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Abstract: Automated driving systems(ADS) are major trend and the safety of such critical system has become one

of the most important research topics. However, ADS are complex systems that involve various elements.

Moreover, it is difficult to ensure safety using conventional testing methods due to the diversity of driving

environments. Deep Neural Network(DNN) is effective for object detection processing that takes diverse

driving environments as input. A method such as Intersection over Union (IoU) that defines a threshold value

for the discrepancy between the bounding box of the inference result and the bounding box of the ground-

truth-label can be used to test the DNN. However, there is a problem that these tests are difficult to sufficiently

test to what extent they meet the specifications of ADS. Therefore, we propose a method for converting formal

specifications of ADS written in Bounding Box Specification Language (BBSL) into tests for object detection.

BBSL is a language that can mathematically describe the specification of OEDR (Object and Event Detection

and Response), one of the tasks of ADS. Using these specifications, we define specification based testing of

object detection for ADS. Then, we evaluate that this test is more safety-conscious for ADS than tests using

IoU.

1 INTRODUCTION

Automated driving systems (ADS) are actively devel-

oped by several manufacturers and their failure can

cost human life (Devi et al., 2020). Therefore, ensur-

ing their safety has become one of the most important

research topics. However, ADS are complex systems

including various elements, such as machine learning,

route search algorithm and sensing technology. Fur-

thermore, the driving environment surrounding those

systems is diverse. Therefore, it becomes difficult

to design specifications and test them as in general

software development methods. To solve this prob-

lem, government agencies in various countries are re-

searching frameworks for designing and testing ADS

by defining and designing multiple scenarios of driv-

ing environments, systematizing use cases, setting
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safety standards, and establishing evaluation frame-

works. For example, the National Highway Traffic

Safety Administration (NHTSA) in the United States

first determines the level of automation of the auto-

mated driving system to be developed, and then de-

velops the Operational Design Domain(ODD) and the

Object and Event and Response (OEDR) are clarified.

ODD is the specific conditions under which ADS or

its functions are designed to operate, such as road

types, speed limits, lighting conditions, weather con-

ditions, and other operational constraints. The various

driving environments are then classified into some-

what abstract scenarios, such as ”merging into an-

other lane at low speed,” and OEDRs are designed

based on these scenarios to monitor the driving en-

vironment and respond appropriately to these objects

and events (Thorn et al., 2018). These levels of au-

tomation, ODDs, and OEDRs are defined in the SAE

J3016 standard (Committee, 2021).

Among the components of ADS with the above

characteristics, our research focuses on the object de-
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tection process. In object detection for ADS, deep

neural networks (DNN) are used to cope with large

amounts of input. As shown in Figure 1, this DNN

typically takes an image as input and a labeled rect-

angle called bounding box as the output of the infer-

ence result. The general approach to testing such a

DNN is to match the inferred label by the DNN with

the ground-truth label, given an image. However, it

is difficult for DNN to detect the position of a par-

ticular object in perfect agreement with its ground-

truth label. Therefore, in practice, it is tested using a

threshold called Intersection over Union (IoU) (Ever-

ingham and Winn, 2012). IoU is a number that quan-

tifies the degree of overlap between two boxes. In

the case of object detection, IoU evaluates the over-

lap of the ground-truth label and inferred label. For

example, Figure 2 shows two images with a ground-

truth label (red bounding box) and an inferred label

(green bounding box). In this case, the IoU is about

1/3 in both images. However, given a safety require-

ment to stop when there is a vehicle in the direction of

travel, the DNN that infers the green bounding box in

the left image violates the safety requirement, while

the DNN that infers the green bounding box in the

left image satisfies it. The above shows that the test

of object detection using IoU is at variance with the

specifications for ADS. Therefore, it is necessary to

study specification-based testing methods for ADS.

Figure 1: DNN inputs and outputs.

Figure 2: Problems when thresholds are defined in the IoU.

In order to achieve specification based testing of

the object detection process, a rigorously defined

specification of how the system should operate in

a given driving environment is required. Among

the tasks of automated driving systems, there is a

language called BBSL for writing specifications for

OEDR (Tanaka et al., 2022). BBSL is a language that

can describe specifications mathematically by repre-

senting objects such as other vehicles and pedestrians

as bounding boxes and using positional relationships

between bounding boxes. The specification based

testing proposed in this paper is a method for spec-

ification based testing of the object detection pro-

cess, which has a particular impact on safety among

the components of automated driving systems. Us-

ing a simple example specification, we evaluate that

the test is specification based and includes important

safety contests that cannot be considered in conven-

tional IoU based testing methods.

2 RELATED WORK

A common ADS is composed of four functional mod-

ules, namely, the sensing module, the perception

module, the planning module and the control mod-

ule in Figure 3. The purpose of our study is to judge

whether a bug exists in the perception module of the

perception of these.

Figure 3: Typical architecture of an ADS.

The general approach of testing a DNN in the

perception module is to match the inferred label by

the DNN with the ground-truth label, given an im-

age. Usually, these ground-truth labels are obtained

by manual labeling (Sun et al., 2019) (Kondermann

et al., 2016). Then, IoU, also known as Jaccard in-

dex, is used as a threshold to determine whether the

positional descriptions of the ground-truth-label and

inferred-label match or not. IoU computes the dis-

crepancy between the bounding box of the inference

result and the bounding box of the ground-truth-label,

but in our study, we use the specification of ADS and

compute it based on whether the specification is sat-

isfied.

In perception testing, due to the huge input

space of the DNN models, it is a great challenge

to specify the oracles for all the input images.

One solution to this problem is metamorphic test-

ing.Metamorphic testing was introduced to tackle the

problem when the test oracle is absent in traditional

software testing (Chen et al., 2020). This test de-

scribes the system functionality in terms of generic re-

lations(metamorphic relations) between inputs rather

than as mappings between input and output. In ADS,

Various metamorphic relations have been proposed,

over images and frames in a scenario. For example,

in object detection, there is a metamorphic relation

that objects detected in the original image should also

be detected in the synthetic images (Shao, 2021), and
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for LiDAR based object detection, there is a metamor-

phic relation over the image that the noise points out-

side the Region of Interest (ROI) should not affect the

detection of objects within the ROI (Zhou and Sun,

2019). Also, two metamorphic relations over frames

in a scenario are proposed to respectively for iden-

tifying temporal and stereo inconsistencies that exist

in different frames of a scenario (Ramanagopal et al.,

2018). The temporal metamorphic relation says that

an object detected in a previous frame should also be

detected in a later frame, and the stereo metamorphic

relation is defined in a similar way, for regulating the

spatial consistency of the objects in different frames

of a scenario.

Recently, temporal logics based formal specifica-

tions have been adopted in the monitoring of the per-

ception module of ADS. In general, temporal log-

ics are a family of formalism used to express tem-

poral properties of systems. For example, a new

form called Timed Quality Temporal Logic (TQTL),

which can be used to express temporal properties that

should be held by the perception module during ob-

ject detection (Dokhanchi et al., 2018). Conceptu-

ally, the properties expressed by TQTL are similar to

the ones in the metamorphic relations as mentioned

above (Ramanagopal et al., 2018). however, by adopt-

ing such a formal specification to express these prop-

erties, one can synthesize a monitor that automati-

cally checks the satisfiability of the system execution.

TQTL is later extended to Spatio-Temporal Quality

Logic (STQL) (Balakrishnan et al., 2021), which has

enriched syntax to express more refined properties

over the bounding boxes used in object detection. In

our study, we test the perception module of ADS us-

ing a formal specification called BBSL. BBSL does

not currently use temporal logics, so temporal proper-

ties cannot be expressed. However, BBSL can express

properties related to position on the bounding box in

more detail than STQL.

3 BOUNDING BOX

SPECIFICATION LANGUAGE

The specification-based test proposed in this paper

uses specifications written in a formal specification

language called BBSL (Tanaka et al., 2022). BBSL

is a language that describes objects in an image as

bounding boxes and the positional relationships be-

tween the bounding boxes at a level of abstraction

that can be defined manually. By defining a bounding

box as a two-dimensional interval in interval analy-

sis (Moore et al., 2009), BBSL strictly describes posi-

tional relationships on an image as relationships on a

bounding box (or set of bounding boxes). In addition,

special relations and functions are defined for posi-

tional relations that cannot be described by interval

analysis. In this section, we show the types and rela-

tions of BBSL and outline the specifications of ADS

written in BBSL.

First, we explain the basic types used in BBSL,

interval and bb. The interval type represents an inter-

val like decelerating distance in Figure 4. This inter-

val has the same definition as that defined in interval

analysis. This is shown in Definition 1.

Figure 4: Visual representation of the driving environment
and abstract specifications written in BBSL.

Definition 1. Let a,a be real numbers. Then an inter-

val a is defined as follows:

a = [a,a] = {x ∈ R : a ≤ x ≤ a}

Objects in the image, such as vehicles, are

represented by bounding boxes defined by a two-

dimensional interval. The bb type represents a bound-

ing box, which has the same definition in interval

analysis. This is shown in Definition 2.

Definition 2. Let ai, i = 1, ...,n be intervals.Then a

multidimensional interval a is defined as follows:

a = (a1, ...,an)

In particular, when n = 2, the multidimensional inter-

val a is called the bounding box.

The magnitude relationship of intervals has the

same definition as the interval analysis. However,

since interval analysis is defined to calculate real val-

ues with rounding errors and measurement errors,

many relationships cannot be applied to the descrip-

tion of positional relationships. Therefore, BBSL pro-

vides unique operations and relationships that are use-

ful for describing image specifications.

First, we introduce the basic relations used to de-

scribe the positional relationship between intervals.

These definitions are the same as those used in in-

terval analysis and are shown in Definition 3, Defini-

tion 4.

Definition 3. Let a,b be intervals.Then the binary re-

lation < on two intervals is defined as follows:

a < b ⇔ a < b

Definition 4. Let a,b be intervals.Then the equiva-

lence relation= on two intervals is defined as follows:

a = b ⇔ a = b and a = b
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With these relationships, it is possible to represent

the positional relationship between the vehicle’s y-

coordinate interval and the stoppingDistance defined

as the distance to be maintained, as shown in Figure 5.

Figure 5: Example of simple positional relationships.

The definition of the inclusion relationship be-

tween intervals is shown in Definition 5.

Definition 5. Let a,b be intervals.Then the inclusion

relation ⊆ on two intervals is defined as follows:

a ⊆ b ⇔ b ≤ a and a ≤ b

For the positional relationship between these in-

tervals, ≈ is introduced as a shorthand notation to

express the relationship where two intervals overlap,

which frequently occurs in the specification of auto-

mated driving systems. This is shown in Definition 6.

Definition 6. Let a,b be intervals.Then the overlap

relation ≈ on two intervals is defined as follows:

a ≈ b ⇔ b ≤ a and a ≤ b

In addition, a function called PROJ function is

provided to map the object to the x- and y-axis side

intervals. This is shown in Definition 7.

Definition 7. Let a be bounding box (ax,ay).Then the

projection function PROJi from bounding box to in-

terval is defined as follows:

PROJi(a) = ai,PROJi(a) = [a,a],PROJi(a) = [a,a]

, i ∈ {x,y}

BBSL can describe various positional relation-

ships strictly using the PROJ function and interval re-

lationships described above for the bounding boxes

representing objects. For example, Figure 6 shows

some examples of a positional relationship for two

bounding boxes a and b described in BBSL.

By using such types and functions, BBSL can de-

scribe OEDR specifications for ADS strictly from an

image perspective. Listing 1 shows an example of

a specification described in BBSL. This specification

defines the cases in which ADS should or should not

Figure 6: Examples of various positional relationships that
can be distinguished using the PROJ function.

stop, depending on the position of a single vehicle.

The specification described in BBSL is divided into

three blocks, as shown in this specification. The first

block, external function block (lines 1-8 of Listing 1),

defines functions to receive values needed in advance

to write this specification. For example, the specifi-

cation provides a function to check for the presence

of a vehicle, a function to return the bounding box

surrounding the vehicle, and a function to return an

interval representing the stopping distance.

The second block, the precondition block (lines

10-12 in Listing 1), is used to describe the conditions

for applying the specification. For example, it states

that the specification is written on the assumption that

there will always be a vehicle of some kind.

The third block, case block (lines 14-19 and 21-25

in Listing 1), is the main part of this specification. It

describes a case for each reaction of the ADS and the

conditions under which the system should react. This

means that in the list 1, the specification strictly de-

scribes the need to stop if a vehicle is before or over-

laps the stoppingDistance from the viewpoint of the

forward camera image, as in Figure 5.

Listing 1: Specifications of ADS response to the distance to
the vehicle.

1exfunction
2 //Judge the existence of the vehicle.

True if it exists.
3 vehicleExists():bool
4 //Calculate the bounding box that

surrounds the vehicle.
5 vehicle():bb
6 //Calculate the interval that represents

the range to be stopped.
7 stoppingDistance():interval
8endexfunction
9

10precondition
11 [vehicleExists() = true]
12endprecondition
13

14case stop
15 let vehicle : bb = vehicle(),
16 stoppingDistance : interval =

stoppingDistance() in
17 PROJy(vehicle) ≈ stoppingDistance
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18 or PROJy(vehicle) < stoppingDistance
19endcase
20

21case NOT stop
22 let vehicle : bb = vehicle(),
23 stoppingDistance : interval =

stoppingDistance() in
24 PROJy(vehicle) > stoppingDistance
25endcase

4 SPECIFICATION BASED

TESTING

As described in the previous section, specifica-

tions for ADS written using BBSL are unambigu-

ous and rigorously described. Therefore, specifica-

tions written in BBSL can be used to rigorously define

specification-based tests for object detection process-

ing. .In this section, we make some preparations and

define specification-based tests.

The specification written in BBSL is represents

for images with multiple labeled boundingboxes, as

shown in Figure 7. First, the set of images with such

labeled boundingboxes is shown in Definition 11.

Figure 7: Examples of Image with multiple boundingboxes
labeled.

Definition 8. Let I be a set of images, BB be a set

of boundingboxes, and L be a set of labels such as

vehicle and pedestrian. The set of images IBB with

multiple boundingboxes with labels is defined as fol-

lows:

IBB = I× 2BB×L

Next, a specification written in BBSL for use in

testing is defined in Definition 9.

Definition 9. A specification written in BBSL is de-

fined as a pair S = (C, f ).

• C is the set of cases. For example, in Listing 1,

C = {stop,NOTstop}.

• Let f be defined by the function f : IBB− → 2C

where IBB− = {iBB ∈ IBB | iBB satisfies precondi-

tion condition. }.

Hereafter, IBB− of f in the specification S = (C, f ) is

denoted as dom( f ).

For the purpose of preparing a test covering all

images or defining a unique test, the three types of

properties on the specification written in BBSL are

defined in Definition 10.

Definition 10. For a specification S = (C, f ) written

in BBSL, the properties of the three types of specifica-

tions are defined as follows:

S is an exhaustive specification

⇔∀i ∈ dom( f ).( f (i) 6= /0)

S is an exclusionary specification

⇔∀i ∈ dom( f ),∃c ∈C.

( f (i) = {c}or f (i) = /0)

S is a non-redundant specification

⇔∀c ∈C,∃i ∈ dom( f ).(c ∈ f (i))

Thus, the specification of Listing 1 is an exhaus-

tive, exclusionary, and non-redundant specification.

In this paper, unless otherwise specified, specification

S written in BBSL is an exhaustive, exclusionary, and

non-redundant specification.

Next, the definitions of the basic elements neces-

sary to define a test are given in Definition 11.

Definition 11. The test data T d is a subset of the set

of images I. The object detection system to be tested

is exactly the DNN shown in Figure 1, which takes

an image as input and returns an image with inferred

labels as output. This is defined by the function SUT :

I → IBB. In addition, assume that the ground-truth

label is given by the function GT : I → IBB.

Using the above definitions, a test case is defined

in Definition 12.

Definition 12. Given an exhaustive, exclusionary,

and non-redundant specification S = (C, f ), test data

T d and ground-truth data GT, test case CASE is de-

fined as follows:

CASE = {(td, f (GT (td))) | td ∈ T d)}

In Definition 12., f (GT (td)) plays the role of a

specification-based pseudo-oracle.

Finally, the decision conditions for the

specification-based test are defined in Definition 13.

Definition 13. Given an exhaustive, exclusionary,

and non-redundant specification S = (C, f ), SUT

and a test case CASE, the test decision condition

P : CASE → {T,F} is defined for any case (td,c) ∈
CASE is defined as follows:

P(td,c) =

{

T f (SUT (td)) = c

F othewise

The above definitions enabled specification-based

testing using specifications written in BBSL.
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5 EXPERIMENT

In this section, we actually prepare an object detec-

tion system for ADS, a grand tuluth dataset with two-

dimensional bounding box, and a specification writ-

ten in BBSL, and compare the proposed test method

with the IoU method.

5.1 Preparations

First, we used the KITTI dataset (Geiger et al., 2013)

for Td1 and T d2 (Td1 ∩T d2 = /0) as the two types of

test data set and GT as the grand truth label. These

are 349 and 1300 images from the forward camera

of ADS, respectively, as shown in Table 1. Each im-

age contains one or more vehicles, and the number

of vehicles in the dataset is 2736 and 5644, respec-

tively. The specifications of these grand tuluth la-

bels are given by enclosing each vehicle in a two-

dimensional bounding box.

Table 1: Test Data Details.

Name Number of images Number of vehicles

T d1 349 2736

T d2 1300 5644

Next, two object detection systems to be tested are

prepared as SUT1 and SUT2, respectively. Both object

detection algorithms used in these systems are based

on Yolov3 (Redmon and Farhadi, 2018), and the DNN

network used is darknet53. In our study, we prepared

two types of object detection systems by using

yolov3-kitti.weights(https://drive.google.com/file/d/

1BRJDDCMRXdQdQs6-x-3PmlzcEuT9wxJV/view)

for SUT1 and yolov3.weights(https://github.com/

patrick013/Object-Detection---Yolov3/blob/master/

model/yolov3.weights) for SUT2 from publicly

available weighting files, without training them

independently.

In addition, we prepared four simple specifica-

tions written in BBSL as S1, S2, S3 and S4 on which to

base our tests. S1 is Listing 1 already described above

as an example, which defines the cases in which ADS

should or should not stop depending on the distance

of the vehicle in front. S2 is shown in Listing 2. This

specification defines the cases in which ADS should

and should not stop depending on whether the target

vehicle encroaches into the linear distance of the own

vehicle or not.

Listing 2: Specifications of ADS response to the position of
x-axis the vehicle.

1exfunction
2 //Judge the existence of the vehicle.

True if it exists.
3 VehicleExists():bool

4 //Calculate the bounding box that
surrounds the vehicle.

5 Vehicle():bb
6 //Calculate the interval that represents

the range to be stopped.
7 directionAreaDistance():interval
8endexfunction
9

10precondition
11 [VehicleExists() = true]
12endprecondition
13

14case stop
15 let Vehicle : bb = lVehicle(),
16 directionAreaDistance : interval =

directionAreaDistance() in
17 PROJx(Vehicle) ≈

directionAreaDistance
18endcase
19

20case NOT stop
21 let Vehicle : bb = Vehicle(),
22 directionAreaDistance : interval =

directionAreaDistance() in
23 not(PROJx(Vehicle) ≈

directionAreaDistance)
24endcase

S3 is shown in Listing 3. This specification com-

bines S1 and S2, and specifies that it is a case of Stop

if the distance between vehicles is close and the vehi-

cle has entered the travel direction, and a case of Not

Stop otherwise.

Listing 3: Specifications with two cases combining S1 and
S2.

1exfunction
2 vehicleExists():bool
3 vehicle():bb
4 directionAreaDistance():interval
5 stoppingDistance():interval
6endexfunction
7

8precondition
9 [vehicleExists() = true]

10endprecondition
11

12case stop
13 let vehicle : bb = vehicle(),
14 directionAreaDistance : interval =

directionAreaDistance(),
15 stoppingDistance : interval =

stoppingDistance() in
16 PROJx(vehicle) ≈

directionAreaDistance
17 and PROJy(vehicle) ≈

stoppingDistance
18endcase
19

20case NOT stop
21 let vehicle : bb = vehicle(),
22 directionAreaDistance : interval =

directionAreaDistance() in
23 not(PROJx(vehicle) ≈

directionAreaDistance) or
24 not (PROJy(vehicle) ≈

stoppingDistance)
25endcase

Finally, S4 is shown in Listing 4. Like S3, this

specification is a combination of S1 and S2. The con-

dition of x yStop is the same as that of S3, but the

Specification Based Testing of Object Detection for Automated Driving Systems via BBSL

255



condition of Not Stop is divided into ysafe xwarning,

xsafe ywarning and NOT warning in more detail de-

pending on the relationship between the y and x coor-

dinates on the image.

Listing 4: Specifications with four cases combining S1 and
S2.

1exfunction
2 vehicleExists():bool
3 vehicle():bb
4 directionAreaDistance():interval
5 stoppingDistance():interval
6endexfunction
7

8precondition
9 [vehicleExists() = true]

10endprecondition
11

12case x_ystop
13 let vehicle : bb = vehicle(),
14 directionAreaDistance : interval =

directionAreaDistance(),
15 stoppingDistance : interval =

stoppingDistance() in
16 PROJx(vehicle) ≈

directionAreaDistance
17 and PROJy(vehicle) ≈

stoppingDistance
18endcase
19

20case ysafe_xwarning
21 let directionAreaDistance : interval =

directionAreaDistance(),
22 stoppingDistance : interval =

stoppingDistance() in
23 PROJx(vehicle) ≈

directionAreaDistance
24 and not(PROJy(vehicle) ≈

stoppingDistance)
25endcase
26

27case xsafe_ywarning
28 let directionAreaDistance : interval =

directionAreaDistance(),
29 stoppingDistance : interval =

stoppingDistance() in
30 not(PROJx(vehicle) ≈

directionAreaDistance)
31 and PROJy(vehicle) ≈

stoppingDistance
32endcase
33

34case NOT warning
35 let vehicle : bb = vehicle(),
36 directionAreaDistance : interval =

directionAreaDistance() in
37 not(PROJx(vehicle) ≈

directionAreaDistance) and
38 not (PROJy(vehicle) ≈

stoppingDistance)
39endcase

Each of these specifications is interpreted by im-

plementing the conditions in Python using BBSL se-

mantics. Since all of the specifications described here

describe conditions for a single vehicle object, the test

is interpreted for only one vehicle for each image with

multiple vehicles in it. Therefore, the number of test

cases is 2736,5644, which is the number of vehicle

objects in T d1 and T d2, respectively.

The implementation of each exfunction was given

as a constant. The values are those of the coordi-

nates with the upper left corner as 0 in all images

(size is 1242× 375), and the values are shown in Ta-

ble 2. In Table 2, sD() in the Given Exfunction col-

umn stands for stoppingDistance() and dA() for direc-

tionAreaDistance.

Table 2: Details of all tests.

Test

ID
S

Given

Exfunctions
Td SUT

ID1 S1
sD()

= [275,375]
T d1 SUT1

ID2 S1
sD()

= [275,375]
T d1 SUT2

ID3 S1
sD()

= [250,375]
T d1 SUT1

ID4 S1
sD()

= [300,375]
T d1 SUT1

ID5 S2
dA()

= [420,821]
T d1 SUT1

ID6 S3

sD()
= [275,375]

dA()
= [420,821]

T d1 SUT1

ID7 S4

sD()
= [275,375]

dA()
= [420,821]

T d1 SUT1

ID8 S3

sD()
= [275,375]

dA()
= [420,821]

T d1 SUT2

ID9 S4

sD()
= [275,375]

dA()
= [420,821]

T d1 SUT2

ID10 S1
sD()

= [275,375]
T d2 SUT1

ID11 S2
dA()

= [420,821]
T d2 SUT1

5.2 Evaluation

The judgment results of the proposed test and the

judgment results with IoU0.6 and IoU0.8 on 11 differ-

ent tests are shown in Table 3. It can be seen that,

unlike the IoU calculated only from the test data and

SUT, the proposed method changes its judgment de-

pending on the given specification. In addition, even

though the test data sets T d1 and T d2 were not pre-

pared artificially, it is clear that there is a large dis-

crepancy between the IoU test and the proposed test.

Furthermore, for test ID1, we measured the judg-

ment result in the case of IoU0.6 and the judgment
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Table 3: Tests results.

Test ID
IoU0.6

(T/T +F)
IoU0.8

(T/T +F)
suggestion test

(T/T +F)
ID1 2180/(2180+ 556)= 79.7% 1432/(1432+ 1304)= 52.3% 2527/(2527+ 209)= 92.4%

ID2 1221/(1221+ 1515)= 44.6% 791/(791+ 1945)= 28.9% 1929/(1929+ 807)= 70.5%

ID3 2180/(2180+ 556)= 79.7% 1432/(1432+ 1304)= 52.3% 2500/(2500+ 236)= 91.4%

ID4 2180/(2180+ 556)= 79.7% 1432/(1432+ 1304)= 52.3% 2524/(2524+ 212)= 92.3%

ID5 2180/(2180+ 556)= 79.7% 1432/(1432+ 1304)= 52.3% 2591/(2591+ 145)= 94.7%

ID6 2180/(2180+ 556)= 79.7% 1432/(1432+ 1304)= 52.3% 2604/(2604+ 132)= 95.2%

ID7 2180/(2180+ 556)= 79.7% 1432/(1432+ 1304)= 52.3% 2502/(2502+ 234)= 91.4%

ID8 1221/(1221+ 1515)= 44.6% 791/(791+ 1945)= 28.9% 2065/(2065+ 671)= 75.5%

ID9 1221/(1221+ 1515)= 44.6% 791/(791+ 1945)= 28.9% 1867/(1867+ 869)= 68.2%

ID10 4842/(4842+ 802)= 85.8% 3182/(3182+ 2462)= 56.4% 5299/(5299+ 345)= 93.9%

ID11 4842/(4842+ 802)= 85.8% 3182/(3182+ 2462)= 56.4% 5314/(5314+ 330)= 94.2%

result in the case of the proposed test for each case

of expected value as shown in Figure 8. The aggre-

gate results are shown in Table 4. The numbers to

the right of 1© to 8© shown in Table 4 are the number

of applicable test cases, corresponding to 1© to 8© in

Figure 8, respectively. In Table 4 and Figure 8, BBSL

refers to the proposed test, and expectation is c in this

test case (td,c). As can be seen from the results, al-

though the number of test cases is biased, there are

test cases that correspond to all of them. In particular,

the existence of test cases corresponding to 3©, 4©, 5©,

and 6© indicates that there are cases in which the pro-

posed method makes decisions that differ from those

of IoU. In addition, the existence of test cases corre-

sponding to 6© and 8© indicates that the proposed test

detects malfunctions such as not being able to stop

when ADS sould be stop based on the specification.

The above indicates that the proposed method detects

the test cases where the IoU is inadequate if these data

are valid.

Figure 8: How to classify test cases in Test ID1.

6 DISCUSSION

As shown in Table 3, the proposed test can be per-

formed on various test datasets as long as they are

ground truth data with a two-dimensional bound-

ing box. Since many test data for object detec-

tion systems have two-dimensional bounding boxes

as ground truth data, the proposed test can be per-

formed on many existing data sets. In addition, the

proposed method determines the tolerance for mis-

alignment using an algorithm that is clearly different

from IoU in that it determines whether a test case is

acceptable or not based on the specifications written

in the prepared BBSL.

Furthermore, we focus on each of the data in Ta-

ble 4 and discuss its effectiveness based on each ex-

ample. First, we discussed test case to 1© on Figure 9,

in other words, a case where the expected value is Not

Stop in the specification, and where both the proposed

test and IoU0.6 are judged as T. The white vehicle in

Figure 9 is the relevant test case, and the bounding

box of the inferred result is indicated. Since this white

vehicle has a sufficient distance from its own vehicle,

the expected value is ”Not Stop” based on the specifi-

cation of Listing 1. The bounding box in the inferred

result is determined to be T with IoU0.6 because it is

detected with almost no deviation. In such a case,

there is clearly no defect in the specification of ADS,

and the proposed test is judged to be T, which is rea-

sonable.

Figure 9: Example of a test case corresponding to 1© on
Figure 8.

Next, we will discuss the test case classified as 2©,

in other words, an environment where the expected

value is Stop in the specification, and Figure 10 is an

example where the proposed test and IoU0.6 are both

determined to be T. The red vehicle in Figure 10 is

the relevant test case, and the bounding box of the in-

ferred result is shown. Since this vehicle is very close

to its own vehicle, the expected value is Stop based

on the specification of Listing 1. The bounding box

in the inferred result has some visual deviation, but
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Table 4: Test case classification results for test ID1.

expectation IoU0.6:T, BBSL:T IoU0.6:F, BBSL:T IoU0.6:T, BBSL:F IoU0.6:F, BBSL:F

Not stop 1©1744 3©345 5©4 7©74

stop 2©404 4©34 6©28 8©103

because it is a large object in the image, IoU is calcu-

lated to be high, and it is judged to be T with IoU0.6.

Since the direction of the misalignment is in the lat-

eral direction and the distance recognition is correct,

there is no defect in the specification of ADS, and the

proposed test is also judged to be T, which is reason-

able.

Figure 10: Example of a test case corresponding to 2© on
Figure 8.

Next, we will discuss the test case classified as 3©,

in other words, in other words, an environment with

an expected value of Not stop in the specification,

which is judged as T in the proposed test and F in the

IoU0.6 test. The vehicle surrounded by a red bound-

ing box of grand-truth label hidden by a white vehicle

and a building in the upper image of Figure 11 is the

corresponding test case, and the bounding box of the

inferred result is shown in the lower image. Since

this vehicle is sufficiently far from own vehicle, the

expected value is Not stop based on the specification

of Listing 1. Since the object detection system under

test cannot recognize the vehicle in the back and only

detects the white car in the front, the IoU is very low

and is determined to be F with IoU0.6. However, if

the white vehicle in the front can be correctly recog-

nized and judged to have a sufficient distance, there

is no defect in the specification base of ADS, and the

proposed test is judged to be T, which is reasonable.

Next, we will discuss the test case classified as
4©, in other words, an environment with an expected

value of Stop in the specification, which is judged as

T in the proposed test and F in rhw IoU0.6 test. The

black vehicle surrounded by a red bounding box in

the image in Figure 12 is the relevant test case, and

the inferred result is indicated by the purple bound-

ing box. Since this vehicle is very close to the own

vehicle, the expected value is Stop based on the spec-

ification of Listing 1. Since only the first part of the

vehicle is shown in the image, the object detection

system recognizes the vehicle as smaller than the ac-

tual size of the vehivle indicated by the red bounding

box, and the IoU is very low and is determined to be F

Figure 11: Example of a test case corresponding to 3© on
Figure 8.

at IoU0.6. However, most of the discrepancy is in the

height of the vehicle, and there is almost no discrep-

ancy in the recognition of the distance from own ve-

hicle. Therefore, there is no defect in the specification

base of ADS, and the proposed test is also determined

to be T, which is reasonable.

Figure 12: Example of a test case corresponding to 4© on
Figure 8.

Next, we will discuss the test case classified as
5©, in other words, in other words, an environment

where the expected value is Not stop in the specifica-

tion and the proposed test determines F and IoU0.6 to

be T. The red vehicle in the image in Figure 13 is the

corresponding test case, and the inferred result is indi-

cated by the purple bounding box. The red vehicle in

the image in Figure 13 is the test case, and the inferred

result is indicated by the purple bounding box. Since

this vehicle is far away from the own vehicle, the ex-

pected value is ”Not stop” based on the specification

of Listing 1. And since this inferred result shows a

slight downward of the misalignment but almost no

upward or lateral of misalignment, the IoU is not low

and is determined to be T at IoU0.6. However, because

of the downward of the misalignment, there is a possi-

bility that the vehicle may stop in a situation where it

is not necessary to stop due to the misalignment with

respect to the recognition of the distance between the
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vehicles. Therefore, this is a fault based on the spec-

ification that reduces the reliability of ADS, and the

proposed test also judges it as F, which is reasonable.

Unlike the case of judging by IoU, the proposed

test can reflect the direction of misalignment in the

judgment criteria by using the specification written in

BBSL. Therefore, as in the red vehicle in Figure 10,

even if the degree of misalignment of the inferred re-

sult is large, it can be judged to be True on the spec-

ification basis. Conversely, even when the degree of

misalignment of the inferred result is small, as in the

case of the black vehicle in Figure 13, it can be deter-

mined to be false on the specification basis. This is an

important feature of the proposed test.

Figure 13: Example of a test case corresponding to 5© on
Figure 8.

Next, we will discuss the test case classified as 6©,

in other words, an environment where the expected

value is Stop in the specification, and the proposed

test determines F and IoU0.6 to be T. The vehicle sur-

rounded by the red bounding box on the upper image

in Figure 14 is the corresponding test case, and the

bounding box of the detection result is shown on the

lower image. Since this vehicle is close to the own ve-

hicle, the expected value is Stop based on the specifi-

cation of Listing 1. The bounding box in the inferred

result is determined to be T with IoU0.6 because it is

detected with almost no deviation. However, since the

subtle misalignment of the distance between vehicles

crosses the border of the stop condition in the speci-

fication, it is a defect based on the specification that

reduces the safety of the automatic driving system,

and is judged as F in the proposed test, which is rea-

sonable. Thus, the proposed test strictly determines T

or F for test cases around the boundary of case condi-

tion described in the specification. Since the bound-

ary of case condition on the specification is a part that

should be functionally tested especially carefully, it is

an important feature of the proposed test that this part

is rigorously tested.

Next, we will discuss the test case classified as 7©,

in other words, an environment where the expected

value is Not Stop in the specification, and where the

proposed test and IoU0.6 are both judged as F. The red

vehicle partially hidden by a building in the image in

Figure 15 is a relevant test case. This vehicle has a

Figure 14: Example of a test case corresponding to 6© on
Figure 8.

sufficient distance from the vehicle, so the expected

value is Not stop based on the specification of List-

ing 1. Since the object detection system under test

cannot recognize this red vehicle at all and there is

no overlap with the inferred result of the white vehi-

cle before it, IoU is 0 and IoU0.6 is determined to be

F. This is because Listing 1 is sufficiently far from

the vehicle. This is an example where the inference

result does not satisfy the conditions of the precon-

dition block of Listing 1, while the ground truth data

satisfy Not stop.

Figure 15: Example of a test case corresponding to 7© on
Figure 8.

Finally, we will discuss the test case classified as
8©, in other words, Figure 16, which is an environ-

ment where the expected value is Stop in the specifi-

cation, and where both the proposed test and IoU0.6

determine the value to be F. The vehicle on the far left

in Figure 16 is the relevant test case, and since this

vehicle is very close to its own vehicle, it is an ex-

pected value Stop based on the specification of List-

ing 1. And since the object detection system under

test does not recognize this vehicle at all, IoU is 0 and

IoU0.6 is determined to be F. This is an example of

a situation in which Listing 1 specification says Stop

for ground truth data, but the car does not exist as a

inferred result, and the precondition block condition

of Lisitng 1 specification is no longer satisfied.

The examples shown in Figures 15 and 16 are

both examples of cases where the inferred results fall

outside scope of the specification. In the first exam-

ple, the white vehicle before the vehicle is correctly

recognized and judged to have a sufficient distance,
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so there is no defect, and it is reasonable to judge the

car to be T in the proposed test. However, in the sec-

ond example, the system is not able to detect a vihicle

at a position where it should stop due to a short dis-

tance between own vehicle and the vehicle, and this

is a defect that reduces the safety of ADS. Thus, there

are cases in which the inferred result is outside the

scope of the specification even if the image is sub-

ject to the specification and the expected value can

be defined, and it was not possible to clarify how to

give aHEREHEREHEREaccurate judgment to these

cases. Therefore, the proposed test gives priority to

safety and defines both cases to be judged as F.

Figure 16: Example of a test case corresponding to 8© on
Figure 8.

Based on the above discussion, the proposed test

returns a valid decision result as a test of safety and

reliability based on the specification. This is clearly

different from the test method used to evaluate the

performance of object detection systems such as IoU.

Furthermore, it is an important test when incorporat-

ing an object detection system into a large piece of

software that requires high reliability and high safety,

such as an ADS.

7 CONCLUSIONS

By using the proposed test method, the object detec-

tion system of an ADS can be tested based on the

specifications. Since the test is based on the degree

to which the object detection system under test meets

the specification when it is incorporated into an ADS

with the relevant specification, the test is able to detect

cases of impair safety or reliability defects that are not

detected by conventional testing methods. For these

reasons, our test is an important and innovative test

for incorporating object detection systems into com-

plex and safety critical software such as ADS.

Finally, we show three future works. The first is to

formally verify specifications written in BBSL on the-

orem proving. Since BBSL has not yet been formal-

ized in a theorem proving system, and no parser has

been prepared, this study was programmed in python

so that the implementation would be equivalent to the

specification used in the experiments.This work is im-

portant for testing in larger, more realistic environ-

ments and will contribute to the development of real-

time monitoring tools for object detection systems.

The second is to extend specification-based testing

with more complex ADS specifications described in

BBSL.The tests experimented with in our study used

only a simple specification for the relationship be-

tween a single object in the image and the own vihi-

cle. However, the description capability of BBSL dis-

cussed in this paper is only part of the picture, and in

practice it can describe the positional relationships of

multiple objects and objects of complex shapes. We

think that testing extensions to handle these specifica-

tions will contribute to the development of even more

secure ADS. The third is to propose and evaluate cov-

erage that correlates to the quality of the specification-

based tests proposed in our study. It is not known how

many and what kind of test cases are needed to suf-

ficiently test the specification-based test proposed in

our study. To increase the utility of this test, we be-

lieve it is necessary to propose validity index for test,

for example, coverage on the position on the image

and coverage on the conditions of the specification

written in BBSL.
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