
An Empirical Study on the Relationship Between the Co-Occurrence of
Design Smell and Refactoring Activities

Lerina Aversano1 a, Mario Luca Bernardi 1 b, Marta Cimitile2 c,
Martina Iammarino 1 d and Debora Montano3 e

1University of Sannio, Department of Engineering, Benevento, Italy
2Unitelma Sapienza University, Rome, Italy

3Universitas Mercatorum, Rome, Italy

Keywords: Software Evolution, Software Quality, Refactoring, Design Smells, Statistical Analysis, Java Software.

Abstract: Due to the continuous evolution of software systems, their architecture is subject to damage and the formation
of numerous design issues. This empirical study focuses on the co-occurrence of design smells in software
systems and refactoring activities. To this end, a detailed analysis is carried out of the data relating to the
presence of Design Smells, the use of refactoring, and the consequences of such use. Specifically, the evolution
of 17 different types of design odors in five open-source Java software projects has been examined. Overall,
the results indicate that the application of refactoring is not used by developers on design smells. This work
also offers new and interesting insights for future research methods in this field.

1 INTRODUCTION

Delivering software changes within a very short time
frame exposes their architecture to deterioration and
often leads to design flaws, which is a hotly debated
topic in software engineering. Several research papers
address design challenges and their influence on the
evolution of the software system. These studies un-
derline how these problems increase the development
costs of software systems over time until the software
system itself becomes economically unsustainable.

Design smells are intrinsically linked to the evo-
lution of the system as they relate to difficulties en-
countered during the design phase or the introduction
of new features within the system. Furthermore, de-
sign smells are often produced as a result of inefficient
design and architecture decisions that affect internal
system attributes such as maintainability, extensibil-
ity, testability, understandability, and reusability (Le
and Medvidovic, 2016). Failure to manage design
smells could result in technical issues that can also

a https://orcid.org/0000-0003-2436-6835
b https://orcid.org/0000-0002-3223-7032
c https://orcid.org/0000-0003-2403-8313
d https://orcid.org/0000-0001-8025-733X
e https://orcid.org/0000-0002-5598-0822

increase maintenance efforts and not just costs.
This empirical study examines the components of

the source code in over 7,000 commits belonging to
the evolutionary history of five open-source software
systems. Specifically, design smells are identified in
the source code of systems as they evolve and the
related refactoring actions. The objective of the in-
vestigation is to examine the potential influence of
refactoring on source code, focusing on 17 differ-
ent types of design smells classified into four pri-
mary categories identified in the literature: abstrac-
tion, encapsulation, modularization, and hierarchy,
(Fowler, 2002). The results show that elements of the
source code affected by design smells are more likely
to change, but developers rarely make these changes
through refactoring operations. This implies that the
absence of design smell is not related to the presence
of refactoring. Furthermore, the contribution of our
work is the new and innovative approach in the field
of software, represented by the use of factor analysis
and in particular by Multiple Factor Analysis (MFA)
to support the results.

The paper is structured as follows: Section 2 re-
ports the research related to our study, Section 3 ex-
plains the data extraction process, the features model,
and the objectives. The results are reported in Section

742
Aversano, L., Bernardi, M., Cimitile, M., Iammarino, M. and Montano, D.
An Empirical Study on the Relationship Between the Co-Occurrence of Design Smell and Refactoring Activities.
DOI: 10.5220/0012006600003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 742-749
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



4 , while Section 5 lists the threats that could affect
them. Finally, Section 6 reports the most important
conclusions and suggestions for future work.

2 RELATED WORK

According to Fowler, refactoring is a discipline used
to redesign an existing body of code, updating its in-
ternal structure without altering its external (Fowler,
2018) behavior. Hence, the goal of this strategy is to
improve defects in the source code by modifying only
the lines of code and not the final product. A col-
lection of hundreds of code improvement ideas was
also created, the goal of which is to help program-
mers use refactoring to eliminate code smells. In
this regard, the impact of refactoring on the elimina-
tion of code smells and the changes in quality met-
rics following its adoption has been the subject of in-
creasing research in recent years (Cedrim et al., 2016;
Chavez et al., 2017; Mkaouer et al., 2017). The ma-
jority of programmers, unfortunately, have a knowl-
edge of smells is purely theoretical. This is also be-
cause most defects do not occur as specified by the
theory, so developers can only detect them when the
smell occurs exactly as stated in its description. Fer-
nandes et al.found that refactoring is only used for
source code with at least one critical (Fernandes et al.,
2020) attribute. Furthermore, it has been shown that
the amount of smells increases if a change is intro-
duced in the source code and if the refactoring is ap-
plied (Aversano et al., 2020b; Aversano et al., 2020a).
Bibiano et al.show that batch refactoring techniques
in 51% of the situations introduce new smells and
in 38% of the occurrences it does not remove smells
from the code (Bibiano et al., 2019). Further research
investigated the usefulness of refactoring techniques
to reduce the severity of design smells, although even
in these circumstances this strategy proved ineffective
(Saika et al., 2016; Aversano et al., 2007). According
to much research, refactoring is more beneficial for
improving software quality metrics than for removing
smells from source code. Among all forms of smells,
design smells in particular are typically indicative of
architectural flaws in the code, and they are frequently
a sign of damaging software maintainability (Garcia
et al., 2009).

At this point in the literature, it is crucial to under-
stand the power of refactoring on design smells. So
most empirical studies show that refactoring, in gen-
eral, cannot remove smells(Sharma et al., 2020; Aver-
sano. et al., 2022).

The research proposed in this paper aims to fur-
ther investigate the relationships among refactoring

actions and design smells at a fine grained level by
using factor analysis, statistical indices, and tests, a
fresh and cutting-edge method in the software re-
search.

3 APPROACH

This section outline the main phases of the conducted
empirical study, that are:

• definition of the study’s research questions;

• data extraction and data collection;

• identification of the features to analyze.

Each phase is better explained in the following sub-
sections.

3.1 Research Questions

This study aims to investigate the co-occurrence be-
tween design smells and refactoring activities, to
understand whether smelly code is more prone to
changes due to refactoring.
Overall, the following research questions have been
identified:

RQ1: Do programmers refactor when Design
Smells occur?

This first research question aims to understand if there
is a correlation between the instances of design smells
with the use of refactoring by the developers,studying
their presence in the commit.

RQ2: To what extent the use of refactoring
change as the types of design smells to be
managed increases?

The second research question aims to better high-
light the co-occurrence of the two phenomena, we
have investigated whether the use of refactoring ac-
tivities is greater where there are more design smells
to manage.

RQ3: Is there any correlation between the
category of design smells and refactoring?

Different categories of design smells have been con-
sidered in the third research question to understand
how the are specifically related to refactoring.

3.2 Data Extraction

The data used in this research comes from five open-
source Java software projects. Table 1 shows the
names of the projects evaluated in the first column, in
the second column the number of commits analyzed,

An Empirical Study on the Relationship Between the Co-Occurrence of Design Smell and Refactoring Activities

743



Table 1: Software Projects characteristics.

System #commit First and Last Commit Date
Atlas 1581 08/12/2014 - 05/07/2019
Guice 1176 16/11/2006 - 06/06/2019
JUnit4 1406 03/12/2000 - 20/06/2019
Log4j 2042 14/12/2000 - 11/02/2014
Zookeeper 1084 06/11/2007 - 17/07/2019
Total 7289 03/12/2000 - 17/07/2019

and in the last column the time interval to which they
belong. These projects have been chosen because
their repositories are publicly available on GitHub1,
vary in size, and cover different domains.

The data collection process involved several
stages. During the first phase, the elements of the
source code to be analyzed have been extracted from
the commits of each system. Specifically, the ex-
tracted source code has been given as input to the
tools to detect the existence of smells and the pres-
ence of refactoring. Finally, each commit has been
examined by comparing it to the previous one to see
if the smell had been added or removed. More pre-
cisely, two different tools have been adopted: Desig-
nite2 and RefactoringMiner3. The former was used
to detect smells and is able to assess the quality of
the design and thus recognize the existence of design
smells. Consequently, for the sake of completeness,
in Table 2 we provide the design smells detected by
this tool for this study, identifying the list of smells
in the first column and the macro-categories of de-
sign smells in the second. The second tool detects
the existence of refactoring actions performed on the
source code. This 4 is particularly competent for rec-
ognizing 40 different types of refactoring for actions
on packages, classes, methods, features, arguments,
and attributes. Finally, the complete data-set includes
the history of all software systems described in Table
1, which consists of 7289 commits, 43009 different
modifications of the source code, and 19 features re-
lated to each type of design smell, the occurrence of
refactoring on the commit, and the specific class (the
java file) and the date of the commit.

3.3 Features Description

The following features have been analyzed to under-
stand the relationships between refactoring and de-
sign smells.

• Refactoring: a dichotomous feature that consid-
ers the value ”true” when refactoring techniques

1https://github.com
2https://www.designite-tools.com
3https://github.com/tsantalis/refactoringMiner
4At the time of writing, in version 2.1

Table 2: Type & Category of Design Smells Considered.

Type of smells Design smell Category

Imperative Abstraction
Multifaceted Abstraction
Unnecessary Abstraction
Unutilized Abstraction

ABSTRACTION

Deficient Encapsulation
Unexploited Encapsulation ENCAPSULATION

Broken Modularization
Cyclically Dependent Modularization
Insufficient Modularization
Hub-Like Modularization

MODULARIZATION

Broke Hierarchy
Cyclic Hierarchy
Deep Hierarchy
Missing Hierarchy
Multipath Hierarchy
Rebellious Hierarchy
Wide Hierarchy

HIERARCHY

are employed for its reference commit, and the
value ”false” when they are not.

• Design Smells: 17 different types of design
smells have been detected. Each of these 17 char-
acteristics is named after the design smell it rep-
resents. All the design smells considered in this
paper are listed in Table 2. When a certain type
of smell is present in the commit, it is represented
with value ’1’, otherwise with value ’0’. Hence,
they are dichotomous characteristics.

• Date: the date on which the current commit was
made.

3.4 Data Analysis

In this study, different statistical techniques have been
used to analyze the various aspects of the research
questions. In particular, the following methods have
been used:

• Row profiles are widely used in statistical analysis
when we are interested in understanding whether
there is some conditioning relationship between
two features, that is when one of the certain char-
acter conditions occurs, the other assumes a cer-
tain behavior. There are two measures for cal-
culating this relationship: row and column pro-
files. In our study, we use row profiles because
the distribution is conditioned concerning a pre-
cise modality of the row variable. A row profile
is obtained by relating the frequency of the con-
ditional distribution to the relative total (marginal
frequency):

• Spearman Rho non-parametric is a rank-based
correlation coefficient. To evaluate whether the
determined coefficient is significant concerning
the fixed alpha values, the obtained value is com-
pared with the critical values of the Rho Spear-

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

744



man table. In our case study, we have formu-
lated only one correlation hypothesis, which is
non-independence therefore our test is unidirec-
tional, for this reason, the rho value is significant
if it exceeds the absolute value of the critical value
reported in the table for alpha / 2 = 0.025.

• Multiple Factor Analysis (MFA) is a multivari-
ate technique used to summarize and illustrate
complex data sets with naturally organized vari-
ables (quantitative and/or qualitative) (Escofier
and Pagès, 1994; Le Dien and Pagès, 2003). It is
a combination of a Principal Component Analy-
sis (PCA) and a Multiple Correspondence Analy-
sis (MCA) (Ringnér, 2008). During analysis, sets
of variables are analyzed simultaneously, which
requires balancing the effects of each set of vari-
ables. The number of variables in each group can
be different. Consequently, during the survey, the
variables of the same group are normalized using
the same weighting value, which can vary from
group to group. To be more precise, MFA at-
tributes to each variable of the j-th group a weight
equal to the inverse of the first eigenvalue of the
analysis of the j group, an eigenvalue that is calcu-
lated with a PCA if the variable is quantitative or
with MCA if the variable is qualitative.Through
the eigenvalue, it is also possible to evaluate how
much an observation, a variable or an entire table
contributes to the inertia recovered by a compo-
nent to better understand the interactions between
components, observations, variables, and tables as
well as help in the interpretation of a component.

4 EMPIRICAL STUDY FINDINGS

This section reports the experimental results obtained
thanks to the use of the methodology and the model
of features previously described.

4.1 Do Programmers Refactor When
Design Smells Occur?

To examine how refactoring is used on smelly com-
mits, we looked at the commits where design smells
are found to see if there is a relationship to using
refactoring where there are smells. In particular, the
analyzes were conducted using the Row Profiles de-
scribed in Section 3.4. The analyzes were performed
on the total data-set, which contained instances of all
the software systems chosen and on each one sepa-
rately, to produce both an overview and a particular
vision linked to a single software system.

Table 3: Row profiles of commits affected by design smells
- ALL SOFTWARE.

TYPE OF DESIGN SMELL REFACTORING ACTIVITY

No Yes

Imperative Abstraction 90% 10%
Multifaced Abstraction 76% 24%
Unnecessary Abstraction 97% 3%
Unutilized Abstraction 79% 21%
Deficient Encapsulation 72% 28%
Unexploited Encapsulation 70% 30%
Broken Modularization 78% 22%
Cyclic Dependent Modularization 68% 32%
Insufficient Modularization 70% 30%
Hub like Modularizaton 61% 39%
Broken Hierarchy 75% 25%
Cyclic Hierarchy 86% 14%
Deep Hierarchy 100% 0%
Missing Hierarchy 70% 30%
Multipath Hierarchy 69% 31%
Rebellious Hierarchy 82% 18%
Wide Hierarchy 76% 24%

Table 3 shows the type of design smell in the first
column, the row profiles that describe the percentage
of commit in which refactoring was used (second col-
umn) and in which no was used (third column). Re-
sults in bold show that refactoring is not used in at
least 60 % of commits affected by design smells. In
particular, with the smell of Deep Hierarchy, refactor-
ing is never used by developers while the type of smell
on which refactoring is more used than the other types
of design smell is Hub-like Modularization where in
40 % of commits affected, refactoring activities are
used. We have also looked at the row profiles on the
individual software systems to verify what we found
in the overall analysis of all systems together. The re-
sults are reported in Table 4 in which the first column
shows the types of design smells, from the second on-
wards the columns are organized in pairs, and each
pair of columns shows the row profiles that character-
ize the proportion of commits where refactoring has
been applied (the first column of the two) and where it
has not been applied (the second column of the two).

Table 4 shows that also on the single system, in
general, refactoring is not so practiced. In each soft-
ware project, there are some design smells where
the refactoring activities on dirty commits are higher
than in the general analysis. This condition is nor-
mal because the single software system has its pecu-
liar characteristics. In particular, the most refactored
design smells for Atlas are Multifaced Abstraction
(59%), Cyclic Hierarchy (64%), and broken Modular-
ization (79%); for Guice are Insufficient Modulariza-
tion (62%), Broken Hierarchy (69%), Deficient En-
capsulation (84%) and Broken Modularization (92%);
and for Log4j are Missing Hierarchy (56%) and Wide
Hierarchy (78%). JUnit4 and Zookeeper are the only
two software systems where the refactoring activities

An Empirical Study on the Relationship Between the Co-Occurrence of Design Smell and Refactoring Activities

745



are less used concerning the others systems.
All the analyzes conducted in this Section have

been statistically examined, in particular, we used
the non-parametric Spearman Rho, and all the results
have a p-value minor to 0.025 so we can say that the
analyzes demonstrate independence between the rows
profiles and their statistical significance.

SUMMARY: Refactoring is less practiced
on commits affected by design smells, addi-
tionally, it is never used in the case of rare
smells like Deep Hierarchy.

4.2 To What Extent the Use of
Refactoring Change as the Types of
Design Smells to Be Managed
Increases?

To understand how the use of refactoring changes
based on the number of types of smells present in the
class, we report the results of the relative analysis in
Table 5 which presents in the first column the num-
ber of different types of design smells present into the
class, in the second column the percentage of different
types of design smells present in the classes not refac-
tored, and in the third column the percentage for the
classes where refactoring activities are used. In the
analyzed classes we have found that there are at most
4 different types of smells, in particular, 59% of them
have only one type of design smells and in 29% of the
cases 2 types of different smells. Table 5 also high-
lights that 75% of the time refactoring is not applied
regardless of the number of different types of design
smells. Only 2% of the time refactoring is used to
manage design smells and, in particular, it is mostly
used to manage classes with 1(14%) or 2(8%) types
of different design smells.

The same analyzes conducted on the individual
software systems show the same empirical evidence
there are often at most 2 types of different design
smells in each class, and the cases in which more than
2 are present are very sporadic. Also, more than half
the time, regardless of how many design smells come
up, programmers don’t resort to refactoring. The At-
las software system represents the only case in which
the presence or absence of refactoring activities has
substantially the same behavior (47% vs 53%). Fur-
thermore, in this system, it is preferred to use refactor-
ing when there are too many designs smells to man-
age, in fact when 4 different types of smells occur
refactoring is used 8% of the time, instead only 1%
of the time when 4 different types of design smell ap-

pear developers prefer not to use refactoring. These
results are shown graphically in Figure 1 which shows
on the abscissa axis the number of different types of
design smells present in the classes and their percent-
age distribution on the ordinate axis. Therefore, the
blue bars represent the classes where refactoring is not
practiced, while the orange bars represent the classes
where refactoring is recognized. The graph for the to-
tal data-set is on the top left, followed by those for At-
las, Guice, JUnit4, Log4j, and finally Zookeeper. The
proposed analyzes were statistically validated through
the non-parametric Spearman Rho, a rank-based cor-
relation coefficient, and with a correlation hypothesis,
which is non-independence. Consequently, having al-
ways obtained a p-value minor to 0.025, we can con-
clude that the analyzes illustrate their independence
and statistical significance.

SUMMARY: In most instances, refactor-
ing is chosen when the source code contains
few design smells, in particular, at most 2.

4.3 Is There Any Correlation Between
Design Smells Categories and
Refactoring?

To understand the correlation between different smell
categories and refactoring activity, the possible pres-
ence of a common structure in the design smell cate-
gories, and the specificity of each, we have used Mul-
tiple Factor Analysis (MFA). The data-set contains
17 different characteristics for design smells, divided
into 4 different smell groups: Abstraction, Encapsula-
tion, Modularization, and Hierarchy. Therefore, MFA
has been performed on the four categories of design
smells and the presence of refactoring.

The graphs in Figure 2 illustrate the coordinates of
the groups which provide information on the correla-
tion between the groups. At the top left, we report the
overall graph of the data set, while the graphs for At-
las, Guice, JUnit4, Log4j, and Zookeeper are shown
respectively below. The coordinates of each group in
the Cartesian axis give information on the correlation
between the groups. In particular, if the coordinates of
the groups are arranged along the same axis, the cor-
relation between these groups is greater than that with
the other scattered groups in the graph. The results
show that the coordinates of the points that take into
account the refactoring are the Modularization and the
Abstraction which are the closest so they show that
the refactoring activities are more correlated and con-
nected with the presence of design smells belonging
to the Modularization and Abstraction.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

746



Table 4: Row profiles of commits affected by design smells for SINGLE SOFTWARE.

ATLAS GUICE JUnit4 LOG4J ZOOKEEPER

REFACTORING ACTIVITY REFACTORING ACTIVITY REFACTORING ACTIVITY REFACTORING ACTIVITY REFACTORING ACTIVITY

TYPE OF DESIGN SMELL No Yes No Yes No Yes No Yes No Yes

Imperative Abstraction 58% 42% 0% 0% 0% 0% 82% 18% 85% 15%
Multifaced Abstraction 41% 59% 55% 45% 85% 15% 82% 18% 100% 0%
Unnecessary Abstraction 100% 0% 100% 0% 98% 2% 76% 24% 100% 0%
Unutilized Abstraction 63% 37% 41% 59% 76% 24% 79% 21% 83% 17%
Deficient Encapsulation 54% 46% 16% 84% 76% 24% 69% 31% 70% 30%
Unexploited Encapsulation 63% 37% 49% 51% 65% 35% 100% 0% 60% 40%
Broken Modularization 21% 79% 8% 92% 0% 0% 79% 21% 100% 0%
Cyclic Dependent Modularization 51% 49% 60% 40% 70% 30% 62% 38% 66% 34%
Insufficient Modularization 46% 54% 38% 62% 70% 30% 68% 32% 68% 32%
Hub like Modularizaton 48% 52% 97% 3% 0% 0% 0% 0% 0% 0%
Broken Hierarchy 64% 36% 31% 69% 68% 32% 63% 37% 75% 25%
Cyclic Hierarchy 36% 64% 95% 5% 100% 0% 0% 0% 0% 0%
Deep Hierarchy 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Missing Hierarchy 58% 42% 0% 0% 86% 14% 44% 56% 66% 34%
Multipath Hierarchy 54% 46% 93% 7% 0% 0% 0% 0% 0% 0%
Rebellious Hierarchy 100% 0% 0% 0% 89% 11% 54% 46% 69% 31%
Wide Hierarchy 93% 7% 0% 0% 85% 0% 22% 78% 65% 35%

Figure 1: Distribution of Design Smells in the classes and Refactoring Activities - ALL DATA & SINGLE SYSTEM.

Table 5: Number of smells in the classes and refactoring
activities - ALL SYSTEM.

REFACTORING ACTIVITY Total

#smell in a class No Yes

1 45% 14% 59%
2 21% 8% 29%
3 6% 3% 9%
4 2% 1% 3%
5 or more 0% 0% 0%

SUMMARY: The categories of smells re-
lated to Modularization and Abstraction
are those whose design smells are most
closely associated with refactoring opera-
tions.

An Empirical Study on the Relationship Between the Co-Occurrence of Design Smell and Refactoring Activities

747



Figure 2: Multiple Factor Analysis (MFA) - ALL DATA & SINGLE SYSTEM.

5 THREATS TO VALIDITY

This section discusses the threats to the validity of the
study described.

Threats to validity construction concern the rela-
tionship between theory and observation, so we can
consider the potential inaccuracy of smell detection
systems and refactoring activities. To reduce the
threat, we used Designite, which has accuracy 96%
and recall 99% (Tushar Sharma and Spinellis, 2020),
and Refactoring Miner which has high accuracy 98%
and recall 87% (Tsantalis et al., 2018).

Threats to internal validity relate to aspects of our
study that could affect the results. We cannot assume
that the cause-and-effect link between Design Smells
refactoring and removal activities are always the same
as determined by our research in general. To mitigate
this vulnerability, we evaluated refactoring on a large
number of commits (7289) of five pieces of software
rather than just one. The potential lack of general-
izability of the data produced poses a danger to the
validity of the conclusions. To reduce this threat, we
have considered five different systems. We performed
analyzes on each system separately, taking into ac-
count its unique characteristics, as well as the combi-
nation of these, to obtain results for both the specific
subset and the complete enumeration. This point is

also an external threat, in fact, we only looked at five
software systems because this is the first phase of our
research. The results can be confirmed or refuted dur-
ing future research phases, taking into account multi-
ple commits and multiple software systems.

6 CONCLUSION AND FUTURE
WORK

This study suggests a different method for examining
how design smells and refactoring operations inter-
act. We have produced useful results for the scientific
community using simple analyzes such as statistical
techniques and factor analysis. The analyzes show
that refactoring techniques are still underused in the
field of software development. Furthermore, tests on
single system software show that the frequency of us-
ing refactoring in smelly commits is significantly re-
lated to the nature of the design smell.

Refactoring is most frequently associated with the
existence of design smells from the categories of
Modularization and Abstraction. This is an interest-
ing consideration that deserves to be explored across
multiple systems in targeted research.

Future research will also focus on predicting anal-
ysis that can anticipate refactoring behavior in terms

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

748



of adding or eliminating design smells. To confirm
the methodologies and results obtained in this study,
it would be interesting to investigate how the use of
refactoring varies according to the different program-
ming languages of software projects.

REFERENCES

Aversano., L., Bernardi., M., Cimitile., M., Iammarino., M.,
and Montano., D. (2022). Is there any correlation be-
tween refactoring and design smell occurrence? In
Proceedings of the 17th International Conference on
Software Technologies - ICSOFT, pages 129–136. IN-
STICC, SciTePress.

Aversano, L., Bernardi, M. L., Cimitile, M., Iammarino, M.,
and Romanyuk, K. (2020a). Investigating on the rela-
tionships between design smells removals and refac-
torings. page 212 – 219.

Aversano, L., Carpenito, U., and Iammarino, M. (2020b).
An empirical study on the evolution of design smells.
Information (Switzerland), 11(11). Cited by: 4; All
Open Access, Gold Open Access, Green Open Ac-
cess.

Aversano, L., Cerulo, L., and Del Grosso, C. (2007). Learn-
ing from bug-introducing changes to prevent fault
prone code. page 19 – 26.

Bibiano, A. C., Fernandes, E., Oliveira, D., Garcia, A.,
Kalinowski, M., Fonseca, B., Oliveira, R., Oliveira,
A., and Cedrim, D. (2019). A quantitative study on
characteristics and effect of batch refactoring on code
smells. In 2019 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement
(ESEM), pages 1–11. IEEE.

Cedrim, D., Sousa, L., Garcia, A., and Gheyi, R. (2016).
Does refactoring improve software structural quality?
a longitudinal study of 25 projects. In Proceedings of
the 30th Brazilian Symposium on Software Engineer-
ing, pages 73–82.

Chavez, A., Ferreira, I., Fernandes, E., Cedrim, D., and Gar-
cia, A. (2017). How does refactoring affect internal
quality attributes? a multi-project study. In Proceed-
ings of the 31st Brazilian symposium on software en-
gineering, pages 74–83.

Escofier, B. and Pagès, J. (1994). Multiple factor analysis
(afmult package). Computational Statistics & Data
Analysis, 18(1):121–140.

Fernandes, E., Chávez, A., Garcia, A., Ferreira, I., Cedrim,
D., Sousa, L., and Oizumi, W. (2020). Refactoring
effect on internal quality attributes: What haven’t they
told you yet? Information and Software Technology,
126:106347.

Fowler, M. (2002). Tutorials-refactoring: Improving the
design of existing code. Lecture Notes in Computer
Science, 2418:256–256.

Fowler, M. (2018). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

Garcia, J., Popescu, D., Edwards, G., and Medvidovic,
N. (2009). Toward a catalogue of architectural bad

smells. In International conference on the quality of
software architectures, pages 146–162. Springer.

Le, D. and Medvidovic, N. (2016). Architectural-based
speculative analysis to predict bugs in a software sys-
tem. In Proceedings of the 38th International Confer-
ence on Software Engineering Companion, ICSE ’16,
page 807–810, New York, NY, USA. Association for
Computing Machinery.

Le Dien, S. and Pagès, J. (2003). Hierarchical multiple fac-
tor analysis: application to the comparison of sensory
profiles. Food Quality and Preference, 14(5):397–
403. The Sixth Sense - 6th Sensometrics Meeting.

Mkaouer, M. W., Kessentini, M., Cinnéide, M. Ó., Hayashi,
S., and Deb, K. (2017). A robust multi-objective ap-
proach to balance severity and importance of refactor-
ing opportunities. Empirical Software Engineering,
22(2):894–927.

Ringnér, M. (2008). What is principal component analysis?
Nature biotechnology, 26(3):303–304.

Saika, T., Choi, E., Yoshida, N., Haruna, S., and In-
oue, K. (2016). Do developers focus on severe code
smells? In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering
(SANER), volume 4, pages 1–3. IEEE.

Sharma, T., Singh, P., and Spinellis, D. (2020). An empir-
ical investigation on the relationship between design
and architecture smells. Empirical Software Engineer-
ing, 25(5):4020–4068.

Tsantalis, N., Mansouri, M., Eshkevari, L., Mazinanian, D.,
and Dig, D. (2018). Accurate and efficient refactor-
ing detection in commit history. In 2018 IEEE/ACM
40th International Conference on Software Engineer-
ing (ICSE), pages 483–494. IEEE.

Tushar Sharma, P. S. and Spinellis, D. (2020). An empirical
investigation on the relationship between design and
architecture smells. Empirical Software Engineering,
25:4020–4068.

An Empirical Study on the Relationship Between the Co-Occurrence of Design Smell and Refactoring Activities

749


