more space 
taken up in databases, which can be a limitation. But 
also building environmental monitoring systems 
based on ML models require powerful computational 
resources, and most of the time a large amount of 
data.  

ML models are only as accurate as the data they 
are fed in. The most known law of modelling saying, 
“garbage in, garbage out”, could be shown here if we 
did not carefully select the data to be included in the 
framework. Large margins of error in the predictors 
prevent the model from being considered correct. 
Models with lower error and higher R-squared are 
indications of higher skill predictions. Nevertheless, 
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none of those functions alone is enough to validate a 
model’s predictions. Using a combination of 
evaluation metrics is recommended, to assess the 
differences between observed data and predictions, to 
compare models’ performance, and quantify the 
explained variance.  

Water yield and soil moisture content are some 
examples of ecosystem functions that are highly 
dependent on climatic and topographic drivers such 
as precipitation, evapotranspiration, temperature, and 
elevation. Topographic variables such as elevation 
and slope are very important drivers in ecological 
models. The topography creates specific habitats and 
influences the occurrence of certain plant species, as 
in wetlands, an ecosystem that predominantly occurs 
in flat landscapes, with a very low slope degree. The 
results show that elevation was the most important 
feature in both images tested, followed by the single 
band B11 (SWIR). The shortwave infrared bands 
highlight water content in vegetation. 

The developed framework requires more 
deployment tests in different locations and time 
frames. Future work will expand the methodology to 
assess the relationship between ecosystem services 
and water resources at the national scale flagging the 
location and characteristics of water-dependent 
ecosystems across Portugal. But also, further research 
is needed to evaluate other ML algorithms and 
explore other spectral indices and landscape metrics 
that can be included as reference data in the 
framework. As well as testing other SEO data such as 
from the GRACE (Gravity Recovery and Climate 
Experiment) satellite mission that is used to identify 
regional trends of freshwater movement on the earth’s 
surface and compare results. 

5 CONCLUSIONS 

The framework support studies related to the spatial 
estimation of water availability at the European level 
with the possibility of being implemented multiscale, 
as it includes global open-access data. The time 
capability of predictions depends on the launch date 
of the satellite data used. The comparison of models 
was important to build confidence in the selected 
predictors. 

The outcomes of this study guide future research 
to make better use of the globally available data that 
can be used as predictors in data-driven water 
modelling. Also, to advance the knowledge of the 
datasets provided by CLSM at the European level. 
The developed framework requires more deployment 
tests, nevertheless, model deployment had shown 

overall good results, and the capability of being used 
worldwide as a baseline for modelling freshwater 
ecosystems.  
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