
Enhancing Unit Tests in Refactored Java Programs

Anna Derezińska a and Olgierd Sobieraj
Warsaw University of Technology, Institute of Computer Science, Nowowiejska 15/19, Warsaw, Poland

Keywords: Code Refactoring, Test Maintenance, Unit Tests, Eclipse, IntelliJ IDEA, Java, JUnit.

Abstract: Refactoring provides systematic changes to program code in order to improve its quality. These changes could
also require modifications of unit tests associated with a refactored program. Developer environments assist
with many code refactoring transformations, which also support some modifications of the tests. Two popular
environments for Java programs have been found to be unable to update these tests for all refactoring in a
satisfactory way. The flaws in refactoring, the adaptation of the tests after refactoring, and possible
improvements were discussed. A tool extension has been introduced to integrate with a refactoring in the
Eclipse environment and maintain the corresponding tests. For selected refactorings, additional test cases
could also be created to increase code coverage and improve the testing of a refactored program. Experiments
have been conducted to evaluate the proposed solutions and verify their limitations.

1 INTRODUCTION

Refactoring of programs is one of the important
activities in software development and maintenance
(Fowler, 2018), (Mens and Tourwe, 2004).

Refactoring is associated with program testing in
different ways. First, tests are essential for verifying
the refactoring. However, refactoring a program can
cause changes in the structure of the program.
Therefore, unit tests associated with the refactored
area can become outdated (Gao, et al., 2015). They
require modification according to the completed
refactorings. Moreover, new tests can supplement the
refactored code if it was not covered by tests. In this
paper, we focus on the latter problem: the
maintenance of tests in refactored programs.

We have compared the realization of code
refactoring in two commonly used environments that
support refactoring of Java programs: IntelliJ IDEA
(IntelliJrefactoring, 2023) and Eclipse (Eclipse –
Refactoring, 2023). Many refactorings have been
found to update the tests in a satisfactory way.
However, in several cases, the tests were not modified
or could provide errors. For those refactorings that do
not modify tests or make insufficient adaptations,
refactoring enhancements were proposed.

To solve this problem, we developed a prototype
tool, called RefactorPlugin, that extends the Eclipse

a https://orcid.org/0000-0001-8792-203X

IDE. It has been designed to act transparently for a
user and automatically update tests after a refactoring,
if necessary. Besides, in selected refactorings,
additional tests are created to cover the refactored
code and improve the program testing. We conducted
experiments to evaluate the test enhancements and
discuss the limitations of the solution.

The paper is structured as follows. The next
section gives an overview of the background and
related work. In Section 3, we discuss the impact of
refactorings in two Java IDEs on tests and propose
modifications to the test cases. The main features of
RefactorPlugin are presented in Section 4. In Section
5, we discuss the experimental evaluation of the
approach. Finally, Section 6 concludes the paper and
presents future work.

2 BACKGROUND AND RELATED
WORK

We can identify four different ways in which the
refactoring can be combined with a program tests.

1. A subset of tests can be used to verify a
refactoring transformation (Fowler, 2018).

2. Refactoring of the code has an impact on the
code of several tests that should be adjusted in
the corresponding way (Gao, et al., 2015).

734
Derezińska, A. and Sobieraj, O.
Enhancing Unit Tests in Refactored Java Programs.
DOI: 10.5220/0011997800003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 734-741
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

3. During refactoring, new code units (classes,
fields, and methods) could be created, and
therefore, new unit tests could be built that are
devoted directly to those code units.

4. Specialized refactoring transformations can be
designed and applied directly to the code of test
cases (Garousi and Kucuk, 2018).

Experimental verification of any transformation
could be based on checking some invariant
conditions. These invariants could be specified as
tests that a program should pass before and after a
refactoring transformation. Only selected tests of a
program satisfy this requirement. Moreover, such
tests could be designed aimed at a specific refactoring
(Walter and Pietrzak, 2004).

Code refactoring can treat tests as any other code
module of the project. This kind of test modification
could be sufficient in some cases, e.g., for the rename
refactoring. However, in many cases, additional
maintenance of unit tests is necessary to adjust to the
change of code structure; otherwise, the tests become
obsolete (Gao, et al., 2015).

In general, test generation can give quite
satisfactory results (Ramler, Klammer, and
Buchgeher, 2018), (Olsthoorn, 2022). Though,
application of generated tests can be associated with
certain drawbacks, such as a higher maintenance cost,
a larger number of tests than those manually created,
and difficulties in including expert knowledge
(Shamshiri et al., 2018). However, the number of
generated tests is limited, their creation is triggered
by a refactoring, and they are bound to the elements
involved in the refactoring.

Unit test cases, like any other code, could be
analyzed and refactored. There is wide research on
the identification of specialized smells in tests and on
the improvement of tests (Garousi and Kucuk, 2018).

In this paper, we aim only at the second and third
ways of combining refactoring with program tests.

There are different tools that support code
refactoring in an automated way. However, as shown
also in recent research (Eilertsen and Murphy, 2021),
developers still have problems with their basic
usability. One of these directions is automation, both
in the identification of refactoring needs and in
refactoring itself, as proposed with Spartanizer
developed in Eclipse (Gil and Orrù, 2017).

On the other hand, developers often disregard
simple refactoring of test cases that could be
completed by existing tools (Aniche, Treude, and
Zaidman, 2022).

The impact of refactoring on tests was
investigated in experiments (Peruma, et al., 2022). In
a study on three Java projects and regression tests

conducted by (Rachatasumrit and Kim, 2012) was
reported that only 22% of refactored methods and
fields were covered by regression tests. The need for
automated refactoring validation and test update was
suggested due to failed tests after refactoring.

Refactoring in eight open source projects was
identified using RefactoringMiner, and logs of test
execution were investigated (Kashiwa, et al., 2021).
It was observed that most refactoring operations do
not break tests, but occasionally small fixes are
required. The problems mainly referred to add
parameter, change parameter type, and change
return type, i.e., changing a method signature.

There were attempts to extend the refactoring
tools to improve tests influenced by refactoring.

In (Kiran, 2011), TAPE: Test Code Adaptation
Plug-in for Eclipse was reported. It supports only four
transformations (move method, inline method, pull up
method, and rename method) and helps in
synchronizing tests after refactoring. Client code
adaptation is not incorporated in TYPE. Moreover,
the tool works on legacy versions of Eclipse.

An approach based on the detection of changes in
the AST was presented in (Passier, Bijlsma, and
Bockisch 2016). It was implemented in a prototype
for Eclipse. However, the performance could be
questionable if many other changes in the code are
performed, not just refactoring.

Another tool combined with Eclipse was
presented in (Jaradat and Qusef, 2019). A current
version of the tool GreenRef supports three types of
refactoring: rename method, add parameters, and
remove parameters. It was shown that it noticeably
saved development time compared to manual test
maintenance. The automated maintenance of tests
was based on running tests after refactoring, detection
of misused tests, and their recovery.

3 HOW CODE REFACTORING
DOES INFLUENCE TESTS?

In common practice, a set of unit tests is associated
with a program. After a refactoring transformation
had been realized, the program code would not only
be changed, but in many cases, the corresponding
tests could be automatically modified.

When using tool support, a preview of the code
transformation could be presented to a user before
performing a refactoring. In the interactive mode,
there are usually windows that show the code before
and after refactoring, where the changes can be
observed and accepted. However, the implied test

Enhancing Unit Tests in Refactored Java Programs

735

modifications are not shown altogether, even though,
they are also completed immediately after the
refactoring has been accepted.

3.1 Modifications of Tests

IntelliJ IDEA and Eclipse are popular IDEs that
support refactoring of Java programs. We compared
all available refactorings and investigated their
impact on unit tests. In the analysis and experimental
verification of the impact, unit tests implemented in
JUnit5 were used (JUnit, 2023).

The general findings of our research are
summarized in Table 1. In columns ‘Eclipse’ and
‘IntelliJ_Idea’, a refactoring is indicated by ‘+’ if it is
supported in the IDE, accordingly. The column ‘Test
modified’ includes ‘Yes’ if the corresponding unit
tests were automatically modified after completion of
the refactoring mentioned in this row. If a refactoring
is implemented in both IDEs, then both tools also
modify the tests. If a refactoring is implemented only
in one IDE, then ‘Yes’ confirms the modification of
the test using this tool only. The value ‘No’ stands for
tests that have not been modified in the tool(s) that
implement the refactoring. An ‘Err’ sign indicates
situations that cause errors in tests.

Based on our research, we list the details of the
automated modifications in tests that are caused by
code refactorings in the IDEs (1-17).

While considering the potential influences on
tests, we found that, for selected refactorings, the tests
they affect need some improvements. These cases are
denoted with Roman numerals in the last column of

Table 1. Below, we present our recommendations for
test improvements (I-IX) that should be
complemented. Some recommendations were
evaluated using our tool (Sects 4 and 5).

1. Rename – a name is changed in all places where
a code item is declared, defined, or referenced;
so also in the test code is fixed automatically.

2. Move – Move field/method moves a code
element and automatically adjusts the test code
to the movement of the element.

3. Pull up (I) - if a field or a method is moved to
a base class, a test is automatically modified.
However, there is a problem with duplicated
fields or methods being pulled up to the upper
classes in the inheritance tree. The tools give an
opportunity to block such transformations, but
this could be skipped by a developer. These
duplicates cause errors in tests. Therefore, the
situation should be identified and avoided.

4. Push down (II) - in order to modify tests,
moved methods and fields have to be located,
and their classes should be changed into the
current ones. Additionally, fields and methods
in subclasses could be duplicated due to Push
down. The tools generate warnings about this,
but they could be ignored by a user. Therefore,
in tests, a class that uses a field or method
should be substituted by a current one.

5. Extract (III) - extracted methods do not have
their own dedicated tests; hence, they could not
have to be modified. But, new tests could be
created to cover these new methods.

Table 1: Update of tests after code refactoring.

Reafactoring Eclipse IntelliJ_Idea Tests
modified

Recommended
test update

1 Rename + + Yes -
2 Move + + Yes -
3 Pull up + + No/Err I
4 Push down + + No II
5 Extract + + No III
6 Change method signature + + No IV
7 Convert local variable to field + - No V
8 Inline method + + Yes/Err VI
9 Encapsulate fields + + Yes -
10 Introduce parameter + + No VII
11 Find and replace code duplicates - + Yes -
12 Generalize declared type + - No VIII
13 Replace constructor with builder - + Yes -
14 Infer generic type arguments + - Yes -
15 Replace temp with query - + Yes IX
16 Remove middleman - + Yes -
17 Wrap method return value - + Yes -

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

736

6. Change method signature (IV) - after changes
to method arguments, the method calls in tests
are not changed accordingly. Null values are
substituted instead of values with specific
types. Therefore, a test should be modified in
two cases: (i) the return type of a method was
changed, and it has to be modified consistently
in tests; (ii) the number and types of arguments
of a method were changed; then the method in
tests should be called with the consistent types
of arguments and random values.

7. Convert local variable to field (V) - based on a
local variable, a field is created. Local variables
are not used in tests, that is way, they are not
spoiled. But new fields could be created that are
not covered by the tests. Therefore, the tests
should be extended or additional tests created.

8. Inline method (VI) - the automated
modification of tests could provide errors in
both IDEs. Inline method results in substituting
calling a method by the method body.
Therefore, the code could be simplified, and
some unnecessary methods could be removed.
The refactored tests could be erroneous when
private fields encounter; hence, they should be
corrected in order to compile the tests.

9. Encapsulate fields – the getter and setter
methods of fields are created. The direct access
to these fields is then substituted by the
methods. This kind of substitution is also made
in the tests in an automated way.

10. Introduce parameter (VII) – a new parameter
is introduced to a method signature. Therefore,
a new undeclared parameter can appear in tests.
After refactoring, calls of the refactored
method should be localized in tests and
modified by extending the method with a new
parameter and assigning a random value.

11. Find and replace code duplicates – the
refactoring removes duplicated code, which is
replaced by a method that has the same body.
As a result, the method signatures remain
unchanged, and the modifications in tests are
not provided and not required.

12. Generalize declared type (VIII) – a type is
generalized in the given code place only. When
a generalized field appears in a test or a method
returns a generalized type, then this field or
type should be adapted to the generalized type.

13. Replace constructor with builder – this
replacement of a constructor follows changes
in all places where the considered objects are
created. In IntelliJ IDEA, the appropriate

modifications are automatically provided in
any code, including the test cases.

14. Infer generic type arguments – the generic type
is automatically introduced in all
corresponding code places, including the tests.

15. Replace temp with query (IX) - creation of a
method that substitutes an equation could cause
problems. Therefore, the arguments of the
method used in the tests should be adjusted to
the refactored code.

16. Remove middleman –apart of the refactoring
item, other classes are adjusted accordingly.
Therefore, the tests are automatically modified.

17. Wrap method return value – an additional wrap
class is created during refactoring. This class is
also automatically used in the corresponding
places in the code, including tests.

3.2 Creation of New Tests

The improvement of tests for a refactored code could
not be limited by modification of existing tests. In
some refactorings, new classes, fields, or methods are
created that were not tested before the refactoring.
Therefore, we also suggested creation of additional
basic tests that are related to selected refactorings and
are based on the following principles.

A new test on a public field uses the assignment
of a variable of a consistent type. Then the field value
is compared to the correct value. In a unit test, the
assertEquals assertion is used (JUnit, 2023).

In new tests focused on methods, a method with
appropriate arguments is called. It is checked whether
no unexpected exception(s) is thrown, using the
assertAll or assertDoesNotThrow assertions.

On request, such new tests could be created for the
following refactorings (the numbers match those in
Table 1):

• Pull up (I): If a field or method moved to a
super class is not tested, an object of the super
class is created in a new test. In addition, the
field is verified or the method is tested
(assertAll).

• Push down (II): Apart from correction of tests,
this refactoring can be associated with new
tests. An object of a subclass is created and
either a field or a method is verified
(DoesNotThrow).

• Extract (III): A new method is created,
therefore, a dedicated test is build (assertAll).

• Change method signature (IV): If the changed
method was not used in the tests, a new one is
created (DoesNotThrow).

Enhancing Unit Tests in Refactored Java Programs

737

• Convert local variable to field (V): After
refactoring, a new field is created that is tested
with a variable assignment if it is public
(assertion Equals). Additionally, if the method
with this field was not tested, a new test is built
(DoesNotThrow).

• Introduce parameter (VII): If the modified
method is not used in tests, a new test could be
created (DoesNotThrow).

• Generalize declared type (VIII): If a new
public field is created in the refactoring, a new
test can check the assignment of a variable to
the field newly created. If the generalize refers
to a type returned by a method, in a new test,
the method should be called, and lack of an
exception verified (DoesNotThrow).

4 REFACTORPLUGIN TO
SUPPORT TESTING

The test modification could be combined with the
refactoring in different ways. Tests of a refactored
program could be maintained after a whole
development session, periodically, or on demand.
Alternatively, each refactoring that is accepted by a
developer could trigger an automatic reaction.

In the latter approach, a test suite could be
modified without disturbing the activity of a
developer. A disadvantage is that the modification
only takes into account a single refactoring, while
sometimes a series of correlated ones is made.

Apart from the modification of existing tests, a
tool could also create new tests if the refactored area
is not covered by unit tests. The tests could be added
after a series of refactoring transformations or just
after each refactoring.

An assumption of our solution was to make the
process transparent to a user who refactors a program.
Therefore, the following issues were concerned in the
plugin development:

1. Detection of an event that triggers the plugin.
2. Identification of the refactoring kind and its

attributes.
3. Handling of different kinds of launching a

refactoring that could be selected by a user.
4. Modification of the source code and tests.
The Eclipse framework has an open architecture,

and its functionality can be extended with a plugin
using the Eclipse Plugin Development Environment
(PDE). In Eclipse, there are different events that
could trigger the plugin:

a) change in the AST,

b) completion of a refactoring,
c) adding a log to the refactoring history.
A change in AST can be easily detected, but it

could refer to more than just refactoring. Information
about a just completed refactoring is necessary to
activate a preferred reaction. This information could
be extracted either from an event type detected by a
listener of a refactoring execution or from the recent
log in the refactoring history.

We have developed the RefactorPlugin for Eclipse,
which is launched every time when information about
a just completed refactoring is added to the refactoring
history. The refactoring details are extracted from the
argument passed to the history.

In the plugin, the following requirements were
assumed. A test is modified only if a refactoring
transformation has a direct impact on the fields or
methods used in the test. New tests are created for
these fields, methods, and classes that were used in a
refactoring but were not tested before. Therefore, the
tests ensure basic code coverage. Assertions are used
to verify conditions in tests. The recommendations
for the following cases were implemented: I, II, III,
IV, and VII (the numbers as in Table 1).
The RefactorPlugin consists of three main modules:

• refactorplugin – for cooperation with the
refactoring transformation,

• parser – for processing the source code and
building the AST,

• reafctortests – responsible for the modification
and creation of tests.

In order to effectively access and modify the
source code, an AST of the code can be used. There
are several tools that support the parsing of Java code,
such as ANTLR4 (ANTLR, 2023), JavaParser,
coreAST. In RefactorPlugin, parts of the source code
are analyzed using the AST created by ANTL4 with
the Java grammar. The source code of the tests is
modified at the AST level.

5 EXPERIMENTS

The given approach was experimentally evaluated.

5.1 Experiment Setup

The developed RefactorPlugin was applied to a set of
programs of various origins (Table 2) and different
maturity levels of test development. The three first
programs were implemented using Java 13, and the
last one with Java 8. The programs were selected to
require some refactoring because we want to verify
not an artificial but a real development activity. Each

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

738

program was processed with the following steps:
1. measuring the coverage of lines, statements,

and decisions in the code under test,
2. application of a series of refactoring

transformations, some of which caused an
automated modification or creation of tests
by RefactorPlugin,

3. testing with the modified test set,
4. measuring the coverage of lines, statements,

and decisions for the modified test set.

Table 2: Projects used in experiments.

Project Origin
Blackjack https://vdawg97.github.io/Blackjack/
Simple-Poker https://github.com/andyxhadji/Simple

-Poker
Unit test
generator

A project of a course on Compiler
Techniques

Inheritance-
lesson

https://github.com/jversed/Lesson07_
inheritance

5.2 Experiment Results

Selected program measures calculated before and
after the experiments are given in Tables 3-6, for each
program, accordingly. The numbers of lines and
instructions provided in the top rows of a table refer
to the whole project, including production code and
initial tests (Before) or with all modified and added
tests (After). The values of code lines (LOC) are
counted without comments and white lines.

Table 3: Blackjack.

Project with tests Before After
LOC 319 356
Instruction number 1631 1791
Test number 2 12
Line coverage 10.0% 45.8%
Instruction coverage 5.8% 43.6%
Decision coverage 0% 13.8%

Refactored modules
LOC 237 250
Line coverage 3.4% 43.2%
Instruction coverage 1.5% 40.9%
Decision coverage 0% 15.7%

1. Change method signature
2. Convert local variable to field
3. Introduce parameter
4. Change method signature
5. Extract method
6. Introduce parameter
7. Extract method
8. Extract method
9. Change method signature
10. Extract method

In the Blackjack and Inheritance-lesson projects,
only subsets of project modules were refactored.
Therefore, the bottom rows of their tables include
data of only the refactored modules. In the two
remaining projects, all modules were refactored.

Below each table, a sequence of refactorings is
given that was executed on the program. Any
sequence is a real development phase, but others
could also be used, as each refactoring was a single
step, which means that after it, the tests were modified
and/or new ones created. The refactored program
with improved tests was an input for the next step.

Table 4: SimplePoker.

Project with tests Before After
LOC 214 244
Instruction number 890 1014
Test number 1 9
Line coverage 1.9% 33.6%
Instruction coverage 0.9% 33.0%
Decision coverage 0% 20.3%

1. Extract method
2. Change method signature
3. Convert local variable to field
4. Change method signature
5. Change method signature
6. Extract method
7. Introduce parameter
8. Extract method
9. Extract method
10. Change method signature

Table 5: Unit test generator.

Project with tests Before After
LOC 1505 1548
Instruction number 7752 7950
Test number 78 89
Line coverage 93.1% 93.9%
Instruction coverage 92.4% 93.2%
Decision coverage 83.2% 84.7%

1. Introduce parameter
2. Change method signature
3. Convert local variable to field
4. Extract method
5. Change method signature
6. Extract method
7. Introduce parameter
8. Convert local variable to field
9. Convert local variable to field
10. Change method signature
11. Extract method
12. Convert local variable to field
13. Extract method
14. Change method signature
15. Change method signature

Enhancing Unit Tests in Refactored Java Programs

739

Table 6: Inheritance-lesson.

Project with tests Before After
LOC 96 104
Instruction number 486 515
Test number 4 19
Line coverage 33.3% 52.9%
Instruction coverage 45.3% 61.0%
Decision coverage 0% 5%

Refactored modules
LOC 78 83
Instruction number 373 393
Line coverage 20.1% 43.4%
Instruction coverage 29.8% 49.9%
Decision coverage 0% 5%

1. Pull up
2. Push down
3. Convert local variable to field
4. Pull up
5. Change method signature
6. Pull up
7. Push down
8. Push down
9. Extract method
10. Introduce parameter

5.3 Discussion

In experiments, all modifications to the tests existing
before a refactoring step were successfully
completed. Both kinds of tests were modified: those
initially delivered with a project and those created
during previous steps of the refactoring sequence. For
example, in the Unit test generator, 5 tests were
modified, while 3 of them were added by the given
refactoring sequence (e.g., after the 14th refactoring, a
test that was added in the 5th step was modified).

The code coverage of the refactored modules
increased considerably, especially for the programs
that did not have many tests before (about 20-40%).
We can also observe an increase in decision coverage,
although it is not as high as line coverage (from a few
percent to 20%). However, the modified or new tests
were not intended to maximize the decision coverage.

In the Blackjack project, each refactoring caused
the creation of a new test. We faced a problem with
fixed arrays specified in a constructor when tests with
random parameters were applied. To avoid this
situation, a detailed method analysis and parameter
tuning in new tests were necessary.

As a result of the refactoring of the Inheritance-
lesson project, 15 new tests were created, which is
more than the number of steps in the refactoring
sequence (10). It was correct due to processing the
push down refactoring (steps 3, 7, and 8). Pushing an
item down in the class hierarchy can move it into

several descendant classes. For each such class, a new
test was created.

5.4 Threats to Validity

As for threats to validity in the conducted studies,
only four programs were evaluated with 10-15
refactorings. Therefore, the sample was quite limited,
and the quantitative results could not be generalized
(external validity). It also causes low statistical
conclusion validity.

Each program was treated by a different
refactoring scenario as the selected transformations
were adjusted to the program structure and its
requirements. Any scenario consists of at least 10
refactoring steps but not all transformations
implemented in the RefactorPlugin were applied to
each program. However, considering the whole
experiment, all kinds of transformations were
covered, which helped alleviate the threat to construct
validity. Furthermore, all automated modifications to
the tests were also manually checked. Any
modification is made just after a refactoring step;
therefore, we could accept the internal validity.

6 CONCLUSIONS

Analysis of the impact of the code refactoring on unit
tests in two Java frameworks showed that in some
cases the tests needed to be maintained manually or
an additional tool support was necessary. This
requirement was partially fulfilled by RefactorPlugin,
which extends Eclipse. Moreover, the developed tool
can create additional tests, especially focused on
items that could not have tests before refactoring.

On the basis of the conducted experiments, we
have made some observations. After a refactoring, the
modified tests could be correctly applied to the
program, assuming the refactoring had not damaged
the code. The plugin is activated automatically after a
refactoring, and its operation is therefore transparent
to a user. The time overhead was not noticeable.
Simple new tests required further enhancements in
some conditions, otherwise they could fail. This poses
the question of whether all such limitations were
taken into account, that is, if all new tests pass. As
expected, the new tests can improve code coverage.

As future work, we can consider the modification
and generation of tests for other refactorings that were
not developed in the current version. However, the
implementation of some of them, like Generalize
declared type, requires keeping the program AST
before and after each modification, which could

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

740

degrade the tool’s performance.
Support for the refactoring process could be

extended, e.g., enhancement of tests could be done
not automatically after each refactoring, but on
demand after a selected refactoring, after a manual
refactoring, or once after a series of refactorings.

More sophisticated test cases could be built or
integrated unit test generators, e.g., EvoSuite,
Randoop, DSpot (Ramler, Klammer, and Buchgeher,
2018), (Roslan, Rojas, and McMinn, 2022).

REFERENCES

Aniche, M., Treude, C., Zaidman, A., 2022. How
Developers Engineer Test Cases: An Observational
Study, In: IEEE Transactions on Software Engineering.
vol. 48, no. 12, pp. 4925-4946. doi: 10.1109/TSE.2021.
3129889.

ANTLR [Online] [Accessed 25 Jan 2023] https://www.
antlr.org/, https://github.com/antlr/antlr4-tools

Baqais, B.A.A., Alshayeb, M., 2020. Automatic software
refactoring: a systematic literature review. Software
Quality Journal. 28, pp. 459-502. doi: 10.1007/s11219-
019-09477-y.

Eclipse – Refactoring [Online] [Accessed 25 Jan 2023]
https://www.tutorialspoint.com/eclipse/eclipse_refacto
ring.htm

Eilertsen, A.M., Murphy, G. C., 2021. The Usability (or
Not) of Refactoring Tools. In: IEEE International
Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 237-248. doi:
10.1109/SANER50967.2021.00030.

Fowler, M., 2018. Refactoring: improving the design of
existing code (2nd ed.). Addison-Wesley.

Garousi,V., Kucuk, B., 2018. Smells in software test code:
A survey of knowledge in industry and academia. J. of
Systems and Software. Vol. 138, pp. 52-81. doi:
10.1016/j.jss.2017.12.013

Gil, J., Orrù, M. (2017). The Spartanizer: Massive
automatic refactoring. In: IEEE 24th International
Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 477-481. doi:10.1109/
SANER.2017.7884657.

Gao, Y., Liu, H., Fan, X., Niu, Z., & Nyirongo, B., 2015.
Analyzing Refactoring' Impact on Regression Test
Cases. In: IEEE 39th Annual Computer Software and
Applications Conference (COMPSAC), vol. 2, pp. 222-
231. doi: 10.1109/COMPSAC.2015.16.

IntelliJ refactoring [Online] [Accessed 25Jan 2023]
https://www.jetbrains.com/help/idea/refactoring-source-
code.html

Jaradat, A., Qusef, A., 2019. Automatic Recovery of Unit
Tests after Code Refactoring. In: International Arab
Conference on Information Technology (ACIT),
pp.202-208. doi: 10.1109/ACIT47987.2019.8990974.

JUnit [Online] [Accessed 12 Jan 2023] Available from
https://junit.org/junit5/docs/current/api/index.html

Kashiwa,Y., Shimizu,K., Lin, B., Bavota, G., Lanza, M.,
Kamei, Y., Ubayashi, N., 2021. Does Refactoring
Break Tests and to What Extent? In: IEEE International
Conference on Software Maintenance and Evolution
(ICSME), pp.171-182, doi: 10.1109/ICSME52107.
2021.00022.

Kiran, L., Lodhi, F., Basit, W., 2011. TAPE Test Code
Adaptation Plug-in for Eclipse. Corpus ID: 12838995.

Mens, T., Tourwe, T., 2004. A survey of software
refactoring. In: IEEE Transactions on Software
Engineering, vol. 30, no. 2, pp. 126-139. doi:
10.1109/TSE.2004.1265817.

Olsthoorn, M., 2022. More Effective Test Case Generation
with Multiple Tribes of AI, In: IEEE/ACM 44th
International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pp. 286-
290. doi: 10.1145/3510454.3517066.

Passier, H., Bijlsma,L., Bockisch, C., 2016. Maintaining
Unit Tests During Refactoring. In: Proceedings of the
13th International Conference on Principles and
Practices of Programming on the Java Platform:
Virtual Machines, Languages, and Tools, no. 18, pp.1-
6. doi: 10.1145/2972206.2972223.

Peruma, A., Simmons, S., AlOmar, E.A. et al., 2022. How
do I refactor this? An empirical study on refactoring
trends and topics in Stack Overflow. In: Empir Software
Eng 27, 11. doi: 10.1007/s10664-021-10045-x.

Rachatasumrit, N., Kim, M., 2012. An empirical
investigation into the impact of refactoring on
regression testing. In: 28th IEEE International
Conference on Software Maintenance (ICSM), pp. 357-
-366. doi: 10.1109/ICSM.2012.6405293.

Ramler, R., Klammer, C., Buchgeher, G. 2018. Applying
automated test case generation in industry: a
retrospective. In: International Conference on Software
Testing, Verification and Validation Workshops, pp.
364-369, IEEE. doi: 10.1109/ICSTW.2018.00074.

Roslan, M.F., Rojas, J.M., McMinn, P., 2022. An Empirical
Comparison of EvoSuite and DSpot for Improving
Developer-Written Test Suites with Respect to
Mutation Score. In: Papadakis, M., Vergilio, S.R. (eds)
Search-Based Software Engineering. SSBSE 2022.
Lecture Notes in Computer Science, vol 13711.
Springer, Cham. doi: 10.1007/978-3-031-21251-2_2.

Shamshiri, S., Rojas, J. M., Galeotti, J. P., Walinshaw, N.,
Fraser, G., 2018. How do automatically generated unit
tests influence software maintenance? In: 11th
International Conference on Software Testing,
Verification and Validation, pp.250-261. IEEE Comp.
Soc. doi: 10.1109/ICST.2018.00033.

Shochat M., Raz O., Farchi, E., 2009. SeeCode – A Code
Review Plug-in for Eclipse. In: Chockler H., Hu A.J.
(eds) Hardware and Software: Verification and
Testing. HVC 2008. LNCS, vol 5394. Springer, Berlin,
Heidelberg. doi:10.1007/978-3-642-01702-5_21.

Walter, B., Pietrzak B., 2004. Automated generation of unit
tests for refactoring. In: Extreme Programming and Agile
Processes in Software Engineering, LNCS vol. 3092, pp.
211--214. Springer. doi: 10.1007/978-3-540-24853-
8_25.

Enhancing Unit Tests in Refactored Java Programs

741

