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Abstract: Monitoring of emergent and floating vegetation in freshwater ecosystems is of high importance for water 
management in an area. This study proposes a methodology for the automatic monitoring of aquatic vegetation 
using indicators estimated via remote sensing image analysis. The study area is located in the Lower Dniester 
Basin in Southern Ukraine. The approach is developed using Sentinel-2 images and validated with field 
measurements. The goal is to discriminate and map three classes of aquatic surface condition; namely, areas 
covered with floating vegetation, or dominated by emergent vegetation, and open water. The approach is 
transferable across different dates over a period of three years. Results are useful for governmental authorities 
and natural/ national park administrations for near real-time monitoring of aquatic vegetation to mitigate the 
impact of overgrowth on water quality, biodiversity, and ecosystem services. 

1 INTRODUCTION 

Freshwater ecosystems, being a valuable resource of 
ecosystem services for local population wellbeing 
and regional economy (e.g., drinking water 
production, tourism, aquaculture, hydropower 
generation), are vulnerable to anthropogenic impacts 
(Sutton et al., 2011). The core driver of ecological 
concerns in many transboundary river catchments, 
including the Dniester, is excessive nutrients load of 
anthropogenic origin as a result of agricultural, 
industrial (via wastewater discharges and re-
deposition of gas emission), domestic (via sewage 
discharges) and other anthropogenic activities (e.g. 
Medinets et al., 2016, Medinets et al., 2020a, 
Medinets et al., 2020b), which leads to a significant 
increase of eutrophication in the river-deltas, their 
lakes, and adjacent estuaries (Kovalova et al., 2021).  

Moreover, temperature increase and precipitation 
pattern alteration under changing climate, together 
with fluvial water flow disturbance due to up-
regulation with hydro power constructions, often 
enforce and intensify negative impacts on 
biodiversity, biological resources, and ecosystem 
services (Rouholahnejad et al., 2014). Along with 
algal blooms, all this is also subjected to the 

overgrowth of aquatic vegetation, which is often 
observed in vulnerable deltaic areas.  

Aquatic plants (emergent, floating and 
submerged), being natural components of most water 
bodies and playing an important role in aquatic 
ecosystem functioning, when overgrown or bloomed, 
often lead to harmful consequences for water quality, 
biodiversity, ecosystem functioning and services 
provision via  
-  decreasing dissolved oxygen level,  
-  increasing pH,  
-  reducing light penetration, slowing water velocity 

(while increasing water temperature),  
-  increasing siltation rates (in slow streams),  
-  serving as mechanical substrates for filamentous 

algae,  
-  clogging or hampering navigation channels/ areas 

used for fishing and touristic purposes, and  
-  losing recreational/ touristic attractiveness 

(Greenfield et al., 2007; Hussner et al., 2017).  
Therefore, the near real time (semi-) automatic 

monitoring of aquatic vegetation cover coupled with 
the identification of its different types/ species is of 
high value for authorities and natural/ national park 
administrations. However, they are still a big 
challenge in shallow water bodies. 
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Various histogram-based methods for automatic 
earth observation features’ estimation exist in the 
literature, which are based on satellite imagery 
(Kordelas et al., 2018). Furthermore, based on the 
success of machine learning methods in other 
applications, (Chen et al., 2018) utilized decision 
trees for mapping underwater vegetation, while the 
study of Espel et al. (2020) compared the Random 
Forest and the Support Vector Regression algorithms 
for estimating submerged macrophyte cover from 
very fine-scale resolution (50 cm) multispectral 
Pléiades satellite imagery, and showed that both 
algorithms have promising performance metrics. 
Further studies aimed at classifying floating 
vegetation in various water bodies using Sentinel-2 
images. The results showed that the classification 
accuracy was dependent on the density (Midwood et 
al., 2010; Valta-Hulkkonen et al., 2004), and the 
species (Ade et al., 2022) of the floating vegetation.  

In this study, an approach is developed for 
automatic monitoring of aquatic vegetation, by 
discriminating and mapping three main classes 
usually met in freshwater ecosystems (floating, 
emergent vegetation, and open water-no vegetation). 
Several indicators, which are derived by algebraic 
combinations of the satellite bands, are exploited 
within a multicriteria hierarchical analysis approach 
on top of a verified unsupervised thresholding 
approach (Kordelas et al., 2018, 2019; Manakos et 
al., 2019). The proposed approach has been 
developed and validated within the WQeMS H2020 
project (Grant Agreement No. 101004157) using 
reference and satellite data of the Dniester River, 
which were initially registered by the authors for the 
needs of ENI CBC BSB PONTOS project (Grant 
Agreement No. BSB 889).  

2 MATERIALS AND METHODS 

2.1 Study Area 

The study area is located in the Lower Dniester Basin, 
covering the Dniester Delta and the adjacent Dniester 
Estuary (Southern Ukraine) with a total area of 
roughly 1800 km2 (Fig. 1), including the Lower 
Dniester National Nature Park (LDNNP). The 
Dniester is the largest transboundary river in the 
Western Ukraine and Moldova, discharging to the 
Black Sea. The Lower Dniester Basin is located 
within the Black Sea lowland, consisting of steppe 
plains. The topography is a gently dipping plain, 
which contributed to the development of extensive 
wetland area in the floodplain of the river, dissected 
 

 
Figure 1: Study area of the Dniester Delta (red boundaries) 
and the territory occupied by the Lower Dniester National 
Nature Park (dashed area), overlaid on a Google Earth 
image snapshot. 

by branches, ancient riverbeds that are often flooded 
(OSCE, 2005).  

The pilot area has a temperate continental climate. 
Annual mean air temperature is 10.5°C (period of 
2000-2014) varying from 8.4°C to 12.5°C (Medinets 
et al., 2016). The long-term average annual 
precipitation sum was 464 mm (2000-2014) but 
varied substantially over the last years from 420 mm 
(in 2020) to 771 mm (in 2021). The atmospheric total 
N (TN) deposition rate is moderate at ca. 11.4 kg N 
ha-1 y-1 (Medinets et al., 2020b) with around 67% 
contribution from organic constituents. Such large 
contribution is also observed for open waters in the 
northwestern part of the Black Sea (Medinets and 
Medinets, 2012; Medinets, 2014). 

2.2 Satellite Imagery 

Sentinel-2 (Level 2A) products are downloaded from 
the Copernicus European Space Agency (ESA) hub 
for the dates 11/08/2018, 05/08/2020, 30/08/2020, 
05/08/2021. The acquired products refer to the tile 
T35TQM. 

2.3 Validation Data 

Direct measurements of aquatic vegetation 
boundaries were performed by field GPS tracking 
using a boat in the north part of the Dniester Estuary 
by the Odesa National I.I. Mechnikov University 
(ONU) on an annual basis (in July) over 2010-2021 
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within the national projects studying Dniester 
ecosystems funded by the Ministry of Education and 
Science of Ukraine. This approach included the 
following stages: 
• Tracking of the boundaries of emergent and 

floating vegetation with the boat-mounted GPS 
device of Eagle SeaCharter 640CDF GPS with 
horizontal accuracy of 3-5 m (when it was 
impossible to distinguish floating vs. dense semi-
submerged vegetation, a sum of both was indicated 
as a floating vegetation). 

• Visual assessment of emergent and floating vegeta-
tion, its types and covered areas with a photo report. 

• Post-expeditionary processing of geolocation data 
was carried out. GPS data was downloaded and 
converted into a coordinate system suitable for the 
Geographical Information Systems (GIS) software. 

• In a GIS software, the position of the aquatic 
vegetation boundaries was checked and manually 
corrected (where required) using available 
spaceborne images (LandSat 5, 7, 8 and Sentinel-
2), since in some areas it was not possible to bypass 
the aquatic vegetation polygons on a boat (small 
vessel), because of dense vegetation cover or the 
presence of other difficulties. 

• Spatial analysis of aquatic vegetation polygons was 
performed using a GIS software, which included 
the corrections for boat indentation from the 
vegetation boundaries, the production of digital 
maps of emergent and floating vegetation cover, 
and the analysis of spatiotemporal variations of 
emergent and floating aquatic vegetation in certain 
sectors of the Dniester Delta (Fig. 2). The studied 
area was divided into 5 sectors according to the 
geohydromorphological characteristics: (i) Sector 
A: a north part of Dniester estuary with extensive 
wetland area on the right bank of the river (76.3 
km2); (ii) Sector B: the territory between two 
branches (Deep Turunchuk and Dniester) of the 
Dniester river (81.2 km2); (iii) Sector D: the 
territory of the Dniester branch mouth with 
adjacent area (20.3 km2); (iv) Sector E: the territory 
of the left bank of the Dniester branch and the 
Karaholsky bay (26.9 km2); (v) Sector F: an open 
water central part of the Dniester Estuary (51.6 
km2). 

The ground reference data, which were used in this 
study, were collected on 22/07/2018, 05/08/2020 and 
26/07/2021, and utilized for validation as follows: 
• Ground data on 22/07/2018 were used to assess the 

validity of the predictions on 11/08/2018; 
• Ground data on 05/08/2020 were used to assess the 

validity of the predictions on 05/08/2020 and 
30/08/2020; 

• Ground data on 26/07/2021 were used to assess the 
validity of the predictions on 05/08/2021. 

Due to cloud conditions some dates of the ground 
and the satellite data acquisitions are zero (0) to 
twenty-five (25) days apart. The effect is considered 
negligible for the development of the plant 
communities during this period; however, the effect 
is visible in the results and discussed, accordingly. 

 
Figure 2: Location of sectors used for spatiotemporal 
analysis of the emergent and floating vegetation cover in 
the deltaic part of the Lower Dniester. 

2.4 Methodology 

An unsupervised approach was applied to map the 
study area in three aquatic vegetation classes: namely, 
i) open water, ii) emergent vegetation, and iii) 
floating vegetation. The workflow is broken down in 
three phases. 

In the first phase the Sentinel-2 bands B04 (red), 
B08 (near infrared; NIR), and B11 (shortwave 
infrared; SWIR) are initially utilized to classify the 
area in the land, open water and emergent vegetation 
classes following the thresholding method suggested 
in Kordelas et al., 2018 (Fig. 3). 

All pixels with value smaller than the value of the 
first deep valley (left Fig. 3 – left arrow) are classified 
as open water. The emergent vegetation is identified 
in the area, where following conditions apply: 
a) the pixel value of the SWIR’s band histogram is 

between the value of the first and the second deep 
valley (Fig. 3 left – between left and right arrow), 
and 

b) the pixel value of the Normalized Difference 
Vegetation Index (NDVI; (B08+B04)/(B08-B04)) 
histogram is after the first deep valley which is 
greater than the value 0.3 (Fig. 3 right – after the 
arrow). 
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The rest area is classified as land, and renamed to 
unclassified, as this category is not of direct interest 
for the aquatic vegetation mapping.  

 
Figure 3: Open water (left Figure - left arrow) and emergent 
vegetation (left Figure – right arrow & right figure arrow) 
thresholds, estimated on the SWIR band (left Figure) and 
the NDVI (right Figure), respectively (image acquisition 
date: 30/08/2020). 

In the second phase additionally Sentinel-2 bands 
B05 (red edge; RE) and B12 (shortwave infrared; 
SWIR2) are exploited. Three conditions are used to 
determine the range of values that are most likely to 
correspond to floating vegetation for the study area. 
These conditions were identified using histogram 
analysis based on the knowledge about the spectral 
behavior of water and plants. Discriminating 
thresholds are set accordingly. Specifically, for the 
study area it is experimentally identified that a) the 
B05/B11 ratio has to be between 0.6 and 1.5, b) the 
Normalized Difference Water Index (NDWI) ((B08-
B11)/(B08+B11)) has to be between 0.2 and 0.45, and 
c) the B12 band value has to be between 100 and 900.  

In the third phase the results from the second 
phase about the presence of floating vegetation are 
superimposed over the previous results of the first 
phase and the areas found as floating vegetation 
replace any other underlying class. At the end a map 
is produced, where all three classes are evident.  

Accuracy assessment was performed with the 
help of overall, user’s accuracy (UA) and producer’s 
accuracy (PA) metrics. The overall accuracy (OA) is 
calculated from the division of the number of the 
correctly classified pixels by the total number of the 
sampled pixels. The PA of each class, also called 
precision, is the number of the correctly classified 
pixels in this class divided by the number of reference 
pixels in this class. The PA shows the false negative 
predictions and compares the classified map with the 
producers’ expectations. The UA highlights the false 
positives, and it is calculated from the number of the 
correctly predicted pixels of each class, divided by the 
number of the pixels that have been classified in this 
class and indicates how each classified pixel on the 
map represents the class on the ground. 

3 RESULTS AND DISCUSSION 

In Fig. 4 and 5 high OA for all classes is observed 
ranging from ~92% to 97%. The OA appears not to 
be influenced by the day difference between the 
spaceborne and ground data acquisition dates, since 
even when taken 25 days apart, the OA remains 
relatively stable (Fig. 4, 5). However, this is not a 
consistent remark, as lower OA appears in the year 
2018 (11/08/2018), where the time interval is 20 days. 
This is to be accounted merely to the emergent and 
floating vegetation detection performance, which 
appears to drop further when two datasets are timely 
apart (see specifically the PA chart – Fig. 4).  

 
Figure 4: Producer's accuracy (in parenthesis the day 
difference from the acquisition date of the ground reference 
data). 

 
Figure 5: User's accuracy (in parenthesis the day difference 
from the acquisition date of the ground reference data). 

Overall high OA (> 91%) at all dates is in this case 
misleading for the performance of the approach in 
each class, as the assessed dataset is imbalanced. 
Namely, the average reference area over all dates of 
the class ‘Open Water’ was 247.87 km2 (71.86% of 
the area), followed by 89.01 km2 (25.80% of the area), 
which were covered with ‘Emergent Vegetation’, and 
8.07 km2 (2.34% of the area) dominated by ‘Floating 
Vegetation’ (Fig. 6). Thus, the detailed analysis with 
the support of PA and UA is required. 
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Figure 6: Aquatic vegetation maps on different dates (on the 
left) juxtaposed against the ground reference data (overlaid 
on Google Earth image snapshot) (on the right). Snapshot 
maps are arranged from top to bottom according to the 
timeliness of image vs. ground data acquisition dates. 

In general, for all four validation dates, the highest 
PA is shown in the class of ‘Open Water’, followed 
by the class ‘Emergent Vegetation’ and the ‘Floating 
Vegetation’ with the lowest PA. Latter demonstrates 
the challenges that are posed for this class to be 
accurately discriminated from the surrounding 

environment. Furthermore, the PA is higher for the 
‘Floating Vegetation’ class, when the reference and 
classification dates are timely close. This observation 
might be attributed to (i) the actual change of floating 
vegetation distribution, and/ or (ii) wind-induced 
floating vegetation polygon’s density/ geometry 
change/ shift, and/ or (iii) wave- or water-level-
induced floating plant leaves moistening/ partial 
flooding in the estuary during these intervals. 

In contrary to the PA, where both emergent and 
floating vegetation showcase an undulated pattern 
through time, the UA seems not influenced for the 
emergent vegetation and remains stable through time, 
which however is not the case for the floating 
vegetation (Fig. 5).  

In addition to the aforementioned (see PA results 
explanation) possible reasons for the lower 
performance identifying water lilies and chestnuts 
(floating vegetation in our study area), it is registered 
that this type of classification error depends also on 
the floating vegetation species and the density-level. 
In Midwood et al. (2010) different wetlands in the 
lake have been tested and the PA was higher in high-
density floating vegetation and the UA was higher in 
low-density floating vegetation. Similar results are 
reached in the study of the lake Luupuvesi in Finland 
(Valta-Hulkkonen et al., 2004), where the dense 
floating vegetation has higher PA, and the sparse 
floating vegetation has higher UA. This seems to be 
true for the study area and time of data acquisition, as 
well. In July/August (until there is no strong flooding) 
wind may substantially change the geometry and 
density of floating vegetation appearance within 
hours-to-days, as well as even move the water lilies 
and water chestnut formations (polygons). High 
waves (occurring in large-scale shallow water bodies) 
may also break the polygons, by uprooting floating 
rooted plant and move them. 

4 CONCLUSIONS 

The proposed unsupervised approach showed high 
overall accuracy ranging from 92% to 97% on various 
dates between 2018 and 2021, when classifying the 
study area into three classes: open water, emergent 
vegetation, and floating vegetation. It is found that 
among the four validation dates, the open water class 
had the highest OA, PA and UA, followed by the 
emergent vegetation class, while the floating 
vegetation class had the lowest performance (PA 
between 67% - 81%, and UA between 61% – 84%), 
indicating challenges in the discrimination and 
monitoring of this class from space. The PA for the 
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floating vegetation class improved and the UA got 
lower, when the reference and classification dates 
were timely closer. This may be accounted to (i) 
floating vegetation formation density/ geometry (in 
line with international literature findings), (ii) floating 
vegetation formation density/ geometry alterations 
due to hydrometeorological disturbance with time, 
and/ or (iii) changes in the distribution of floating 
vegetation in the estuary through time (for timely 
more apart reference and classification dates).  
Further experimentation is required, where ground 
reference data allow, to enhance the transferability of 
the approach. Reference data acquisition across 
additional sites may allow testing strict thresholding 
performance and possibly evolving adaptive 
thresholding techniques; thus, leading to 
generalization of the approach. Ground data may also 
support augmenting the suggested approach by 
encompassing submerged aquatic vegetation 
mapping. This is still a challenge for Earth 
Observation due to the influence of the water column 
on the reflected signal.  
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