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Abstract: With the increasing deployment of Connected Vehicle Technology (via DSRC/CV2X), public traffic authori-
ties are presented with a potential treasure trove of valuable data for analysis. However, several practical limi-
tations exist that pose unique challenges in this publicly-collected data such as lack of vehicle re-identification
due to privacy measures, sparsity of data, limited range of transmission, noise in recorded trajectories etc. In
this paper, we analyze trajectories for braking behaviors of Connected Vehicle Road-side Unit (RSU) data.
The dataset consists of trajectories collected from a dense urban grid consisting of 25 intersections along 4
high-volume arterials, for a period of 1 year. We begin by providing a brief description of the data collection
and processing modalities. We then present a tool to perform exploratory analytics on the data with a focus on
anomalous trajectories with hard-braking events. We show the benefits of such a tool for public traffic author-
ities to gain insights into the performance and safety aspects of urban arterials, and to guide policy decisions.

1 INTRODUCTION

The recent advancements in the Intelligent Trans-
portation System (ITS) have led to the extensive
deployment of various real-time sensing and data
collection systems. Public traffic agencies col-
lect various types of data, including loop detec-
tor data (Haas et al., 2001; Lamas et al., 2015),
GPS, video, BlueTooth, CV2X (Cellular Vehicle-to-
Everything), DSRC (Dedicated Short Range Com-
munications) (Kenney, 2011), (Wolf et al., 2014).
Such publicly-collected data has the potential for use
in gaining insights into the state of corridors and
real-time adaptive arterial traffic signal optimization
(Wang et al., 2022; Zhao et al., 2012). However, it
is resource-intensive to collect, collate, store several
terabytes of data, and then perform analytics to gain
insights.

To address this challenge, this paper1 describes a
tool that uses the data broadcast by V2X (Vehicle-
to-everything) enabled vehicles to analyze anomalous
trajectory events, specifically unexpected braking.
The V2X communication systems, like DSRC (Dedi-
cated Short Range Communications) and CV2X (Cel-

1The work was supported in part by NSF CNS 1922782
and by the Florida Department of Transportation (FDOT).
The opinions, findings and conclusions expressed in this
publication are those of the authors and not necessarily
those of NSF or FDOT.

lular Vehicle-to-Everything), are becoming increas-
ingly widespread in urban traffic networks. These
communication systems usually consist of two types
of components: On-board Units (OBUs), which are
installed and interfaced with vehicles, and Road-side
Units (RSUs) which are usually installed at intersec-
tions. OBUs and RSUs communicate with each other
via a series of predefined messages (Kenney, 2011).
Importantly, OBUs transmit their host vehicles’ data
including location, speed, heading to RSUs.

While there is significant work (Liu et al., 2022)
that uses trip-level probe vehicle data via GPS (Global
Positioning Satellite), such data is usually available
in real-time to auto guidance platforms (such as An-
droid Auto2, Apple CarPlay3, HERE Technologies4,
WEJO5 etc.) and ride-sharing companies (such as
Uber6, Lyft7 etc.). This proprietary data is not pub-
licly accessible. However, public traffic authorities
may have access to GPS trajectory traces transmitted
by OBUs to RSUs, when the vehicles are within a
couple of hundred meters of the RSUs near intersec-
tions.

Interactions of vehicle trajectories within a signal-

2www.android.com/auto/
3www.apple.com/ios/carplay/
4www.here.com/
5www.wejo.com/
6www.uber.com/
7www.lyft.com/
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ized intersection is a complex phenomenon(Banerjee
et al., 2022), influenced by factors such as signal tim-
ing plan, road geometry, surrounding driver behav-
iors, pedestrian behaviors etc. Intersections are also
critical points of conflict along the roadways and ac-
count for one-quarter of all traffic fatalities as well as
one-half of all traffic injuries (FHWA, ; FDOT, ).

Vehicle trajectories near intersections (including
anomalous braking behavior) can be detected by
video data with automated object segmentation and
tracking algorithms (Huang et al., 2020; Banerjee
et al., 2022). These algorithms detect and track the
trajectories of various road users. Based on these,
dangerous braking can be detected. However, these
algorithms are greatly limited by the deployed video
camera instrumentation and have a very limited field
of view: fish-eye lens cameras can only capture the
inner intersection region and regular cameras can gen-
erally capture only one approach of the intersection.

GPS-based trajectories have been used to detect
dangerous interactions. For example, in (Li et al.,
2021), important bus-driving events (using GPS tra-
jectory data) were extracted and used for surrogate
safety measures for pedestrians and bicycles.

In this paper, we focus on utilizing the
anonymized GPS data from the Connected Vehicles
infrastructure to develop algorithms to detect braking
incidents which are often representative of the danger-
ous events that happen near intersections. The GPS
data was collected at the RSUs for the Connected Ve-
hicles such as transit buses and official University ve-
hicles that broadcast their coordinates, in terms of lat-
itude and longitude, to the RSUs. An added advantage
with this data over video is the larger tracking region
over which vehicles can be tracked.

The contributions in this paper may be summa-
rized as follows:
1. We created a system for collecting and storing

data in real-time from 25 intersections in the
vicinity of University of Florida, by connecting to
the RSUs. The collected data was then stored on
the cloud in data buckets.

2. We developed a novel system to analyze and vi-
sualize location coordinate data transmitted by
OBUs to the RSUs, to determine braking behavior
which is an important marker for traffic intersec-
tion safety.

3. In this work, we lay the groundwork for effec-
tively using DSRC (and in future, CV2X) data for
analyzing braking behaviors by local traffic au-
thorities based on the RSU data likely available to
them. This is despite the practical challenges as-
sociated with such data including the lack of ve-
hicle re-identification (due to privacy concerns),

limited range restricted to the proximity of the
RSU and low OBU penetration rates.

This work is intended to serve as a foundation
for future applications, particularly as the number of
Connected Vehicles grows and their presence at inter-
sections becomes more widespread. The paper is or-
ganized as follows: Section 2 describes our data col-
lection framework and methodology for determining
the braking behavior. Section 3 presents our results
of analyzing data collected for over a year for brak-
ing behavior at an intersection-level as well as at the
network-wide system-level. Finally, we conclude in
Section 4.

2 DATA COLLECTION AND
PROCESSING

In this section, we describe the data source, the data
location, and the data collection and storage pipeline,
the data processing, and our methodology for detect-
ing braking behavior.

2.1 Data Source

The data source comprises of the RSUs at various in-
tersections. The collected data is composed of incom-
ing and outgoing data with respect to an RSU. The in-
coming data are DSRC messages sent by the OBUs,
and by neighboring RSUs. On the other hand, the
outgoing DSRC messages are sent by the RSU to the
neighboring RSUs, and all OBUs in its range.

DSRC, or Dedicated Short-Range Communica-
tions (Biddlestone et al., 2012), is a radio communica-
tion technology that follows the IEEE 802.11 ”Wi-Fi”
standards and enables secure one-way and two-way
communication between vehicles and the road traffic
infrastructure. The range of DSRC communication
can vary from 100-1000m based on the topography
and line-of-sight. This technology enables vehicles to
share information with other Connected Vehicles and
to send messages about road conditions and safety is-
sues. In addition to relaying information between ve-
hicles and road traffic infrastructure, DSRC technol-
ogy also enables vehicles to communicate with RSUs
installed at traffic intersections. This communication
capability can be utilized for signal timing manage-
ment and optimization (Hsu and Shih, 2015; Mandava
et al., 2009). For the purpose of this work, we gather
the messages sent from vehicles to the RSUs. These
messages are formatted in a specific way and include
various fields. Our main focus is on the GPS coordi-
nates fields within these messages.
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GPS, or Global Positioning System (Hofmann-
Wellenhof et al., 2012), is a radio navigation system
that uses satellites to send low-energy radio signals
to Earth, which can be picked up by GPS receivers
commonly found in smartphones, for example. When
GPS receivers are installed on vehicles, these sensors
provide an estimate of the vehicle’s location, head-
ing, and speed. It should be noted that GPS signals
can become inaccurate in areas with tall buildings due
to scattering effects, in which case we would need to
post-process the information to dampen the noise.

GPS data has been widely utilized in traffic flow
analysis, particularly for congestion analysis (Yong-
chuan et al., 2011; D’Andrea and Marcelloni, 2017;
Kan et al., 2019; Wang et al., 2016; Sun et al., 2019).
Connected vehicles have GPS systems built into the
OBUs which broadcast their GPS trajectory at a 10Hz
resolution to RSUs via Onboard Units (OBUs) by
embedding the latitude and longitude within a Basic
Safety Message (BSM). Figure 1 shows the structure
of a DSRC BSM message.

Figure 1: Fields in a Basic Safety Message (BSM) from
SAE J2935.

This study focuses on the structure of Basic Safety
Messages (BSMs) registered by OBUs as they pass
near intersections equipped with RSUs. The BSM
format, described in J2935 (DSRC, 2020), allows the
RSU to capture various properties of the vehicle, in-
cluding its location, speed, and more. However, to
maintain privacy, the vehicle is assigned a temporary
ID that changes every few minutes, so the count of
such IDs does not reflect the actual number of unique
vehicles.

The type of data that can be captured by the OBU
depends on its capability to connect to the vehicle.
If the OBU is directly interfaced with the vehicle, it
can record fields such as transmission, heading, an-
gle, acceleration and braking. However, for this study,
the vehicles were fitted with external portable OBUs.
Hence, only the vehicle’s ID, time stamp, latitude and
longitude, and speed (id, secMark, lat, long, speed
fields in the BSM message structure) were captured.

Thus, the data of interest was obtained from
RSUs. Although the collected data included incom-

ing messages from OBUs and neighboring RSUs, this
paper focuses on the messages received from OBUs
in the form of BSMs. The OBUs generally transmit
BSMs at a rate of 10 messages per second. The BSMs
gathered include GPS coordinates of the vehicles in
terms of latitude and longitude, and they are exten-
sively utilized in this study.

2.2 Data Location

Figure 2: Intersections fitted with RSUs are shown here.
The intersections surround the vast campus of the Univer-
sity of Florida. The four roads forming a Trapezium have
25 intersections that are fitted with RSUs.

In this section, we provide an overview of the region
from which the data is collected. The region is the
Trapezium surrounding the University of Florida in
Gainesville, as shown in the Figure 2. The Trapez-
ium is formed by four major roads: 34th Street, West
University Avenue, 13th Street, and Archer Road,
forming its Western, Northern, Eastern, and Southern
boundaries, respectively. These roads are among the
busiest in Gainesville, with high levels of pedestrian
traffic.

The data for this study was collected from 25 sig-
nalized intersections, primarily from vehicles owned
by the City of Gainesville and the University of
Florida, including transit buses and service vehicles.
The data collection took place from April 2021 to July
2022 and involved 50-60 vehicles. Although the lim-
ited deployment of OBUs at the time of the study re-
sulted in sparse data, the methodology developed in
this paper provides a foundation for future connected
vehicle applications as their deployment increases.

The distribution of unique identifiers in our mes-
sage logs is depicted in Figure 3. Our logs contained
approximately 200,000 unique identifiers for Con-
nected Vehicles. It’s noteworthy that while a single
physical vehicle may have multiple identifiers for pri-
vacy purposes, the relative number of unique identi-
fiers is indicative of the relative number of actual ve-
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Figure 3: Counts of unique identifiers of Connected Vehi-
cles tracked between the months of April 2021 to July 2022,
across various intersections.

Figure 4: Various messages exchanged between the users
and the RSUs. The data collection software resides in the
server, which in our case is housed at the City of Gainesville
Laboratory.

hicles at the intersection, especially considering that
the speed limits at these intersections are similar. As
such, we can conclude, for example, that intersections
7353 and 7354 have a higher presence of OBUs com-
pared to intersection 5057.

2.3 Data Collection

This section details the data collection process used
in our study. The data was collected from Road Side
Units (RSUs) in the region surrounding the Univer-
sity of Florida, Gainesville. There are two methods
for connecting to the RSUs: through the RSU web ap-
plication (provided by the Original Equipment Man-
ufacturer) or using Java WebSocket APIs. We chose
the latter method for data collection.

To receive messages from the RSUs, a Java appli-
cation was written to subscribe to the messages us-
ing websocket. In the process of collecting data from
the RSUs, the Java application sent the subscription
command and executed the ”!wait” command to keep
the websocket connection alive and receive messages
from the RSUs.

Once a message was received, it was written to the
standard output and forwarded to a Python (version
3.7) interpreter through the Python subprocess PIPE.
In addition, the control message was also written to

the standard output for the Python interpreter to mon-
itor the connection status.

The Python interpreter, upon receiving the mes-
sages, first extracted the byte-encoded XML message
from the raw message wave and decoded it. The syn-
tax and semantics of the XML message can be found
in the SAE J2735 standard (Kenney, 2011). In ad-
dition to the BSM, we received other types of mes-
sages from the RSUs such as PSM (Personal Safety
Message), SPAT (Signal Phase And Timing Mes-
sage), TIM (Traveler Information Message), MAP
(Map Data Message), SSM (Signal Status Message),
and SRM (Signal Request Message). Figure 4 shows
the various DSRC message senders and recipients in
a CV2X infrastructure. The data collector and proces-
sor codes reside in the Server.

Finally, the messages received from the RSUs
were stored in an Amazon Web Services (AWS) S3
bucket 8. AWS S3 provides high data durability and
availability, close to 100%, and the data was orga-
nized by city, year, month, day, and intersection prop-
erties for quick access. All data stored in AWS S3 is
encrypted by default, and the S3 API endpoints sup-
port Secure Sockets Layer/Transport Layer Security
for encrypting data in transit.

2.4 Data Processing

The initial stage of the data processing pipeline in-
volves downloading the RSU logs from AWS S3
bucket and using the data parsing module to read
the logs and establish a spatio-temporal trajectory
database. This is achieved by using Python XML-
parsing library LXML 4.9.09 and Pandas 1.4 10, to
parse the BSM messages. A trajectory database is
built including all available tracks, which is stored
as dictionaries indexed by vehicle IDs and containing
time-stamped latitude and longitude of the vehicles’
paths.

However, the stored trajectories often contain
noise due to factors such as surrounding buildings
and atmospheric conditions. To address this, trajec-
tory smoothening algorithms are developed using ve-
hicle motion data, based on windowed moving aver-
ages and interpolation techniques to fill any gaps in
the data. The goal of these algorithms is to provide
a smoother representation of the raw, noisy trajecto-
ries. The original data is obtained at one decisecond
resolution. We smoothen the data by using a moving
average with a window of five deciseconds.

8aws.amazon.com/
9www.lxml.de

10pandas.pydata.org/
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Figure 5: Counts of unique identifiers of Connected
Vehicles tracked showing braking behavior of concern
(MILD/HARD/EXTREME) between the months of April
2021 to July 2022, across various intersections. Compared
to Figure 3, we can see that there is a correlation between
the intersections with most vehicle identifier detections, and
the intersections having more braking events of concern.

2.5 Methodology for Detecting Braking
Behavior

A near-miss traffic event can be described as an event
where a significantly higher risk is involved in the
interactions between road users than in an ordinary
case. One of the key indicators of a near-miss is un-
expected sudden braking by a vehicle. The sudden
braking may be in response to another road user (such
as another vehicle or pedestrian) coming too close. It
could also be in response to a static hazard such as a
pothole. While both cases are undesirable, they can be
distinguished by their frequency of occurrence. Sup-
pose multiple vehicles show a similar braking pattern
in the same region, around the same time, which is
sustained for at least several minutes. In that case, it
can be reasonably inferred that the braking is in re-
sponse to a persistent static hazard. However, if such
braking only occurs sparsely and irregularly, it may
be of concern. In this analysis, we focus on detecting
braking behavior that may be of concern.

We obtain braking behavior from GPS (Global Po-
sitioning System) trajectory data from Basic Safety
Messages (BSMs), by looking at the deceleration pro-
files. Deceleration is found by taking the second
difference of the smoothened trajectory, as the vehi-
cles were not digitally interfaced with the OBU and
were thus not able to capture actual braking. Numpy
1.23.011 Python library is used to compute the sec-
ond difference (i.e. second derivative). Haversine for-
mula12 is used to convert the latitude/longitude coor-
dinates to meters.

We characterize braking behavior based on decel-
eration thresholds (Baldanzini et al., 2016; Staputis
and Žuraulis, 2023). In this analysis, we use the ac-
celeration due to gravity “g” (9.8 m/s2) as a unit, and
mark:

11www.numpy.org
12rosettacode.org/wiki/Haversine formula

• 0g to -0.35g as SAFE Braking

• -0.35g to -0.47g as MILD Braking

• -0.47g to -0.62g as HARD Braking

• Beyond –0.62g is EXTREME Braking

We only present results for MILD, HARD, and EX-
TREME braking in this paper. SAFE braking is not
of concern.

3 EXPERIMENTS

In this section, we present the outcomes of imple-
menting our approach on a per-intersection basis and
also take a comprehensive view that encompasses all
the intersections.

3.1 Intersection Braking Behavior

Figure 5 shows all MILD/HARD/EXTREME com-
bined events per intersection. We break up this in-
formation based on braking severity per instance in
Figure 6. Note that it is possible that a single iden-
tifier may contain multiple braking instances. An in-
stance here lasts for 1 decisecond, which is the time
resolution of Basic Safety Messages. Thus, this plot
also captures the duration (in deciseconds) of the class
of braking behavior seen. Also, in the plots shown,
blank rectangles indicate that exactly zero such brak-
ing instances were found in the given time bucket.

3.1.1 Temporal Behavior

Our study on braking events includes an analysis of
the occurrences based on the time of the day and the
day of the week. This analysis is represented in the
form of three plots, each one for a specific level of
severity - mild, hard, and extreme braking events.

The plots in Figures 7, 8, 9 and 10 depict that the
majority of the braking events of concern occur dur-
ing the weekdays and during the mid-day hours. This
could be due to several reasons such as the presence of
a higher number of pedestrians during the lunch hour,
but also the increased presence of Connected Vehicles
on the road at that time.

3.1.2 Spatial Behavior

In order to better understand the braking behavior
of vehicles, we segment the data based on the dis-
tance from the intersection where the braking event
occurred. To do this, we divide the distance into three
categories: 0-20 meters, 20-40 meters, and 40 meters
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Figure 6: Counts of unique identifiers of Connected Vehicles tracked showing braking behavior of concern
(MILD/HARD/EXTREME) between the months of April 2021 to July 2022, across various intersections. Compared to
Figure 3, we can see that the intersections with most vehicle identifier detections, also have more braking events of concern. .

Figure 7: Heatmap showing the flow of all Connected Ve-
hicles across the week, system-wide.

Figure 8: Heatmap showing MILD braking events of all
Connected Vehicles across the week, system-wide.

and above. The first category, 0-20 meters, is partic-
ularly important as it captures the braking events that
occur near the intersection. This is likely to indicate
braking in response to pedestrian crossings, which are
common near intersections. On the other hand, the
next category of 20-40 meters likely indicates brak-
ing due to a vehicle’s response to last-minute lane
changes, as vehicles prepare to make a turn at the in-
tersection.

As an illustration of the analysis, Figure 11 shows
the different levels of braking behavior against the
distance from the intersection for intersection 5050.
From the plot, it can be observed that most of the
braking events of concern occurred beyond 40 meters
from the intersection, which is likely due to a variety
of factors such as road conditions, vehicle speed, and
driver behavior.

Figure 9: Heatmap showing HARD braking events of all
Connected Vehicles across the week, system-wide.

Figure 10: Heatmap showing EXTREME braking events of
all Connected Vehicles across the week, system-wide.

Figure 11: Plots showing the severity of braking against the
distance from the center of the nearest intersection.

3.1.3 Speed Characteristics

Our next analysis involves examining the relationship
between braking behavior and vehicle speed. To do
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Figure 12: Plots showing the severity of braking against the
speed at which the braking took place.

this, we plot the braking events against the speed of
the vehicle at the time of the event. We divide the ve-
hicle speeds into three segments: 0-20 mph (0-32.2
kmph), 20-40 mph (32.2-64.4 kmph), and 40 mph
(64.4+ kmph) and above.

As shown in Figure 12, for intersection 5050, we
observe that a significant number of hard and ex-
treme braking events occur at relatively low speeds.
This information is useful in understanding the sever-
ity of braking behavior and its relationship with the
speed of the vehicle. It could indicate that drivers are
more likely to brake harshly when they are traveling at
lower speeds, which could be due to a variety of fac-
tors, such as sudden traffic changes, road conditions,
or distractions. This observation also may be due to
the fact that most vehicles approach the intersection
at lower speeds. The future development of the dash-
board will allow for combined derived metrics such
as such as events normalized by vehicle flow (based
on nearby loop detector data) to explore such insights.
These findings can help inform future studies on brak-
ing behavior and road safety.

3.2 System-Wide Braking Behavior

We also developed an interactive visualization tool to
provide a more in-depth analysis of braking behav-
ior. This tool, which runs in a web browser, presents
the braking events of concern (i.e., MILD, HARD,
and EXTREME events) on a map in the form of a
heatmap, providing a bird’s-eye view of the distribu-
tion of such events. The user can interact with the
tool to view specific regions and zoom in to inspect
particular intersections or stretches of roads.

This tool makes it easier to identify hotspots
where braking events of concern are more prevalent.
As an example, Figures 13 and 14 show the overall
view of the braking behavior and a zoomed-in view
of an intersection approach, respectively. From the
visualization, one can see that some stretches of West
University Avenue and Archer Road have fewer brak-
ing events of concern compared to other areas.

Figure 13: Interactive web browser-based application con-
taining a plot of all braking events of concern.

Figure 14: Zoomed-in view of an intersection approach in
the interactive application. It allows the user to inspect in-
tersection approaches. Here the East-bound approach of the
intersection of Archer Road and 34th Street is shown.

4 CONCLUSION AND FUTURE
WORK

The recent advancements in ITS have led to the exten-
sive deployment of various real-time sensing and data
collection systems for public traffic agencies. Our
work focuses on using the Connected Vehicle (CV)
data available through V2X (Vehicle-to-everything)
communication systems like DSRC and CV2X. The
data collected by these technologies is useful for
studying the braking dynamics of vehicles as they ap-
proach, enter, and exit intersections.

We presented a methodology for analyzing brak-
ing behavior in connected vehicle data. The study
utilized a spatio-temporal trajectory database created
from RSU logs and BSM messages, which were
parsed using XML-parsing libraries and Python. The
trajectories were smoothened using windowed mov-
ing averages and interpolation.

We presented a study, for which we collected data
in real-time from 25 intersections surrounding the
University of Florida and stored the data on the cloud.
The data was processed offline and braking behavior
was analyzed on a per-intersection basis as well as
from an overall perspective, taking into account the
time-of-day and day-of-week, distance from the inter-
section, and speed at which the vehicle was traveling.
The results of the analysis were presented in various
plots and an interactive visualization tool was devel-
oped to allow the user to get a better understanding of
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braking behavior in the network. Overall, the method-
ology provides a valuable tool for analyzing braking
behavior and identifying potential hotspots for safety
concerns.

During our investigation into the real-world dy-
namics and potential of data analytics in an urban traf-
fic grid, we encountered the challenge of sparse data
caused by the limited deployment of Connected Ve-
hicle (V2X) technology. Nevertheless, this research
sheds light on the enormous potential of utilizing
Connected Vehicle data to optimize traffic flow and
improve road safety, opening up a promising future
for transportation and traffic management.
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