
Towards an Ontology to Enforce Enterprise Architecture Mining

Carlos Roberto Pinheiro1,3 a, Sérgio Guerreiro 2,3 b and Henrique São Mamede3,4 c
1Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
2Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal

3INESC-ID, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
4INESC TEC, Department of Science and Technology, Universidade Aberta, Lisbon, Portugal

Keywords: Enterprise Architecture Management, Enterprise Architecture Mining, Automatic Architecture Modelling,
Ontology, API.

Abstract: Enterprise Architecture (EA) is a coherent set of principles, methods, and models that express the structure of
an enterprise and its IT landscape. EA mining uses data mining techniques to automate EA modelling tasks.
Ontologies help to define concepts and the relationships among these concepts to describe a domain of interest.
This work presents an extensible ontology for EA mining focused on extracting architectural models that use
logs from an API gateway as the data source. The proposed ontology was developed using the OntoUML
language to ensure its quality and avoid anti-patterns through ontology rule checks. Then, a hypothesized
scenario using data structures close to the real is used to simulate the ontology application and validate its
theoretical feasibility as well as its contribution to the Enterprise Architecture Management field.

1 INTRODUCTION

Enterprise Architecture (EA) models represent
viewpoints of different concerns of the company and
its IT landscape, such as processes, services, and
information systems (The Open Group, 2018). It is
essential to automate the EA modelling due to the
harmful effects on organizations of decision-making
based on outdated architecture models, as manual
modelling is prone to errors and misunderstanding,
besides being time-consuming (Pérez‐Castillo et al.,
2021). Nevertheless, the literature indicates low
automation of EA model creation and maintenance, it
is one of the most critical challenges for EA
management (Perez-Castillo et al., 2019).

An API Gateway is an architectural component
that works as a proxy, mediating calls between API
and services. It allows the collaboration of different
organizational actors across industrial boundaries
(Bonina et al., 2021; Herterich et al., 2022). As it
monitors the traffic on the company's boundary and
its information systems, it is an essential data source
for mining cross-organizational interactions.

a https://orcid.org/0000-0002-8687-7027
b https://orcid.org/0000-0002-8627-3338
c https://orcid.org/0000-0002-5383-9884

An ontology typically describes concepts,
relationships between these concepts, and constraints
that indicate how to interpret these relationships.
Thus, it provides a taxonomy that describes a domain
of interest and specifies the meaning of terms
(Shvaiko & Euzenat, 2008; Trojahn et al., 2022).
Ontologies are used in complex problems to separate
essentials from implementation details.

This work is part of ongoing research to
automatically apply Data Mining (DM) techniques to
obtain EA view models. Specifically, this paper
presents an ontology to support the EA mining from
an API Gateways log.

In the sequence, section 2 describes the problem,
section 3 presents the related works, section 4
describes the methodology, section 5 presents the
proposed ontology, section 6 demonstrates its
application, section 7 discusses the results, and
section 8 presents a conclusion and future works.

660
Pinheiro, C., Guerreiro, S. and Mamede, H.
Towards an Ontology to Enforce Enterprise Architecture Mining.
DOI: 10.5220/0012032300003467
In Proceedings of the 25th International Conference on Enterprise Information Systems (ICEIS 2023) - Volume 2, pages 660-668
ISBN: 978-989-758-648-4; ISSN: 2184-4992
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

2 THE PROBLEM

The API Management tool's usage as a data source for
EA Mining has yet to be found in the literature. Even
for other data mining uses, correlating different API
calls is a significant challenge because each call is
entirely different from the others and may lack a
direct correlation. To ensure the feasibility of the
research, clarify its scope and objectives, and explain
how to build the solution, its conceptualization is
necessary. Therefore, the specific problem intended
to investigate in this work is conceptualizing a
consistent and extendable process for EA mining,
considering using data from an API Log. This
conceptualization requires an ontology to drive a
straightforward solution design.

3 RELATED WORKS

As Enterprise Architecture models expand, it
becomes harder to keep them up-to-date. As
companies continuously redefine their business goals,
it requires a continuous process of reviewing and
adapting their architecture (Farwick et al., 2016).

EA Mining is the usage of Data Mining
techniques to get updated views of EA models (Perez-
Castillo et al., 2019). Pérez‐Castillo et al. (2021)
developed a reverse engineering approach for
AchiMate model generation based on static source
code analysis, database schema and textual analysis.
Simović et al. (2018) presented an approach to extract
business information from enterprise application logs
based on a domain-specific language definition.
Antonello et al. (2021) prosed a data-driven method
for identifying functional dependencies in Complex
Technical Infrastructures (CTI) based on Association
Rule Mining (ARM) to identify component
dependencies using alarm messages collected
through sensors and monitoring technologies, which
allows detecting a local malfunction propagating
through groups of dependent components. Alfonso-
Robaina et al. (2020) analyzed the main variables in
terms of causes and effects to assess the impact of
multifactorial elements impregnated with uncertainty
that affects the EA using fuzzy relation logic.
However, their method is based on knowledge
obtained by grouping and translating information
given by experts into dependence rules.

Ontologies typically describe concepts and the
relationships among them, providing constraints on
how to interpret them (Shvaiko & Euzenat, 2008).
One of the main advantages of using ontologies is

excluding irrelevant information from the beginning
of the analysis (Branquinho et al., 2015). OntoUML
is a well-founded ontology language based on UML
class diagram fragment that provides an ontology-
driven conceptual modelling language for complex
domains whose stereotypes reflect the top ontology
UFO (Guizzardi et al., 2015, 2022). In their study on
using ontological-based representations of enterprise
models, Sunkle et al. (2013) suggest ontology
representation facilitates EA analysis mixing
representation and inference functionalities that are
also extensible for more detailed EA analyses.

Some studies focus on representing reference
models for EA through semantic web technologies
such as RDF and OWL. Jabloun et al. (2013)
developed an ontology for change management in
enterprise information systems that helps identify
system components and their relationships by
reducing semantic mismatch among them. Allemang
et al. (2005) proposed using RDF and OWL to
distribute structured information to allow the
reference model to be extended while keeping the
consistency of those extensions. They implemented a
web-based system for managing EA Reference
Models based on ontology and their reference model.

Some other studies focused on using ontology for
a more high-level conceptualization of EA. Based on
ArchiMate (The Open Group, 2019) which is a well-
known language for EA modelling, Guédria et al.
(2013) proposed a set of concepts to identify critical
aspects of interoperability and EA and their
associations, which results in a conceptual reference
model for integrated enterprise architecture
interoperability.

Kang et al. (2010) built a model to ontologically
define business terms based on WordNet, an ontology
database to define terms in English. Hinkelmann et al.
(2010) developed an approach to operationalize the
dependencies identification among architectural
models integrated through information from different
sources, such as enterprise resource planning (ERP),
customer relationship management (CRM),
document management system (DMS), and content
management systems (CMS). Hinkelmann et al.
(2013) used ArchiMEO, an ontology representation
of EA in ArchiMate, to link an enterprise ontology
with operational databases distributed over several
information systems that ensure continuous
alignment of the information architecture to the
business requirements. Silva et al. (2017) proposed
using ontology and computational inferences features
of ontologies to analyze the EA model evolution
specified in OWL-DL. The ontology reasoners are
used for relation checking, consistency checking,

Towards an Ontology to Enforce Enterprise Architecture Mining

661

dependency inferring, and completeness checking,
which helps to analyze EA model changes under a
specific IT project and its impact on enterprise
transformation.

In this section, we presented works that support
the conceptual ontology to mining data from API
gateway logs, such as UFO and OntoUML. Other
works demonstrate the applications of ontology to
solve different aspects of Enterprise Architecture
modelling. Despite some promising approaches, none
of these works provided a specific and extendable
ontology for extracting enterprise architecture models
directly from information systems logs.

4 METHODOLOGY

The ontology's construction followed a simplified
systematic Approach to Building Ontologies
(SABiO) (Falbo, 2014). It prescribes seven steps to
build a fully operational web ontology. However,
some steps and roles were not applied due to the
objective of developing a reference ontology on a
more conceptual level.

OntoUML provided the ontology modelling
language and OLED (OntoUML Lightweight Editor)
the modelling tool. It supports the theoretical
reference for the Unified Foundational Ontology
(UFO), the foundation ontology for OntoUML. It
provides a wide variety of validators to ensure the
ontology rules and helps to detect pitfalls and some
frequent ontology anti-patterns (Guerson et al., 2015).
Furthermore, as the proposed ontology targets
building EA view models, the concepts are mapped to
ArchiMate.

5 THE ONTOLOGY FOR EA
MINING

The Application Usage viewpoint aims to describe
the usage of the application by business processes and
other applications (The Open Group, 2019). Figure 1
presents the proposed ontology.

The ontology is composed of four parts. The first
one is related to the core concepts of ontology, which
Figure 1 highlight in green. It comprises concepts that
should be extracted directly from the API Gateway

Figure 1: Ontology for EA Mining.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

662

Log and provide data that supports the rest of the
ontology. The other three parts are extensions that
allow modelling a specific data mining process from
the core concepts to build a specific architecture view :
(i) the EA Process view, (ii) the EA service
Dependency View, and (iii) the EA Data Object
Relation View.

The relator Frequent Temporal Correlation targets
to build the EA Process View. To do that, it associates
the Process Events and classifies each Process Event
as an Antecedent Activity or Consequent Activity.
Thus, creating a chain of activities by applying
temporal data mining techniques to extract activity
correlations from API Calls as a sequence of process
events and then identifying processes and grouping
them in the collective Process, from where the EA
Process View is then constructed. The dependency
between two Service Components is associated with
Component Dependency. Then the set of this
dependency is mapped in the collective Component
Relations that provide de data to build the view.
Similarly, to build the EA Service Dependency View,
the Frequent API Service Correlation targets to
identify each Services Dependency. Finally, the
relator Frequent Data Domain Correlation is used to
build the EA Data Objects Relation View by applying
ARM techniques to discover frequent relations on the
API data payloads. These data payloads are related to
the API Resources and the names and values of their
attributes whenever they carry on an entity data
structure. These entities are grouped in the collective
Data Objects that provide the data to build the EA
Data Objects Relation View.

The kind API Call, on ontology core, characterizes
each API call as its objects. The APIs are called by an
authorized Consumer APP representing a Partner
identified through the attribute client_id. The relator
Caller represents Partners that make HTTP requests
(role Request) to APIs.

An API Call has one or more API Operations,
characterized by the method (GET, POST, PUT,
DELETE) and the endpoint_route. It also has one or
more Service Destination, the service called in the
backend or other external or internal service provider,
usually through REST APIs or SOAP Webservices.
API Operation and Service Destination also extend the
kind of Service identified by its endpoint_route. Thus,
a Service should be an API Operation which is the API
Calls from the Caller, or an API Service Destination,
which are the backend services called by one API
Operation on the API Gateway.

The kind Resource represents the class of objects
handled through the API. It can be seen as entity data
structures within the API domain. For instance, an API
Call may request the creation of an object of the class
client.

To build the EA Process View, the relator
Frequent Temporal Correlation represents the data
mining process that correlates Process Events in a
temporal sequence considering each API request as
an atomic event and identifying in the sequence what
event represents the Antecedent Activity and what is
the Consequent Activity. The candidate activities are
identified and grouped considering the same
Consumer App, the resource id present in URI, and
other shared and repeated attributes values in the API
Calls payload. This lasts a collection of attributes
represented by the collective Activities Attributes.
Thus, through temporal ARM, it is possible to
identify the sequence candidate and assign to each
sequence a case id, identifying and building
individual instances for each Process, which is
composed of an activities chain with antecedents and
consequents under the same case_id. The Process
Instances may be grouped based on the first and last
activities. Thus, the inner different path sequences
may be seen as variations of the same process group
in the collective Process. Each Process may be
categorized as a component in an EA Process View.

The Frequent Temporal Correlation associates a
sequence of process events that are API Operations in
the core of the ontology. These correlations are
mapped as process nodes that persist the link from
Antecedent Activity to Consequent Activity. Based
on these Process's Nodes is built a graph of relations
mapping their data values similarities and grouping in
process instances. It is given a process_case_id for
each process instance. The process instances with the
same starting and ending events are grouped in the
collective Process. Then, a view based on the
Application Usage viewpoint is created in an
ArchiMate with the processes mapped to Business
Process into this view. It identifies the most frequent
chain of events. It maps the events in this path to
Business Event elements, which are linked by
creating an ArchiMate Assignment Relationship
between the Process and the Events.

The EA Service Dependency View maps the
relations among API Services exposed in an API
Gateway and the services called by these APIs, which
may be a REST API, a SOAP web service, etc. To
build this map, the "Frequent API Service
Correlation" identify dependencies between Services.
A Service may be an API Operation that represents
the route that allows calling an API or a Service
Destination, which is the route to a Service. These
Services may also make requests to an API exposed
on API Gateway. Thus, this service is called a Service
Component acting as Antecedent Service and

Towards an Ontology to Enforce Enterprise Architecture Mining

663

Consequent Service that allows identifying the
Service that makes calls and the Service called.

The Frequent API Service Correlation represents
the ARM technique applied to identify frequent
associations between APIs exposed in the API
Gateway and Services API exposed by applications,
which are backend services called by APIs. It
correlates two Service Component identifying the
Antecedent Service that frequently calls a
Consequent Service. Thus, the relations between
these services are individuals of the Kind Component
Dependency. The collective Component Relations
represent the collection that groups these
dependencies in a context based on the appName and
apiName, which identify the Caller and the API.
Thus, an EA Service Dependency View is created for
this context as an ArchiMate Application Usage
viewpoint. From the attribute dependent_service in
Components Relations is extracted an ArchiMate
element Application Service that is grouped into the
Backend Service Layer. The APIs linked to these
backend services are mapped to Application
Interfaces grouped into API Layer. The relation
between the Application Services and Application
Interfaces creates an assignment relation in the
ArchiMate model. Then the same logic is applied to
the attribute appName mapped to a Business Actor.

The EA Data Object Relation View aims to show
a map of data object relations grouped by Domains.
To identify these relations, the Frequent Data
Correlation applies data mining techniques to identify
Data Elements within the data structures of API
payloads. The Data Element may play two roles,
Entity that is identified by the API REST resource, or
Data Domain that represents a logic group identified
through the base path name of the API present in its
route as well as in its URI. In this case, it may be
essential to clarify the concept of Data Domain used
in this ontology and differentiate it from the Web
Domain, which is also part of the URI of API and
Service routes. The last one is the web domain that
allows a web resource to be recognized and reached
from any computer on the Internet. The concept for
this ontology is a logic groping that creates a context
of data usage. Thus, this context encompasses
different entities based on the API route and its linked
documentation, excluding the web domain until the
part of URI that identifies the different resources that
an operation over API creates, modifies, deletes, and
so on. Once identified the entities and groped to a
context (Domain), the data object is correlated based
on their dependency based on the frequency of its
repeated values in its attributes.

In this part of the ontology, the Frequent Data
Domain Correlation represents the ARM technique
that extracts frequent data correlations based on the
repeated value of its attributes. The Data Objects are
directly related to the data structures of the API calls
identified by the kind Resource. Thus, the Frequent
Data Domain Correlation identifies the peace of data
that plays the role of Entity and the peace that
identifies the Data Domain. The repeated_attributes
of Data Objects are used to identify the strength of the
relation. Then, the Data Object classified as Entities
are mapped to an application Data Object in
ArchiMate. The related Domain is mapped to another
ArchiMate Data Object, but this one aggregates the
other one.

6 EXAMPLE OF APPLICATION

This section exemplifies the applicability of the
ontology proposed in this work to prove its logical
feasibility and better understand how it will support
the architecture view building covering the whole
Process.

The example considers a simplified and
hypothetical user-buying journey on an e-commerce
site. Firstly, users search for products. Once they
identify the product, they put it in a shopping cart
created when the first product is added. Then, users
add and remove products from the cart. Once
satisfied, users check out the cart when they are asked
to create an account or log in. Once logged, they pay,
and after the payment is approved, the e-commerce
system creates an order that is sent to the logistics
sector for delivery. In the end, the logistics and the
user confirm the product delivery and its reception by
the user.

The first API call occurs when the user adds the
first product to the cart, creating the shopping cart.
The key attributes this API call based on Sensedia
API Gateway, which is used for through this example:
• clientId: identifies the Consumer App

individuals.
• apiName: friendly name description of API
• receivedOnDate: time that the call hits the API

Gateway.
• resultStatus: the HTTP result of API

processing with success or error.
• uri: the internet address of the API.
• trace: a string with the record of some aspects

of the API call. It carries its header and body
payload.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

664

 An API Call should be one kind of Service that is
identified by its URL route: an API Operation, which
is the API Calls from the Caller, or an API Service
Destination which are the backend services called by
one API Operation on the API Gateway.

From “trace” string, it is possible to extract the
API Operation Route and the Service Destination
Route.

The operation name in API Operation identifies
the operation over an API to create or change a
resource. It results from string concatenation of the
value of method, apiName and Resource.

Because the called URLs carry the concrete
identifiers of resource instances, it was necessary to
check the description of the routes in the swagger.
The swagger describes some relevant attributes of the
API. In the case of Sensedia’s API Platform, its
documentation is linked to the API Gateway.

6.1 Frequent Temporal Correlation

Figure 2: ArchiMate Process View.

Frequent Temporal Correlation is the sequential
correlation mining extraction process that sequences
timely API Calls that share some attribute values and
groups those with the same Caller. The attribute
names and its value are stored in the
repeated_attributes of Process Node for each Process
Event, combining two API Calls, the older as the
Antecedent Activity and the younger as the
Consequent Activity. Then the weight of the Process
Event is calculated based on the percentual measure
of the attributes repetition. The Process Events that do
not have at least one attribute with 100% of the weight
are eliminated, presuming that to make part of the
same Process, at least one attribute must be present in
100% of correlations among its instances.

Then, a graph is created, extracting the sequence
of process events considering that a Consequent
Activity of a Process Event is an Antecedent Activity
in the following Process Event. In the end, each graph
is a process instance assigned a "process_case_id".
As the interest of this work lies in an enterprise
architecture view of the Process, and not in process

details, it simply groups the Process Instances into
collective Processes that consider the similarity of
graphs regards its first and last node. It considers the
variations path between these two nodes as internal
variations of the same Process due to the high level of
EA.

The resulting model is used to build an ArchiMate
Business Process Cooperation viewpoint. Despite
some differences in the sequences and do not
correspond precisely to the same graph, all paths will
start with the creation of the cart and finish with the
final update of order status with the sequence
depicted in Figure 2.

6.2 Frequent API Service Correlation

Frequent API Service Correlation is the data mining
processing that correlates two Services. The first is an
API Operation playing the Antecedent Service role
that calls the Consequent Service, which is the
Service Destinations of an API Call. Its relation is an
instance of Service Dependency where the “api”
attribute comes from the API Call “apiName”, and the
dependent service comes from service route. The
collective stores a collection of the related mining
grouped by API. Thus, it makes it possible to depict
what an API and its resources call a dependent
service. This view may help to get an impact analysis
for an API Change.

Thus, the EA Service Dependency View may be
built to show these dependencies at a high level, such
as the ArchiMate Application Cooperation viewpoint
depicted in Figure 3.

Figure 3: ArchiMate Service Dependency.

6.3 Frequent Data Domain Correlation

It is the application of the Data Mining Technique to
identify frequent associations among data structures
composed of Data Elements. These Data elements
may be Data domains or Entities. From this
perspective, we consider the Data Domain as the API
Name. Thus, it is filled by the API Name attribute
from the API Call. The entities grouped into a Data
Domain are the resources. Then the Entities are filled

Towards an Ontology to Enforce Enterprise Architecture Mining

665

with the resource_name of the API. The Entity
Attributes, in this case, are the repeated value
attributes between the data structures. Then it uses
entity attributes to assess the strength of the
association. Only associations with very high
confidence, close to 100%, should stay present in the
collective “Data Objects Domain” from what it is
possible to build a visualization of Entities relations
for each data Domain, such as the ArchiMate
viewpoint illustrated in Figure 4.

Figure 4: Data Objects API Dependency.

7 DISCUSSION

This proposal focuses on conceptualizing an EA
mining extraction from a particular technology, API
Gateway, which is a widely used integration tool.
Even though many companies may also have been not
using it, limiting the industrial application of the
study, API gateway logs are vital to complement the
EA mining field once it provides a kind of service
facade for the information systems of an organization
and its partners, capturing and recording some
behaviours and data structures that may not be present
in operational databases. This approach and focus
have yet to be found in the literature.

Tracing a unique API request through the network
and following the components triggered by it is not a
big deal. However, the proposed ontology focuses on
correlating different requests that initially have no
physical correlations but that share logical contexts
relevant to understanding a part of the EA.

The extracted business process view allows an
overlook of an API relations with the execution of the
main tasks of a business process. Another view allows
identifying and tracking API dependencies with
various operations and the backend services that
support these operations. It helps impact analysis of
changes in APIs or services that can impact the global
EA level. Likewise, a view of data objects related to
APIs and processes helps to identify the relationship
between data entities and their usage through
enterprise APIs. All these extracted views aim to
contribute to the overall architecture. Despite having
some limitations regarding building a complete EA,
such as the business architecture, it will contribute

with complementary views to accelerate the
architecture analysis and modelling.

For this ontology, attributes with repeated values
between the data structures of API calls are used to
give weight to the relationship between process
activities and to associate data objects. Based on this
data, it is possible to apply other process mining
techniques to help discover different aspects and
patterns related to business processes. Another way to
extend this ontology is through further analysis of this
data to verify the cohesion of the data domains related
to the name of the attributes between the data objects.

The proposed ontology had its consistency and
quality checked by tools. It condenses three different
applications following an ontological pattern for three
distinct views, demonstrating that the model can be
extended to build other architectural views not
developed in this work and to apply other APIs
integrations tools beyond API Gateway. Furthermore,
it can allows instantiation and refinement into a more
operational ontology, such as RDF or OWL.

The proposal's threat so far is that despite
presenting a specific domain ontology, this ontology
is still a relatively high conceptual reference model.
Although OLED allows exporting OntoUML models
to other more operational languages for ontology
instantiation, the high level of detail, given the
objectives of this work, may reduce the
expressiveness of the ontology when applied to these
more operational languages, such as OWL and RDF,
requiring adaptation of the derived models.

8 CONCLUSION AND FUTURE
WORK

This research aims to build a DM model to automate
the modelling of the current views of EA. For that, the
ontology presented in this paper focused on
conceptualizing the process of building EA mining.

The application of the proposed ontology was
hypothesized and exemplified as a possible approach
for capturing EA model changes. It allows tracking
the current EA and provides complementary views to
support EAM.

It was only partially implemented in an
automatized form to extract and correlate data to
build the EA Process View. Much of the data
provided in the example was simulated, which
implies a challenge to solve in future work. Even
though the simulation matches the semantics and
attributes in an actual API gateway log file, it still
needs to be programmed and proven in a real case.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

666

Also, the best data mining techniques for each
architectural view must be analysed to build the
complete model.

ACKNOWLEDGMENT

This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with
reference UIDB/50021/2020 (INESC-ID).

REFERENCES

Alfonso-Robaina, D., Díaz-Moreno, J. C., Malleuve-
Martınez, A., Medina-Moreno, J., & Rubio-Manzano,
C. (2020). Modeling Enterprise Architecture and
Strategic Management from Fuzzy Decision Rules. In
L. T. Kóczy, J. Medina-Moreno, E. Ramírez-Poussa, &
A. Šostak (Eds.), Computational Intelligence and
Mathematics for Tackling Complex Problems (pp. 139–
147). Springer International Publishing.
https://doi.org/10.1007/978-3-030-16024-1_18

Allemang, D., Polikoff, I., & Hodgson, R. (2005).
Enterprise Architecture Reference Modeling in
OWL/RDF. In Y. Gil, E. Motta, V. R. Benjamins, & M.
A. Musen (Eds.), The Semantic Web – ISWC 2005 (pp.
844–857). Springer. https://doi.org/10.1007/
11574620_60

Antonello, F., Baraldi, P., Shokry, A., Zio, E., Gentile, U.,
& Serio, L. (2021). Association rules extraction for the
identification of functional dependencies in complex
technical infrastructures. Reliability Engineering &
System Safety, 209, 107305. https://doi.org/10.1016/
j.ress.2020.107305

Bonina, C., Koskinen, K., Eaton, B., & Gawer, A. (2021).
Digital platforms for development: Foundations and
research agenda. Information Systems Journal, 31(6),
869–902. https://doi.org/10.1111/isj.12326

Branquinho, L. P., Almeida, M. B., & Baracho, R. M. A.
(2015). Ontologies in support of data mining based on
associated rules: A case study in a diagnostic medicine
company. CEUR Workshop Proc, 1442, 6.

Falbo, R. de A. (2014). SABiO: Systematic Approach for
Building Ontologies. Onto. Com/Odise@ Fois.

Farwick, M., Schweda, C. M., Breu, R., & Hanschke, I.
(2016). A situational method for semi-automated
Enterprise Architecture Documentation. Software &
Systems Modeling, 15(2), 397–426. https://doi.org/
10.1007/s10270-014-0407-3

Guédria, W., Gaaloul, K., Proper, H. A., & Naudet, Y.
(2013). Research Methodology for Enterprise
Interoperability Architecture Approach. In X. Franch &
P. Soffer (Eds.), Advanced Information Systems
Engineering Workshops (pp. 16–29). Springer.
https://doi.org/10.1007/978-3-642-38490-5_2

Guerson, J., Sales, T. P., Guizzardi, G., & Almeida, J. P. A.
(2015). OntoUML Lightweight Editor: A Model-Based

Environment to Build, Evaluate and Implement
Reference Ontologies. 2015 IEEE 19th International
Enterprise Distributed Object Computing Workshop,
144–147. https://doi.org/10.1109/EDOCW.2015.17

Guizzardi, G., Botti Benevides, A., Fonseca, C. M., Porello,
D., Almeida, J. P. A., & Prince Sales, T. (2022). UFO:
Unified Foundational Ontology. Applied Ontology,
17(1), 167–210. https://doi.org/10.3233/AO-210256

Guizzardi, G., Wagner, G., Almeida, J. P. A., & Guizzardi,
R. S. S. (2015). Towards ontological foundations for
conceptual modeling: The unified foundational
ontology (UFO) story. Applied Ontology, 10(3–4),
259–271. https://doi.org/10.3233/AO-150157

Herterich, M. M., Dremel, C., Wulf, J., & vom Brocke, J.
(2022). The emergence of smart service ecosystems—
The role of socio-technical antecedents and
affordances. Information Systems Journal, n/a(n/a).
https://doi.org/10.1111/isj.12412

Hinkelmann, K., Maise, M., & Thönssen, B. (2013).
Connecting enterprise architecture and information
objects using an enterprise ontology. Proceedings of the
First International Conference on Enterprise Systems:
ES 2013, 1–11. https://doi.org/10.1109/
ES.2013.6690088

Hinkelmann, K., Merelli, E., & Thönssen, B. (2010). The
role of content and context in enterprise repositories.
Framework, 18, 10.

Jabloun, M., Sayeb, Y., & Ben Ghezala, H. (2013).
Enterprise ontology oriented competence: A support for
enterprise architecture. 2013 3rd International
Symposium ISKO-Maghreb, 1–8.
https://doi.org/10.1109/ISKO-Maghreb.2013.6728115

Kang, D., Lee, J., Choi, S., & Kim, K. (2010). An ontology-
based Enterprise Architecture. Expert Systems with
Applications, 37(2), 1456–1464. https://doi.org/
10.1016/j.eswa.2009.06.073

Pérez‐Castillo, R., Caivano, D., Ruiz, F., & Piattini, M.
(2021). ArchiRev—Reverse engineering of information
systems toward ArchiMate models. An industrial case
study. Journal of Software: Evolution and Process,
33(2), e2314. https://doi.org/10.1002/smr.2314

Perez-Castillo, R., Ruiz-Gonzalez, F., Genero, M., &
Piattini, M. (2019). A systematic mapping study on
enterprise architecture mining. Enterprise Information
Systems, 13(5), 675–718. https://doi.org/10.1080/
17517575.2019.1590859

Shvaiko, P., & Euzenat, J. (2008). Ten Challenges for
Ontology Matching. In R. Meersman & Z. Tari (Eds.),
On the Move to Meaningful Internet Systems: OTM
2008 (pp. 1164–1182). Springer. https://doi.org/
10.1007/978-3-540-88873-4_18

Silva, N., Mira da Silva, M., & Sousa, P. M. M. V. A. de.
(2017). Modelling the Evolution of Enterprise
Architectures Using Ontologies. 2017 IEEE 19th
Conference on Business Informatics (CBI), 01, 79–88.
https://doi.org/10.1109/CBI.2017.17

Simović, A. P., Babarogić, S., & Pantelić, O. (2018). A
domain-specific language for supporting event log
extraction from ERP systems. 2018 7th International
Conference on Computers Communications and

Towards an Ontology to Enforce Enterprise Architecture Mining

667

Control (ICCCC), 12–16. https://doi.org/10.1109/
ICCCC.2018.8390430

Sunkle, S., Kulkarni, V., & Roychoudhury, S. (2013).
Analyzing Enterprise Models Using Enterprise
Architecture-Based Ontology. In A. Moreira, B. Schätz,
J. Gray, A. Vallecillo, & P. Clarke (Eds.), Model-
Driven Engineering Languages and Systems (pp. 622–
638). Springer. https://doi.org/10.1007/978-3-642-
41533-3_38

The Open Group. (2018). The TOGAF® Standard, Version
9.2.
https://publications.opengroup.org/standards/togaf/c18
2. https://pubs.opengroup.org/architecture/togaf9-doc/
arch/index.html

The Open Group. (2019, November). ArchiMate® 3.1
Specification.
https://pubs.opengroup.org/architecture/archimate3-
doc/

Trojahn, C., Vieira, R., Schmidt, D., Pease, A., &
Guizzardi, G. (2022). Foundational ontologies meet
ontology matching: A survey. Semantic Web, 13(4),
685–704. https://doi.org/10.3233/SW-210447

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

668

