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Abstract: Enterprise Architecture (EA) is a coherent set of principles, methods, and models that express the structure of 
an enterprise and its IT landscape. EA mining uses data mining techniques to automate EA modelling tasks. 
Ontologies help to define concepts and the relationships among these concepts to describe a domain of interest.  
This work presents an extensible ontology for EA mining focused on extracting architectural models that use 
logs from an API gateway as the data source. The proposed ontology was developed using the OntoUML 
language to ensure its quality and avoid anti-patterns through ontology rule checks. Then, a hypothesized 
scenario using data structures close to the real is used to simulate the ontology application and validate its 
theoretical feasibility as well as its contribution to the Enterprise Architecture Management field. 

1 INTRODUCTION 

Enterprise Architecture (EA) models represent 
viewpoints of different concerns of the company and 
its IT landscape, such as processes, services, and 
information systems (The Open Group, 2018). It is 
essential to automate the EA modelling due to the 
harmful effects on organizations of decision-making 
based on outdated architecture models, as manual 
modelling is prone to errors and misunderstanding, 
besides being time-consuming (Pérez‐Castillo et al., 
2021). Nevertheless, the literature indicates low 
automation of EA model creation and maintenance, it 
is one of the most critical challenges for EA 
management (Perez-Castillo et al., 2019).  

An API Gateway is an architectural component 
that works as a proxy, mediating calls between API 
and services. It allows the collaboration of different 
organizational actors across industrial boundaries 
(Bonina et al., 2021; Herterich et al., 2022). As it 
monitors the traffic on the company's boundary and 
its information systems, it is an essential data source 
for mining cross-organizational interactions. 

 
a  https://orcid.org/0000-0002-8687-7027 
b  https://orcid.org/0000-0002-8627-3338 
c  https://orcid.org/0000-0002-5383-9884 

An ontology typically describes concepts, 
relationships between these concepts, and constraints 
that indicate how to interpret these relationships. 
Thus, it provides a taxonomy that describes a domain 
of interest and specifies the meaning of terms 
(Shvaiko & Euzenat, 2008; Trojahn et al., 2022). 
Ontologies are used in complex problems to separate 
essentials from implementation details. 

This work is part of ongoing research to 
automatically apply Data Mining (DM) techniques to 
obtain EA view models. Specifically, this paper 
presents an ontology to support the EA mining from 
an API Gateways log.  

In the sequence, section 2 describes the problem, 
section 3 presents the related works, section 4 
describes the methodology, section 5 presents the 
proposed ontology, section 6 demonstrates its 
application, section 7 discusses the results, and 
section 8 presents a conclusion and future works. 
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2 THE PROBLEM 

The API Management tool's usage as a data source for 
EA Mining has yet to be found in the literature. Even 
for other data mining uses, correlating different API 
calls is a significant challenge because each call is 
entirely different from the others and may lack a 
direct correlation. To ensure the feasibility of the 
research, clarify its scope and objectives, and explain 
how to build the solution, its conceptualization is 
necessary. Therefore, the specific problem intended 
to investigate in this work is conceptualizing a 
consistent and extendable process for EA mining, 
considering using data from an API Log. This 
conceptualization requires an ontology to drive a 
straightforward solution design.  

3 RELATED WORKS 

As Enterprise Architecture models expand, it 
becomes harder to keep them up-to-date. As 
companies continuously redefine their business goals, 
it requires a continuous process of reviewing and 
adapting their architecture (Farwick et al., 2016). 

EA Mining is the usage of Data Mining 
techniques to get updated views of EA models (Perez-
Castillo et al., 2019). Pérez‐Castillo et al. (2021) 
developed a reverse engineering approach for 
AchiMate model generation based on static source 
code analysis, database schema and textual analysis. 
Simović et al. (2018) presented an approach to extract 
business information from enterprise application logs 
based on a domain-specific language definition. 
Antonello et al. (2021) prosed a data-driven method 
for identifying functional dependencies in Complex 
Technical Infrastructures (CTI) based on Association 
Rule Mining (ARM) to identify component 
dependencies using alarm messages collected 
through sensors and monitoring technologies, which 
allows detecting a local malfunction propagating 
through groups of dependent components. Alfonso-
Robaina et al. (2020) analyzed the main variables in 
terms of causes and effects to assess the impact of 
multifactorial elements impregnated with uncertainty 
that affects the EA using fuzzy relation logic. 
However, their method is based on knowledge 
obtained by grouping and translating information 
given by experts into dependence rules.  

Ontologies typically describe concepts and the 
relationships among them, providing constraints on 
how to interpret them (Shvaiko & Euzenat, 2008). 
One of the main advantages of using ontologies is 

excluding irrelevant information from the beginning 
of the analysis (Branquinho et al., 2015). OntoUML 
is a well-founded ontology language based on UML 
class diagram fragment that provides an ontology-
driven conceptual modelling language for complex 
domains whose stereotypes reflect the top ontology 
UFO (Guizzardi et al., 2015, 2022). In their study on 
using ontological-based representations of enterprise 
models, Sunkle et al. (2013) suggest ontology 
representation facilitates EA analysis mixing 
representation and inference functionalities that are 
also extensible for more detailed EA analyses.  

Some studies focus on representing reference 
models for EA through semantic web technologies 
such as RDF and OWL. Jabloun et al. (2013) 
developed an ontology for change management in 
enterprise information systems that helps identify 
system components and their relationships by 
reducing semantic mismatch among them. Allemang 
et al. (2005) proposed using RDF and OWL to 
distribute structured information to allow the 
reference model to be extended while keeping the 
consistency of those extensions. They implemented a 
web-based system for managing EA Reference 
Models based on ontology and their reference model.  

Some other studies focused on using ontology for 
a more high-level conceptualization of EA. Based on  
ArchiMate (The Open Group, 2019) which is a well-
known language for EA modelling, Guédria et al. 
(2013) proposed a set of concepts to identify critical 
aspects of interoperability and EA and their 
associations, which results in a conceptual reference 
model for integrated enterprise architecture 
interoperability.  

Kang et al. (2010) built a model to ontologically 
define business terms based on WordNet, an ontology 
database to define terms in English. Hinkelmann et al. 
(2010) developed an approach to operationalize the 
dependencies identification among architectural 
models integrated through information from different 
sources, such as enterprise resource planning (ERP), 
customer relationship management (CRM), 
document management system (DMS), and content 
management systems (CMS). Hinkelmann et al. 
(2013) used ArchiMEO, an ontology representation 
of EA in ArchiMate, to link an enterprise ontology 
with operational databases distributed over several 
information systems that ensure continuous 
alignment of the information architecture to the 
business requirements. Silva et al. (2017) proposed 
using ontology and computational inferences features 
of ontologies to analyze the EA model evolution 
specified in OWL-DL. The ontology reasoners are 
used for relation checking, consistency checking, 
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dependency inferring, and completeness checking, 
which helps to analyze EA model changes under a 
specific IT project and its impact on enterprise 
transformation.  

In this section, we presented works that support 
the conceptual ontology to mining data from API 
gateway logs, such as UFO and OntoUML. Other 
works demonstrate the applications of ontology to 
solve different aspects of Enterprise Architecture 
modelling. Despite some promising approaches, none 
of these works provided a specific and extendable 
ontology for extracting enterprise architecture models 
directly from information systems logs. 

4 METHODOLOGY 

The ontology's construction followed a simplified 
systematic Approach to Building Ontologies 
(SABiO) (Falbo, 2014). It prescribes seven steps to 
build a fully operational web ontology. However, 
some steps and roles were not applied due to the 
objective of developing a reference ontology on a 
more conceptual level. 

OntoUML provided the ontology modelling 
language and OLED (OntoUML Lightweight Editor) 
the modelling tool. It supports the theoretical 
reference for the Unified Foundational Ontology 
(UFO), the foundation ontology for OntoUML. It 
provides a wide variety of validators to ensure the 
ontology rules and helps to detect pitfalls and some 
frequent ontology anti-patterns (Guerson et al., 2015). 
Furthermore, as the proposed ontology targets 
building EA view models, the concepts are mapped to 
ArchiMate. 

5 THE ONTOLOGY FOR EA 
MINING 

The Application Usage viewpoint aims to describe 
the usage of the application by business processes and 
other applications (The Open Group, 2019). Figure 1 
presents the proposed ontology. 

The ontology is composed of four parts. The first 
one is related to the core concepts of ontology, which 
Figure 1 highlight in green. It comprises concepts that 
should be extracted directly from the API Gateway  

Figure 1: Ontology for EA Mining.  
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Log and provide data that supports the rest of the 
ontology. The other three parts are extensions that 
allow modelling a specific data mining process from 
the core concepts to build a specific architecture view : 
(i) the EA Process view, (ii) the EA service 
Dependency View, and (iii) the EA Data Object 
Relation View.   

The relator Frequent Temporal Correlation targets 
to build the EA Process View. To do that, it associates 
the Process Events and classifies each Process Event 
as an Antecedent Activity or Consequent Activity. 
Thus, creating a chain of activities by applying 
temporal data mining techniques to extract activity 
correlations from API Calls as a sequence of process 
events and then identifying processes and grouping 
them in the collective Process, from where the EA 
Process View is then constructed. The dependency 
between two Service Components is associated with 
Component Dependency. Then the set of this 
dependency is mapped in the collective Component 
Relations that provide de data to build the view. 
Similarly, to build the EA Service Dependency View, 
the Frequent API Service Correlation targets to 
identify each Services Dependency. Finally, the 
relator Frequent Data Domain Correlation is used to 
build the EA Data Objects Relation View by applying 
ARM techniques to discover frequent relations on the 
API data payloads. These data payloads are related to 
the API Resources and the names and values of their 
attributes whenever they carry on an entity data 
structure. These entities are grouped in the collective 
Data Objects that provide the data to build the EA 
Data Objects Relation View. 

The kind API Call, on ontology core, characterizes 
each API call as its objects. The APIs are called by an 
authorized Consumer APP representing a Partner 
identified through the attribute client_id. The relator 
Caller represents Partners that make HTTP requests 
(role Request) to APIs.  

An API Call has one or more API Operations, 
characterized by the method (GET, POST, PUT, 
DELETE) and the endpoint_route. It also has one or 
more Service Destination, the service called in the 
backend or other external or internal service provider, 
usually through REST APIs or SOAP Webservices. 
API Operation and Service Destination also extend the 
kind of Service identified by its endpoint_route. Thus, 
a Service should be an API Operation which is the API 
Calls from the Caller, or an API Service Destination, 
which are the backend services called by one API 
Operation on the API Gateway. 

The kind Resource represents the class of objects 
handled through the API. It can be seen as entity data 
structures within the API domain. For instance, an API 
Call may request the creation of an object of the class 
client. 

To build the EA Process View, the relator 
Frequent Temporal Correlation represents the data 
mining process that correlates Process Events in a 
temporal sequence considering each API request as 
an atomic event and identifying in the sequence what 
event represents the Antecedent Activity and what is 
the Consequent Activity. The candidate activities are 
identified and grouped considering the same 
Consumer App, the resource id present in URI, and 
other shared and repeated attributes values in the API 
Calls payload. This lasts a collection of attributes 
represented by the collective Activities Attributes. 
Thus, through temporal ARM, it is possible to 
identify the sequence candidate and assign to each 
sequence a case id, identifying and building 
individual instances for each Process, which is 
composed of an activities chain with antecedents and 
consequents under the same case_id. The Process 
Instances may be grouped based on the first and last 
activities. Thus, the inner different path sequences 
may be seen as variations of the same process group 
in the collective Process. Each Process may be 
categorized as a component in an EA Process View.  

The Frequent Temporal Correlation associates a 
sequence of process events that are API Operations in 
the core of the ontology. These correlations are 
mapped as process nodes that persist the link from 
Antecedent Activity to Consequent Activity. Based 
on these Process's Nodes is built a graph of relations 
mapping their data values similarities and grouping in 
process instances. It is given a process_case_id for 
each process instance. The process instances with the 
same starting and ending events are grouped in the 
collective Process. Then, a view based on the 
Application Usage viewpoint is created in an 
ArchiMate with the processes mapped to Business 
Process into this view. It identifies the most frequent 
chain of events. It maps the events in this path to 
Business Event elements, which are linked by 
creating an ArchiMate Assignment Relationship 
between the Process and the Events.  

The EA Service Dependency View maps the 
relations among API Services exposed in an API 
Gateway and the services called by these APIs, which 
may be a REST API, a SOAP web service, etc. To 
build this map, the "Frequent API Service 
Correlation" identify dependencies between Services. 
A Service may be an API Operation that represents 
the route that allows calling an API or a Service 
Destination, which is the route to a Service. These 
Services may also make requests to an API exposed 
on API Gateway. Thus, this service is called a Service 
Component acting as Antecedent Service and 
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Consequent Service that allows identifying the 
Service that makes calls and the Service called. 

The Frequent API Service Correlation represents 
the ARM technique applied to identify frequent 
associations between APIs exposed in the API 
Gateway and Services API exposed by applications, 
which are backend services called by APIs. It 
correlates two Service Component identifying the 
Antecedent Service that frequently calls a 
Consequent Service. Thus, the relations between 
these services are individuals of the Kind Component 
Dependency. The collective Component Relations 
represent the collection that groups these 
dependencies in a context based on the appName and 
apiName, which identify the Caller and the API. 
Thus, an EA Service Dependency View is created for 
this context as an ArchiMate Application Usage 
viewpoint. From the attribute dependent_service in 
Components Relations is extracted an ArchiMate 
element Application Service that is grouped into the 
Backend Service Layer. The APIs linked to these 
backend services are mapped to Application 
Interfaces grouped into API Layer. The relation 
between the Application Services and Application 
Interfaces creates an assignment relation in the 
ArchiMate model. Then the same logic is applied to 
the attribute appName mapped to a Business Actor. 

The EA Data Object Relation View aims to show 
a map of data object relations grouped by Domains. 
To identify these relations, the Frequent Data 
Correlation applies data mining techniques to identify 
Data Elements within the data structures of API 
payloads. The Data Element may play two roles, 
Entity that is identified by the API REST resource, or 
Data Domain that represents a logic group identified 
through the base path name of the API present in its 
route as well as in its URI. In this case, it may be 
essential to clarify the concept of Data Domain used 
in this ontology and differentiate it from the Web 
Domain, which is also part of the URI of API and 
Service routes. The last one is the web domain that 
allows a web resource to be recognized and reached 
from any computer on the Internet. The concept for 
this ontology is a logic groping that creates a context 
of data usage. Thus, this context encompasses 
different entities based on the API route and its linked 
documentation, excluding the web domain until the 
part of URI that identifies the different resources that 
an operation over API creates, modifies, deletes, and 
so on. Once identified the entities and groped to a 
context (Domain), the data object is correlated based 
on their dependency based on the frequency of its 
repeated values in its attributes.  

In this part of the ontology, the Frequent Data 
Domain Correlation represents the ARM technique 
that extracts frequent data correlations based on the 
repeated value of its attributes. The Data Objects are 
directly related to the data structures of the API calls 
identified by the kind Resource. Thus, the Frequent 
Data Domain Correlation identifies the peace of data 
that plays the role of Entity and the peace that 
identifies the Data Domain. The repeated_attributes 
of Data Objects are used to identify the strength of the 
relation. Then, the Data Object classified as Entities 
are mapped to an application Data Object in 
ArchiMate. The related Domain is mapped to another 
ArchiMate Data Object, but this one aggregates the 
other one. 

6 EXAMPLE OF APPLICATION  

This section exemplifies the applicability of the 
ontology proposed in this work to prove its logical 
feasibility and better understand how it will support 
the architecture view building covering the whole 
Process. 

The example considers a simplified and 
hypothetical user-buying journey on an e-commerce 
site. Firstly, users search for products. Once they 
identify the product, they put it in a shopping cart 
created when the first product is added. Then, users 
add and remove products from the cart. Once 
satisfied, users check out the cart when they are asked 
to create an account or log in. Once logged, they pay, 
and after the payment is approved, the e-commerce 
system creates an order that is sent to the logistics 
sector for delivery. In the end, the logistics and the 
user confirm the product delivery and its reception by 
the user.  

The first API call occurs when the user adds the 
first product to the cart, creating the shopping cart. 
The key attributes this API call based on Sensedia 
API Gateway, which is used for through this example: 
• clientId: identifies the Consumer App 

individuals. 
• apiName: friendly name description of API 
• receivedOnDate: time that the call hits the API 

Gateway. 
• resultStatus: the HTTP result of API 

processing with success or error. 
• uri: the internet address of the API. 
• trace: a string with the record of some aspects 

of the API call. It carries its header and body 
payload. 
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 An API Call should be one kind of Service that is 
identified by its URL route: an API Operation, which 
is the API Calls from the Caller, or an API Service 
Destination which are the backend services called by 
one API Operation on the API Gateway.  

From “trace” string, it is possible to extract the 
API Operation Route and the Service Destination 
Route. 

The operation name in API Operation identifies 
the operation over an API to create or change a 
resource. It results from string concatenation of the 
value of method, apiName and Resource. 

Because the called URLs carry the concrete 
identifiers of resource instances, it was necessary to 
check the description of the routes in the swagger. 
The swagger describes some relevant attributes of the 
API. In the case of Sensedia’s API Platform, its 
documentation is linked to the API Gateway. 

6.1 Frequent Temporal Correlation 

 
Figure 2: ArchiMate Process View.  

Frequent Temporal Correlation is the sequential 
correlation mining extraction process that sequences 
timely API Calls that share some attribute values and 
groups those with the same Caller. The attribute 
names and its value are stored in the 
repeated_attributes of Process Node for each Process 
Event, combining two API Calls, the older as the 
Antecedent Activity and the younger as the 
Consequent Activity. Then the weight of the Process 
Event is calculated based on the percentual measure 
of the attributes repetition. The Process Events that do 
not have at least one attribute with 100% of the weight 
are eliminated, presuming that to make part of the 
same Process, at least one attribute must be present in 
100% of correlations among its instances.  

Then, a graph is created, extracting the sequence 
of process events considering that a Consequent 
Activity of a Process Event is an Antecedent Activity 
in the following Process Event. In the end, each graph 
is a process instance assigned a "process_case_id". 
As the interest of this work lies in an enterprise 
architecture view of the Process, and not in process 

details, it simply groups the Process Instances into 
collective Processes that consider the similarity of 
graphs regards its first and last node. It considers the 
variations path between these two nodes as internal 
variations of the same Process due to the high level of 
EA.  

The resulting model is used to build an ArchiMate 
Business Process Cooperation viewpoint. Despite 
some differences in the sequences and do not 
correspond precisely to the same graph, all paths will 
start with the creation of the cart and finish with the 
final update of order status with the sequence 
depicted in Figure 2. 

6.2 Frequent API Service Correlation 

Frequent API Service Correlation is the data mining 
processing that correlates two Services. The first is an 
API Operation playing the Antecedent Service role 
that calls the Consequent Service, which is the 
Service Destinations of an API Call. Its relation is an 
instance of Service Dependency where the “api” 
attribute comes from the API Call “apiName”, and the 
dependent service comes from service route. The 
collective stores a collection of the related mining 
grouped by API. Thus, it makes it possible to depict 
what an API and its resources call a dependent 
service. This view may help to get an impact analysis 
for an API Change.  

Thus, the EA Service Dependency View may be 
built to show these dependencies at a high level, such 
as the ArchiMate Application Cooperation viewpoint 
depicted in Figure 3. 

 
Figure 3: ArchiMate Service Dependency.  

6.3 Frequent Data Domain Correlation 

It is the application of the Data Mining Technique to 
identify frequent associations among data structures 
composed of Data Elements. These Data elements 
may be Data domains or Entities. From this 
perspective, we consider the Data Domain as the API 
Name. Thus, it is filled by the API Name attribute 
from the API Call. The entities grouped into a Data 
Domain are the resources. Then the Entities are filled 
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with the resource_name of the API. The Entity 
Attributes, in this case, are the repeated value 
attributes between the data structures. Then it uses 
entity attributes to assess the strength of the 
association. Only associations with very high 
confidence, close to 100%, should stay present in the 
collective “Data Objects Domain” from what it is 
possible to build a visualization of Entities relations 
for each data Domain, such as the ArchiMate 
viewpoint illustrated in Figure 4. 

 
Figure 4: Data Objects API Dependency. 

7 DISCUSSION 

This proposal focuses on conceptualizing an EA 
mining extraction from a particular technology, API 
Gateway, which is a widely used integration tool. 
Even though many companies may also have been not 
using it, limiting the industrial application of the 
study, API gateway logs are vital to complement the 
EA mining field once it provides a kind of service 
facade for the information systems of an organization 
and its partners, capturing and recording some 
behaviours and data structures that may not be present 
in operational databases. This approach and focus 
have yet to be found in the literature.  

Tracing a unique API request through the network 
and following the components triggered by it is not a 
big deal. However, the proposed ontology focuses on 
correlating different requests that initially have no 
physical correlations but that share logical contexts 
relevant to understanding a part of the EA.  

The extracted business process view allows an 
overlook of an API relations with the execution of the 
main tasks of a business process. Another view allows 
identifying and tracking API dependencies with 
various operations and the backend services that 
support these operations. It helps impact analysis of 
changes in APIs or services that can impact the global 
EA level. Likewise, a view of data objects related to 
APIs and processes helps to identify the relationship 
between data entities and their usage through 
enterprise APIs. All these extracted views aim to 
contribute to the overall architecture. Despite having 
some limitations regarding building a complete EA, 
such as the business architecture, it will contribute 

with complementary views to accelerate the 
architecture analysis and modelling. 

For this ontology, attributes with repeated values 
between the data structures of API calls are used to 
give weight to the relationship between process 
activities and to associate data objects. Based on this 
data, it is possible to apply other process mining 
techniques to help discover different aspects and 
patterns related to business processes. Another way to 
extend this ontology is through further analysis of this 
data to verify the cohesion of the data domains related 
to the name of the attributes between the data objects.  

The proposed ontology had its consistency and 
quality checked by tools. It condenses three different 
applications following an ontological pattern for three 
distinct views, demonstrating that the model can be 
extended to build other architectural views not 
developed in this work and to apply other APIs 
integrations tools beyond API Gateway. Furthermore, 
it can allows instantiation and refinement into a more 
operational ontology, such as RDF or OWL. 

The proposal's threat so far is that despite 
presenting a specific domain ontology, this ontology 
is still a relatively high conceptual reference model. 
Although OLED allows exporting OntoUML models 
to other more operational languages for ontology 
instantiation, the high level of detail, given the 
objectives of this work, may reduce the 
expressiveness of the ontology when applied to these 
more operational languages, such as OWL and RDF, 
requiring adaptation of the derived models. 

8 CONCLUSION AND FUTURE 
WORK 

This research aims to build a DM model to automate 
the modelling of the current views of EA. For that, the 
ontology presented in this paper focused on 
conceptualizing the process of building EA mining. 

The application of the proposed ontology was 
hypothesized and exemplified as a possible approach 
for capturing EA model changes. It allows tracking 
the current EA and provides complementary views to 
support EAM.  

It was only partially implemented in an 
automatized form to extract and correlate data to 
build the EA Process View. Much of the data 
provided in the example was simulated, which 
implies a challenge to solve in future work. Even 
though the simulation matches the semantics and 
attributes in an actual API gateway log file, it still 
needs to be programmed and proven in a real case. 
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Also, the best data mining techniques for each 
architectural view must be analysed to build the 
complete model. 

ACKNOWLEDGMENT 

This work was supported by national funds through 
Fundação para a Ciência e a Tecnologia (FCT) with 
reference UIDB/50021/2020 (INESC-ID). 

REFERENCES 

Alfonso-Robaina, D., Díaz-Moreno, J. C., Malleuve-
Martınez, A., Medina-Moreno, J., & Rubio-Manzano, 
C. (2020). Modeling Enterprise Architecture and 
Strategic Management from Fuzzy Decision Rules. In 
L. T. Kóczy, J. Medina-Moreno, E. Ramírez-Poussa, & 
A. Šostak (Eds.), Computational Intelligence and 
Mathematics for Tackling Complex Problems (pp. 139–
147). Springer International Publishing. 
https://doi.org/10.1007/978-3-030-16024-1_18 

Allemang, D., Polikoff, I., & Hodgson, R. (2005). 
Enterprise Architecture Reference Modeling in 
OWL/RDF. In Y. Gil, E. Motta, V. R. Benjamins, & M. 
A. Musen (Eds.), The Semantic Web – ISWC 2005 (pp. 
844–857). Springer. https://doi.org/10.1007/ 
11574620_60 

Antonello, F., Baraldi, P., Shokry, A., Zio, E., Gentile, U., 
& Serio, L. (2021). Association rules extraction for the 
identification of functional dependencies in complex 
technical infrastructures. Reliability Engineering & 
System Safety, 209, 107305. https://doi.org/10.1016/ 
j.ress.2020.107305 

Bonina, C., Koskinen, K., Eaton, B., & Gawer, A. (2021). 
Digital platforms for development: Foundations and 
research agenda. Information Systems Journal, 31(6), 
869–902. https://doi.org/10.1111/isj.12326 

Branquinho, L. P., Almeida, M. B., & Baracho, R. M. A. 
(2015). Ontologies in support of data mining based on 
associated rules: A case study in a diagnostic medicine 
company. CEUR Workshop Proc, 1442, 6. 

Falbo, R. de A. (2014). SABiO: Systematic Approach for 
Building Ontologies. Onto. Com/Odise@ Fois. 

Farwick, M., Schweda, C. M., Breu, R., & Hanschke, I. 
(2016). A situational method for semi-automated 
Enterprise Architecture Documentation. Software & 
Systems Modeling, 15(2), 397–426. https://doi.org/ 
10.1007/s10270-014-0407-3 

Guédria, W., Gaaloul, K., Proper, H. A., & Naudet, Y. 
(2013). Research Methodology for Enterprise 
Interoperability Architecture Approach. In X. Franch & 
P. Soffer (Eds.), Advanced Information Systems 
Engineering Workshops (pp. 16–29). Springer. 
https://doi.org/10.1007/978-3-642-38490-5_2 

Guerson, J., Sales, T. P., Guizzardi, G., & Almeida, J. P. A. 
(2015). OntoUML Lightweight Editor: A Model-Based 

Environment to Build, Evaluate and Implement 
Reference Ontologies. 2015 IEEE 19th International 
Enterprise Distributed Object Computing Workshop, 
144–147. https://doi.org/10.1109/EDOCW.2015.17 

Guizzardi, G., Botti Benevides, A., Fonseca, C. M., Porello, 
D., Almeida, J. P. A., & Prince Sales, T. (2022). UFO: 
Unified Foundational Ontology. Applied Ontology, 
17(1), 167–210. https://doi.org/10.3233/AO-210256 

Guizzardi, G., Wagner, G., Almeida, J. P. A., & Guizzardi, 
R. S. S. (2015). Towards ontological foundations for 
conceptual modeling: The unified foundational 
ontology (UFO) story. Applied Ontology, 10(3–4), 
259–271. https://doi.org/10.3233/AO-150157 

Herterich, M. M., Dremel, C., Wulf, J., & vom Brocke, J. 
(2022). The emergence of smart service ecosystems—
The role of socio-technical antecedents and 
affordances. Information Systems Journal, n/a(n/a). 
https://doi.org/10.1111/isj.12412 

Hinkelmann, K., Maise, M., & Thönssen, B. (2013). 
Connecting enterprise architecture and information 
objects using an enterprise ontology. Proceedings of the 
First International Conference on Enterprise Systems: 
ES 2013, 1–11. https://doi.org/10.1109/ 
ES.2013.6690088 

Hinkelmann, K., Merelli, E., & Thönssen, B. (2010). The 
role of content and context in enterprise repositories. 
Framework, 18, 10. 

Jabloun, M., Sayeb, Y., & Ben Ghezala, H. (2013). 
Enterprise ontology oriented competence: A support for 
enterprise architecture. 2013 3rd International 
Symposium ISKO-Maghreb, 1–8. 
https://doi.org/10.1109/ISKO-Maghreb.2013.6728115 

Kang, D., Lee, J., Choi, S., & Kim, K. (2010). An ontology-
based Enterprise Architecture. Expert Systems with 
Applications, 37(2), 1456–1464. https://doi.org/ 
10.1016/j.eswa.2009.06.073 

Pérez‐Castillo, R., Caivano, D., Ruiz, F., & Piattini, M. 
(2021). ArchiRev—Reverse engineering of information 
systems toward ArchiMate models. An industrial case 
study. Journal of Software: Evolution and Process, 
33(2), e2314. https://doi.org/10.1002/smr.2314 

Perez-Castillo, R., Ruiz-Gonzalez, F., Genero, M., & 
Piattini, M. (2019). A systematic mapping study on 
enterprise architecture mining. Enterprise Information 
Systems, 13(5), 675–718. https://doi.org/10.1080/ 
17517575.2019.1590859 

Shvaiko, P., & Euzenat, J. (2008). Ten Challenges for 
Ontology Matching. In R. Meersman & Z. Tari (Eds.), 
On the Move to Meaningful Internet Systems: OTM 
2008 (pp. 1164–1182). Springer. https://doi.org/ 
10.1007/978-3-540-88873-4_18 

Silva, N., Mira da Silva, M., & Sousa, P. M. M. V. A. de. 
(2017). Modelling the Evolution of Enterprise 
Architectures Using Ontologies. 2017 IEEE 19th 
Conference on Business Informatics (CBI), 01, 79–88. 
https://doi.org/10.1109/CBI.2017.17 

Simović, A. P., Babarogić, S., & Pantelić, O. (2018). A 
domain-specific language for supporting event log 
extraction from ERP systems. 2018 7th International 
Conference on Computers Communications and 

Towards an Ontology to Enforce Enterprise Architecture Mining

667



Control (ICCCC), 12–16. https://doi.org/10.1109/ 
ICCCC.2018.8390430 

Sunkle, S., Kulkarni, V., & Roychoudhury, S. (2013). 
Analyzing Enterprise Models Using Enterprise 
Architecture-Based Ontology. In A. Moreira, B. Schätz, 
J. Gray, A. Vallecillo, & P. Clarke (Eds.), Model-
Driven Engineering Languages and Systems (pp. 622–
638). Springer. https://doi.org/10.1007/978-3-642-
41533-3_38 

The Open Group. (2018). The TOGAF® Standard, Version 
9.2. 
https://publications.opengroup.org/standards/togaf/c18
2. https://pubs.opengroup.org/architecture/togaf9-doc/ 
arch/index.html 

The Open Group. (2019, November). ArchiMate® 3.1 
Specification. 
https://pubs.opengroup.org/architecture/archimate3-
doc/ 

Trojahn, C., Vieira, R., Schmidt, D., Pease, A., & 
Guizzardi, G. (2022). Foundational ontologies meet 
ontology matching: A survey. Semantic Web, 13(4), 
685–704. https://doi.org/10.3233/SW-210447 

 

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

668


