
Leveraging Transformer and Graph Neural Networks for Variable
Misuse Detection

Vitaly Romanov, Gcinizwe Dlamini a, Aidar Valeev and Vladimir Ivanov b

Faculty of Computer Science and Engineering, Innopolis University, Innopolis, Russia

Keywords: Graph Neural Network, CodeBERT, Variable Misuse Detection.

Abstract: Understanding source code is a central part of finding and fixing software defects in software development.
In many cases software defects caused by an incorrect usage of variables in program code. Over the years
researchers have developed data-driven approaches to detect variable misuse. Most of modern existing ap-
proaches are based on the transformer architecture, trained on millions of buggy and correct code snippets to
learn the task of variable detection. In this paper, we evaluate an alternative, a graph neural network (GNN) ar-
chitectures, for variable misuse detection. Popular benchmark dataset, which is a collection functions written
in Python programming language, is used to train the models presented in this paper. We compare the GNN
models with the transformer-based model called CodeBERT.

1 INTRODUCTION

In the context of this work, to find misused vari-
ables in source code is to detect incorrect occurrences
of variables. Detecting such misused variables can
prevent bugs and vulnerabilities in programs, which
are difficult to recognize, because typically misused
variables do not lead to compiling errors. Statis-
tical analysis and machine learning approaches are
increasingly used, including both traditional natural
language processing approaches (Vasic et al., 2019)
and approaches that use graph-based representation of
source code (Allamanis et al., 2017). In general, the
essence of the problem lies in the detection of mis-
used variables, as well as the recommendation of the
correct candidate, which might be one of the variables
already present in the body of a function.

In this paper, we propose and evaluate a graph
neural network (GNN) architecture for the problem of
variable misuse detection. The problem includes two
subtasks: localization of an incorrectly used variable
and its repair by identifying a correct variable in the
scope. When source code is represented as a graph,
both subtasks can be formulated as node classification
problems.

Recently, vector representations for source code
elements were trained using convolutional networks

a https://orcid.org/0000-0002-4578-5011
b https://orcid.org/0000-0003-3289-8188

on graphs (GCNs). One of the primary structures used
for this is abstract syntax tree. To build a program
graph, in addition to the syntax tree, external infor-
mation can be used. For example, the place in the
program where the last use of the variable occurred.

Despite the conceptual advantage of representing
source code as a graph, existing methods for training
machine learning models on graphs have few disad-
vantages. Most existing models are based on the mes-
sage passing mechanism. As a consequence, a large
amount of message passing may be required to model
links between far-flung nodes in a graph. In (Hel-
lendoorn et al., 2019), it is proposed to use a hybrid
approach, which simultaneously uses the representa-
tion of the source code as a sequence and as a graph.
This approach enables using the strengths of various
neuro-architectures in a single model.

The goal of this paper is to explore the capabili-
ties of Graph Neural Networks for solving the prob-
lem of variable misuse detection. We compare per-
formance of different GNN architectures and identify
challenges that emerge when using GNNs for source
code analysis. Specifically, we observed that the com-
plexity of the input graph negatively affect the quality
of variable misuse detection.

In our tests of GNN models on the task of vari-
able misuse detection, we observed that pre-trained
models such as CodeBERT achieve far better perfor-
mance than GNN models trained from scratch. How-
ever, GNN models used in our experiments use far

Romanov, V., Dlamini, G., Valeev, A. and Ivanov, V.
Leveraging Transformer and Graph Neural Networks for Variable Misuse Detection.
DOI: 10.5220/0011997300003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 727-733
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

727



fewer parameters, which make the conclusion about
the results more problematic.

The structure of this paper is as follows: Section
2 outlines the related work together with background
on graph neural networks and variable misuse. In
Section 3, the proposed model is presented in detail,
while Section 4 presents the obtained results followed
by a discussion. The paper is concluded in Section 5
with possible future directions.

2 BACKGROUND

In this section, we present a background on the meth-
ods used in this paper.

2.1 Graph Neural Network

A Graph Neural Network (GNN) is a machine learn-
ing model specially designed to learn and extract
knowledge from graph-structured data (Gori et al.,
2005). From the graph theory, a graph G = (V,E)
is made of nodes V = v1, . . . ,vn and set of edges
E = E1, . . . ,Ek connecting the nodes. The general
idea behind GNNs is representing each node in a
graph with a vector, whereby the vector represents the
node’s neighbors and the relationship between the in-
termediate nodes.

Over the years, there have been many variations
in the implementations of graph-structured format for
training GNNs. One of the most popular realizations
of GNNs emerged from quantum chemistry presented
by Gilmer et al. (Gilmer et al., 2017) called the
message-passing technique. In the message-passing
technique, the state of a node (vector representation)
is computed by aggregating the signals for the neigh-
boring nodes. In each iteration a node v representation
as :

s(i+1)
v = φ

(
{s(i)u }u∈N(v)

)
(1)

where N(v) is the set of all the neighbors that are
connected to v, φ(.) is a non-linear function that per-
forms the aggregation of information, s(i)v denotes the
state of node v at step i.

A relational graph convolutional network
(RGCN), has been used in recent papers (Liu et al.,
2021) and (Ling et al., 2021). Initially, all nodes
are initialized using vector representations of nodes.
Then several iterations of message transmission are
performed. Aggregation of messages is performed af-
ter each iteration by averaging vector representations
received from neighbors.

2.2 Transformer Architecture

Transformer (Vaswani et al., 2017) has proved its ef-
ficiency in many fields, including Natural Language
Processing and Computer Vision. Most pre-trained
transformer follow the Encoder-Decoder architecture.
A single encoder layer consists of two blocks: a self-
attention block and a feed-forward network. Multi-
Head Dot-product Self-Attention block is defined as:

Sel f Attention(X) = So f tmax
(

QKT
√

dk

)
V (2)

where Q, K, and V are linear projections of X , dk
is the dimensionality of K. A single decoder layer
is similar but extended with an attention-to-encoder
block, which has encoder outputs as V in the self-
attention formula.

A transformer is designed for sequence-to-
sequence tasks, therefore BERT (Devlin et al., 2019)
appeared as a universal solution to many Natural Lan-
guage Processing tasks.

CodeBERT (Feng et al., 2020) is a pretrained
BERT model for programming and natural lan-
guages. CodeBERT was pretrained on the dataset
from GitHub repositories in six programming lan-
guages. This dataset consists of bimodal (2.1 million
samples) and unimodal (6.5 million samples), where
bimodal means pairs of functions and corresponding
summaries, while unimodal means solely functions.

Researchers over the years have proposed differ-
ent Transformer based approaches to detect variable
misuse. Vasic et al. (Vasic et al., 2019) in addition
to detecting if a variable misuse using LSTM cou-
pled with attention, proposed an approach that pin-
points the location of misuse and generates a repair.
The researchers used two datasets as benchmarks:
ETH-Py150 and MSR-VarMisuse (25 C# GitHub
projects). To validate the LSTM-based approach, the
researchers achieved an accuracy of 82.4% on vari-
able misuse, 71% on localization, and 65.7% on local-
ization+repair task. To further validate the proposed
approach, Vasic et al. (Vasic et al., 2019) evaluated
their model on realistic scenarios where they collected
a dataset from multiple software projects in an indus-
trial setting. The accuracy of the model on realistic
scenarios is 66.7%, 21.9% on localization and 15.8%
on localization+repair.

In the same spirit as Vasic et al. (Vasic et al.,
2019), (Chirkova, 2020) two years later proposed an
approach for generating dynamic embeddings aimed
at improving the performance of the recurrent neu-
ral network, in code completion and bug-fixing tasks.
The researchers focused their research on two popular
dynamically typed programming languages, namely
JavaScript and Python. The dataset used for training

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

728



and testing are Python150k (Raychev et al., 2016a)
and JavaScript150k (Raychev et al., 2016b)

3 METHODOLOGY

In this section, we present our methodology and
the implementation details. Figure 1 presents an
overview of our pipeline.

Figure 1: The Pipeline represents two alternative ways for
evaluating the performance: Transformer-based and GNN-
based.

3.1 Dataset Creation

The dataset used to train the variable misuse detection
model is based on the benchmark dataset prepared as
part of the CuBERT paper (Kanade et al., 2020). The
part of the dataset related to variable misuse localiza-
tion and repair is used. However, the data represen-
tation format is not suitable for converting the source
code into a graph, since the source code is given as a
list of CuBERT tokens. In order to adapt the dataset
for the current study, the following procedure is used.

The Variable-misuse classification part of the
dataset is used as the basis for the dataset, which does
not contain information about the location of the error.
Only information about whether an error is present in
a given function, as well as which variable names are
used incorrectly. In order to prepare the data suitable
for transformation into a graph, we exploit the fact
that the reference dataset contains the example of the
correct function and the example of the same func-
tion with the error. Thus, it is possible to reconstruct
in which line the incorrectly used variable is located.
The Variable-misuse classification part of the refer-
ence dataset processed in this way contains examples
of functions that can be unambiguously matched to
functions in the Variable-misuse localization and re-
pair part of the reference dataset. This fact allows
us to compare the results obtained on the dataset pre-
pared in this work with the results published for the
Variable-misuse localization and repair problem.

The transformation of source code into a graph is
performed as follows. The following requirements are
made to a graph representation of the source code:

1. the variables with the same name occurring in the
body of one function shall be interpreted as the
same variable;

2. the expressions defined in the body of if condi-
tional operator, for and while loops, try excep-
tion handling block shall be linked to the above-
mentioned operators (for example, an expression
in if operator block shall be linked to the node cor-
responding to this operator);

3. the order of expressions execution shall be re-
flected in the graph;

4. links with imported modules, called functions,
and inherited classes must be unambiguously re-
solved;

5. values of constants in the source code (numbers
and strings) must not be present in the graph;

6. function and variable names must be tokenized.

The first step is the extraction of global relation-
ships, which is done with Sourcetrail. During the
indexing process, Sourcetrail creates a database of
global relationships. Examples of such relationships
are relations to functions called in code, imported
modules, and inheritance relations. The gglobal =
(Nglobal ,Eglobal) graph represents the set of global
nodes and the relationships between them. The
Sourcetrail utility allows to extract dependencies even
when importing from third-party packages. As a re-
sult, information is collected for frequently used li-
braries about exactly how they are used. In addi-
tion, Sourcetrail stores the correspondence between
the source code and the nodes in the graph, which
allows later to use the combined representation of
source code as a sequence of tokens and as a graph
to solve the type classification problem.

Further, source code in the codebase is processed
at the individual file level. The ast module (Python
3.8) is used to extract the syntax tree of the program.
Next, a local source code graph glocal =(Nlocal ,Elocal)
is generated for an individual file. The step of com-
bining variable names transforms the syntax tree of
the program into a graph. Variables with the same
name inside the function body are combined into one
node. All references to the function name inside the
file are also represented by one node in the graph.
Then auxiliary edges are added. For expressions de-
fined in the body of the conditional if statement, for
and while loops, and the try exception handling block,
links are added to the statements mentioned above
(for example, for an expression in the if statement

Leveraging Transformer and Graph Neural Networks for Variable Misuse Detection

729



block, a link is added to the node corresponding to
this statement). Additional edges next and prev are
used to show the order of program execution in the
graph.

The last step of creating a local graph is the to-
kenization of names. In this step, nodes and edges
of subword type are added to the graph, which rep-
resents names tokens. The nodes representing tokens
are common to all files in the code base. Without to-
kenization, the number of unique names grows due to
neologisms as new code is added to the code base (Al-
lamanis et al., 2017). One of the most popular tools
for tokenization is sentencepiece (Kudo and Richard-
son, 2018). It is based on compression algorithms,
finds the most frequent substring in the code base, and
uses them as tokens.

At the last stage of file processing, the global
nodes are mapped in the code base. The edges of
global mention type are added to the local graph, link-
ing the nodes of the local graph with their correspond-
ing nodes of the global graph. These edges can be
represented by the graph

gglobal mention = (Nlocal ∪Nglobal ,Eglobal mention) (3)

The result of matching is graph :

g = glocal ∪gglobal ∪gglobal mention (4)

After that, the graph g for an individual file is
merged with the general graph G, which combines all
processed packets.

3.2 Graph and Transformer Models

For conducting experiments, two models of graph
neural networks were tested: (1) relational graph neu-
ral network (RGCN (Schlichtkrull et al., 2018)) and
(2) heterogeneous graph transformer (HGT (Hu et al.,
2020)). We use HGT for comparison for two reasons.
First, this model is newer than RGCN and showed
better performance on some tasks. Second, since
transformers often show superior performance, it is
only natural to consider a GNN model that is based
on the transformer architecture.

During experiments with function-level variable
misuse detection, we test the pre-trained CodeBERT
model from the transformer library.

GNNs, such as RGCN and HGT, work in the fol-
lowing way. At the initial stage, the nodes corre-
sponding to the source code tokens are initialized with
vector representations defined for these tokens. For
the remaining nodes of the graph, initialization is per-
formed using vector representations of node types.
Then several iterations of message transmission are
performed. Aggregation of messages is performed

after each iteration by averaging vector representa-
tions of neighboring nodes. In HGT, aggregation uses
transformer with self-attention. In RGCN, summation
is used as the aggregation function.

3.2.1 Variable Misuse Detection as Node
Classification

The detection of variable misuse can be performed at
a lower level of abstraction, whereby each variable in
a given method is classified as containing a misused
or not. To predict if a variable is misused in the con-
text of the given method (scope), it is important to
capture the context and, based on the context, decide
whether a variable is misused or not. The main task
is to capture the context and assign a label to each of
the variables in the scope.

To detect whether a variable is misused or not, we
formulated the task as a node classification problem.
Each program is represented by a graph. The nodes
in a graph represent variables and the edges represent
their relationships. Each node that represents a vari-
able can be assigned a binary label based on whether
this variable was misused or not.

3.2.2 Function-Level Variable Misuse as
Subgraph Classification

The detection of variable misuse can be performed at
a higher level of abstraction, where methods are clas-
sified as containing a variable misuse or not. To pre-
dict whether a method contains a misused variable,
the method is represented as a subgraph, which is a
part of a program.

To represent the subgraph as an embedding for
variable misuse prediction, the message passing is
performed only among the subset nodes in the sub-
graph. The propagation of the subgraph information
and calculation of the vector representation of a func-
tion embedding is achieved by applying pooling after
the message passes between the nodes.

Pooling approaches are commonly used in con-
volutional neural networks when dealing with image
data. For graph-structured data, features from a set of
nodes of undefined size should be pooled into a vector
of fixed dimensionality. In our research, the following
variants of such functions were considered :

• Calculation of the vector representation of the
function by averaging the vector representations
of nodes (Average Pooling);

• Calculation of the vector representation of the
function by weighted averaging, weights for aver-
aging are calculated using the Attention Pooling
method (Muti-head attention pooling);

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

730



• Calculation of the vector representation of the
function by weighted averaging of the first k nodes
with the largest weights, the weights for averaging
are calculated using the attention method (U-Net
Pooling (Gao and Ji, 2019)).

3.3 Models Training and Evaluation

We train all GNN-based model which is a black box
analysis learning task and learn the relationship of the
variable in a given scope to predict if there exists a
variable misuse. The implementation is in python us-
ing PyTorch deep learning framework. For the pur-
pose of conducting experiments and searching for
optimal parameters, we varied the three parameters
(batch size, node embedding size, and number of lay-
ers in the neural network).

To evaluate the trained models, we used the accu-
racy metric. To observe and analyze the model per-
formance we used different configurations whereby
for GNN different pooling methods, number of lay-
ers, size of the training dataset, and the dimension of
vector representation we used.

4 RESULTS AND DISCUSSIONS

In this section, we present the achieved experimental
results and the discussion of the results.

We conducted pilot experiments on the 10% sam-
ple of the full dataset. Originally we focused more
on the node-level variable misuse detection. The re-
sults for there experiments are shown in Table 1. Ex-
periments on the full dataset included only variable
misuse detection on the function level because these
results were easily comparable with similar metrics
produced using CodeBERT classifier. The results for
these experiments are shown in Table 2. In both ex-
periments, the reported accuracy scores are the best
accuracy on testing (as Test best) and training (Train
best) set during the model training.

The results of the first series of experiments us-
ing the 10% portion of the dataset, trained on the task
of node-level variable misuse detection, show that the
model does not experience significant overfit. The ac-
curacy of misuse detection increases slightly with the
increase of GNN dimensionality. The number of lay-
ers does not affect the results.

The method level variable misuse detection was
conducted on the full dataset. In this set of experi-
ments, we tested several GNN models: Hierarchical
Graph Transformer (HGT), Relational Graph Convo-
lutional Network (RGCN) (Schlichtkrull et al., 2018),
and CodeBERT. CodeBERT is a pre-trained model,

Table 1: Variable misuse detection at the node level with
GNN and 10% of dataset. The base rate of misused vari-
ables is 25%.

Dimension of vector
representations

Number of
layers

Accuracy
Test best Train best

100 5 0.836 0.87
100 3 0.83 0.88
100 5 0.83 0.84
100 3 0.837 0.88
50 5 0.836 0.85
50 3 0.82 0.82
50 5 0.82 0.84
50 3 0.82 0.86
30 5 0.82 0.84
30 3 0.82 0.85
30 5 0.81 0.82
30 3 0.82 0.84

that was trained using a large collection of source
code. GNN models are trained from scratch. Among
GNN models, RGCN achieves the best performance
when used together with attention pooling. Code-
BERT does not perform well before fine-tuning. After
fine-tuning, CodeBERT achieves far smaller error rate
than any of GNN models.

From Table 2 the comparison of different models
with different architectures is presented. The fine-
tuned CodeBERT model outperforms all the other
models with a significant margin. This could be be-
cause of the amount of information embedded in the
vector size of 768 compared to the one of GNN (max
300). Incorporating attention pooling improved the
performance of RGCN model since with 3 layers it
achieved better results, this could be explained by
the benefits and power that comes with the attention
mechanism. On the other hand, U-net pooling which
has the mechanism slightly similar to attention and
designed for graph structured data seems to fall be-
hind attention pooling.

Based on our conducted experiments, we are in-
clined to conclude that the incorporation of transform-
ers (i.e. as pooling mechanism) is quite promising
in the task of variable misuse detection. There is
some still more room for improvements in the use of
GNNs for tasks such as variable misuse. When as-
sessing the quality of classification models of incor-
rectly used variables, it was revealed that graph neural
networks cannot solve the task when using the source
code graph format and graph neural network architec-
tures specified in this paper.

5 CONCLUSION

In this paper, we present an analysis of the challenges
faced by graph neural networks. For testing models

Leveraging Transformer and Graph Neural Networks for Variable Misuse Detection

731



Table 2: Models comparison in variable misuse detection task evaluated at the method level. The base rate of functions with
misuse is exactly 50%.

Model Dimension of vector
representations Number of layers Pooling Method Number of

training epochs
Accuracy

Final Test Test best
RGCN 100 3 Average Pooling 10 72.9 73.53
HGT 100 3 Average Pooling 10 66.12 66.44
HGT 300 5 Average Pooling 20 70.96 71.01
RGCN 300 5 Average Pooling 20 77.36 77.36
RGCN 300 5 U-net Pooling 20 76.83 76.83
RGCN 300 3 Attention Pooling 20 77.88 78.36
RGCN 300 3 U-Net Pooling 20 74.95 76
CodeBERT
with fine-tuning 768 8 - 20 95.97 95.97

CodeBERT
without fine-tuning 768 8 - 20 58.55 58.55

of graph neural networks, two variations of the prob-
lem of detecting misused variables are considered:
(1) classification of individual variables and (2) clas-
sification of functions (or methods) for the presence
of incorrect variables in their bodies. The classifica-
tion accuracy of functions for the presence of misused
variables was measured. Graph neural network mod-
els achieve significantly lower classification accuracy
than the CodeBERT model. For the future research,
we plan investigating the training process of graph
neural networks in order to improve the performance
by focusing on more recent graph format mainly HGT
with more optimized training parameters. In addition
to tuning HGT architecture for better performance in
variable misuse detection, we are aimed at minimiz-
ing the problem of input graph complexity for HGT
model.

ACKNOWLEDGEMENTS

The study was funded by a Russian Science Foun-
dation grant number 22-21-00493 https://rscf.ru/en/
project/22-21-00493/.

REFERENCES

Allamanis, M., Brockschmidt, M., and Khademi, M.
(2017). Learning to represent programs with graphs.
arXiv preprint arXiv:1711.00740.

Chirkova, N. (2020). On the embeddings of variables in
recurrent neural networks for source code. arXiv
preprint arXiv:2010.12693.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019).
BERT: pre-training of deep bidirectional transformers
for language understanding. In Burstein, J., Doran,
C., and Solorio, T., editors, Proceedings of the 2019
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis,

MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 4171–4186. Association for Computa-
tional Linguistics.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., and Zhou,
M. (2020). Codebert: A pre-trained model for pro-
gramming and natural languages. In Cohn, T., He,
Y., and Liu, Y., editors, Findings of the Association
for Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536–1547. Association for
Computational Linguistics.

Gao, H. and Ji, S. (2019). Graph u-nets. In international
conference on machine learning, pages 2083–2092.
PMLR.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. (2017). Neural message passing for quan-
tum chemistry. In International conference on ma-
chine learning, pages 1263–1272. PMLR.

Gori, M., Monfardini, G., and Scarselli, F. (2005). A new
model for learning in graph domains. In Proceedings.
2005 IEEE international joint conference on neural
networks, volume 2, pages 729–734.

Hellendoorn, V. J., Sutton, C., Singh, R., Maniatis, P., and
Bieber, D. (2019). Global relational models of source
code. In International conference on learning repre-
sentations.

Hu, Z., Dong, Y., Wang, K., and Sun, Y. (2020). Heteroge-
neous graph transformer. In Proceedings of the web
conference 2020, pages 2704–2710.

Kanade, A., Maniatis, P., Balakrishnan, G., and Shi, K.
(2020). Learning and evaluating contextual embed-
ding of source code. In International Conference on
Machine Learning, pages 5110–5121. PMLR.

Kudo, T. and Richardson, J. (2018). Sentencepiece: A sim-
ple and language independent subword tokenizer and
detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226.

Ling, X., Wu, L., Wang, S., Pan, G., Ma, T., Xu, F.,
Liu, A. X., Wu, C., and Ji, S. (2021). Deep graph
matching and searching for semantic code retrieval.
ACM Transactions on Knowledge Discovery from
Data (TKDD), 15(5):1–21.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

732



Liu, L., Nguyen, H., Karypis, G., and Sengamedu, S.
(2021). Universal representation for code. In Ad-
vances in Knowledge Discovery and Data Mining:
25th Pacific-Asia Conference, PAKDD 2021, Virtual
Event, May 11–14, 2021, Proceedings, Part III, pages
16–28. Springer.

Raychev, V., Bielik, P., and Vechev, M. (2016a). Probabilis-
tic model for code with decision trees. ACM SIGPLAN
Notices, 51(10):731–747.

Raychev, V., Bielik, P., Vechev, M., and Krause, A. (2016b).
Learning programs from noisy data. ACM Sigplan No-
tices, 51(1):761–774.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg,
R., Titov, I., and Welling, M. (2018). Modeling rela-
tional data with graph convolutional networks. In The
Semantic Web: 15th International Conference, ESWC
2018, Heraklion, Crete, Greece, June 3–7, 2018, Pro-
ceedings 15, pages 593–607. Springer.

Vasic, M., Kanade, A., Maniatis, P., Bieber, D., and
Singh, R. (2019). Neural program repair by jointly
learning to localize and repair. arXiv preprint
arXiv:1904.01720.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. In Guyon, I., von
Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R.,
Vishwanathan, S. V. N., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 5998–6008.

Leveraging Transformer and Graph Neural Networks for Variable Misuse Detection

733


