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Abstract:  This research concludes an overall summary of the publications so far on the applied Machine Learning (ML) 
techniques in different phases of Software Development Life Cycle (SDLC) that includes Requirement 
Analysis, Design, Implementation, Testing, and Maintenance. We have performed a systematic review of the 
research studies published from 2015-2023 and revealed that Software Requirements Analysis phase has the 
least number of papers published; in contrast, Software Testing is the phase with the greatest number of papers 
published.  

1 INTRODUCTION  

The dominant industrial sector is software 
engineering (SE). Therefore, automating SE is the 
most important task of the present. Artificial 
intelligence (AI) has the potential to strengthen SE in 
that way (Bhagyashree et al.,2015). To ensure 
delivery of the anticipated level of service, software 
systems must be able to adapt to changing 
circumstances (Elhabbash et al., 2019). Therefore, 
software systems need to autonomously adapt to 
changing environments to guarantee expected quality 
of service (Wan et al, 2019).   

The demand for increased automation and 
intelligence has sparked new developments in ML and 
AI. Researchers are using machine learning (ML) and 
AI more frequently to solve defects and deficiencies 
in software systems and the software development life 
cycle (SDLC). (Khomh et al., 2018). ML is a subfield 
of AI that raises software system performance 
standards by using data or prior development 
expertise. (Zhang et al., 2017, Zhu et al., 2018).   

With the use of ML, computer systems may 
imitate some aspects of human intelligence while 
using data, examples, and experience without human 
intervention. Computer systems may learn rules from 
data with the aid of ML algorithms (England, 2018). 
These technologies will be improved such that they 
serve as the main building blocks of several software-
intensive systems. The Information Technology 
sector is very interested in incorporating AI 
capabilities into software and services as a result of 

recent developments in ML. Systems that make use of 
ML technology have unique traits that set them apart 
from other software systems. The effectiveness of the 
training datasets used to develop the prediction 
models has a significant impact on the functionalities 
of ML-based systems. The learning outcomes and, 
consequently, the functional behavior of programs is 
significantly impacted by changing the training 
dataset (Bird et al., 2017, Nakajima, 2018).  

 By assisting computer systems in learning from 
experience how to carry out a certain activity 
autonomously, machine learning is used to constantly 
enhance system performance and efficiency on a 
given task. The SDLC heavily utilizes ML, which has 
been used in other fields (Alloghani et al., 2020, 
Shafiq et al., 2021, Abubakar et al., 2020). ML has 
emerged as the preferred method for developing 
useful software systems in a variety of settings, 
including computer vision, speech recognition, 
natural language processing, robot control, health 
systems, banking, defense, e-commerce, and many 
more (Panichella and Ruiz, 2020, Bhatore et al., 
2021).  

In several areas, such as behavior extraction, 
testing, and problem repair, ML approaches are being 
utilized to speed up the SDLC (Meinke and 
Bennaceur, 2018, DE-Arteaga et al., 2018). As a 
result, technological invention has adopted a new 
paradigm. The development team must devote a lot of 
time throughout the SDLC to debating how the 
system must function to determine which features 
should be prioritized and which ones should be 
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dropped. This requirement analysis must be followed 
by the phases of design, implementation, testing, and 
maintenance (Cetiner and Sahingoz, 2018).    

Software developers may use ML algorithms to 
speed up the decision-making process based on prior 
projects to provide data-driven business decisions that 
eventually aid in lowering development risks and 
expenses. For software firms, this is priceless. It might 
be difficult to create an exact budget and plan for 
developing software systems since projects can run 
beyond budget and deadlines. As a result, accurate 
effort estimation is essential for software project 
planning. The development team may use ML 
approaches to examine data from previous projects to 
produce a more accurate budget estimate and delivery 
time frame (Yurdakurbann and Erdogan, 2018).    

Developers may automatically maintain the code 
and evaluate it using ML approaches. This leads to the 
creation of Software Systems with a high level of 
quality since maintenance is one of the most important 
but costly parts of the SDLC. Rapid prototyping, 
intelligent programming assistants, automatic 
analytics and error handling, automatic code 
rewriting, exact estimations, and strategic decision-
making might indeed benefit from ML models in 
traditional SDLC  (Khomh et al., 2018, Abubakar et 
al., 2020). Even though ML datasets for SDLC 
research are frequently poorly managed, documented, 
and lack defined generation methods (Hutchinson et 
al., 2021) The use of ML methods has several 
benefits.   

Due to the importance of ML approaches in the 
SDLC and their benefits, we have produced a 
comprehensive analysis to examine how data 
analytics and ML algorithms affect each stage of the 
SDLC. We were looking for phases in which ML 
models were commonly used. Our objective was to 
determine why ML techniques in some phases have 
received more attention than others. We also sought 
to see whether ML methods may be used in less well-
known stages.     

We gathered and updated our previous database of 
over 300 journal articles and conference papers from 
the last seven years that were obtained from the ACM, 
IEEE, and Springer digital libraries to prepare our 
review. In order to illustrate graphically and 
summarize current research trends, we generated 
figures. Our study reveals notable variations between 
the SLDC and software engineering's application of 
ML methods (e.g., Requirements Analysis, 
Architecture Design, Implementation, Testing and 
Maintenance). The findings for each phase of the 
SDLC are discussed after a review of similar work 
and our approach. We then wrap up by summarizing 

our findings and making recommendations for more 
study.  

2 RELATED WORK  

This article extents our previous reviews on recent 
studies on the use of ML in various SDLC phases and 
SE broadly. Several earlier academics have carried 
out practical investigations of SE for data science due 
to the prominence of integrating ML methods into 
SDLC. In 2022, We studied 300 publications with the 
focus on eight most algorithms used in SDLC (Navaei 
and Tabrizi, 2022). One research compared how ML 
systems and non-ML systems developed in diverse SE 
domains. As none of the SE stages have an established 
set of tools and methodologies, that study employed 
interviews to identify pain points from a general 
tooling position to learn about the difficulties and 
obstacles of deploying visual analytic tools (Kim et 
al., 2018, Giray, 2021). Another research 
characterized the roles and practices of professionals 
in data science (Wan et al, 2019).  

Even when the learning technique is used 
correctly, faulty training data might occasionally 
cause the ML model to be faulty. For these systems, 
conventional testing methods are insufficient. 
Software engineers must thus do research and provide 
cutting-edge methods of reporting these difficulties 
(Khomh et al., 2018). Software engineers 
concentrated on the difficulty of testing and ensuring 
the correctness of systems created using ML and AI 
models. 

Applying ML algorithms to each stage of the 
SDLC has been the subject of several recent literature 
studies (Talele and Phalnikar, 2021, Lima et al.,2020, 
Sobhy et al., 2021, Syaeful et al.,2017). Although 
their review was conducted for the period of 1991 to 
2021, we found a paper that gives a larger context and 
examines the link of ML approaches and its tools 
within SDLC phases, which is somewhat similar to 
our work (Shafiq et al., 2021). To analyze the 
influence of ML throughout the whole SDLC in the 
most recent papers, our work, however, employs a 
systematic review technique (2015-2023) compared 
to the majority of publications' single-phase emphasis. 
The discovery of the eight most common ML 
algorithms throughout the whole SDLC is another 
contribution made by our study. To determine their 
total popularity based on each stage of their life cycle, 
we analyzed those algorithms individually in each 
phase of the cycle. 
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3 METHODOLOGY  

Based on interests shown in our recent publication, we 
decided to expand our research to concentrate on 
works published in (2015-2022). We ultimately made 
the decision to update our evaluation on the journal 
articles and conference papers published during the 
past seven years. According to the number of 
publications and refer to our latest research, we 
discovered that the use of ML in SDLC has 
significantly increased year by year even though it had 
a slow start in the first half of last decade. This is due 
recent developments in ML and their significant 
impact on SDLS since ML techniques can be used to 
modify and update software systems.  

We searched the same databses: ACM, IEEE, and 
Springer using various keywords and queries to find 
our findings. Some inquiries returned the results we 
were looking for in IEEE and Springer, but we had to 
change our keywords and queries to get the results we 
wanted from ACM. Additionally, we discovered that 
utilizing verbatim searches like those used in the other 
two libraries would cause ACM to return many 
articles that were unrelated. As a result, when 
searching the ACM database, we had to add extra 
restrictions. To guarantee that our query returned 
results that were pertinent, for example, we had to add 
the phrase “Artificial Intelligence”. 

In several cases, our inquiries brought up the same 
or improved work in many publications. Because each 
publication focused on a different subject, we 
classified each of those cases as a new publication. 
Additionally, there were instances in which one ML 
approach was used in numerous phases; we counted 
those individually for each phase. We extend our 
research to study the eight of the most popular ML 
algorithms in each phase to get a more concentrated 
observation as a result of the latter situation.  

4 CURRENT APPLICATIONS OF 
MACHINE LEARNING TO 
SDLC  

ML plays a significant role throughout the SDLC. In 
this section we discuss the impact of applying ML in 
each phase of the SDLC:  

• Software Requirements Analysis  
• Software Architecture Design  
• Software Implementation  
• Software Testing  
• Software Maintenance  

We provide an overview of each phase of the SDLC 
and discuss current research trends in ML for each 
phase.  

4.1 Software Requirements Analysis 
and Machine Learning  

Clarifying the specifications required for a software 
system to satisfy the business requirements is the goal 
of software requirements analysis, also known as 
requirements engineering. Clear software 
requirements (SR) that describe the needs and 
expectations of the product in great details are a 
crucial component of high-quality software 
development. (Navarro-Almanza et al., 2017).  

There are two primary phases of requirements 
engineering (RE), which is a crucial part of the whole 
software development process. Prioritization and 
Identification of Requirements (Talele and Phalnikar, 
2021). To what extent a software system succeeds or 
fails depends on requirements analysis. Requirements 
classification is another task that software engineers 
must complete during the analysis stage. Software 
Engineers were able to automate the process of 
classifying the requirements into functional 
requirements after employing ML methods (FRs) and 
Non-Functional Requirements (NFR) (Quba et al., 
2021). RE is also one of the key factors in Software 
Quality (Panichella and Ruiz, 2020).  

Requirement analysis in the SDLC refers to the 
processes of accurate requirement elicitation, 
effective requirement inspection, and transparent 
requirement documentation. Requirement 
Engineering becomes a hard problem that drives up 
development costs as software systems get more 
complicated and large-scale. Engineers' interest in 
automated requirement analysis approaches has 
increased as a result, and these techniques may help 
to analyze SR more quickly and accurately, which 
might save development costs. Engineers must choose 
which set of needs to evaluate first when doing 
requirement prioritization, and this decision is made 
using machine learning approaches. The classification 
and prioritization of the needs using ML algorithms is 
likely to be effective, and so is the method of 
evaluation (Talele and Phalnikar, 2021).  

Researchers have shown a lot of interest in 
applying Supervised ML algorithms including 
Support Vector Machine, Naïve Bayes, Decision 
Tree, K-Nearest Neighbor and Random Forest 
(Gramajo et al., 2020). 

RE plays a key role in the success of a project. 
Based on previous research that was conducted on 350 
companies to understand project failure rates, 16.2% 
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projects were completed successfully, 52.7% faced 
challenges and were partially completed. About 31% 
of the projects were never completed due to poor RE 
(Haleem et al., 2021).  

There aren't many public ML datasets accessible 
for requirements analysis, which is one of their key 
drawbacks. The PROMISE repository, one of the 
most popular RE databases, is imbalanced and has 
only 625 categorized requirements stated in plain 
language (Iqbal et al., 2018). Despite limitations of 
current ML algorithms in recognizing and prioritizing 
requirements, including scalability, dependency, and 
complexity (Talele and Phalnikar, 2021), The crucial 
function that these methods serve in assisting 
developers to document their software more 
accurately is what motivates academics to continue 
showing interest in using ML algorithms in SR 
categorization. As a result, the software system is 
simpler to use and comprehend (Quba et al., 2021).  

4.2 Software Architecture Design and 
Machine Learning  

The established requirements from the Analysis phase 
are transformed into an implementable form during 
the Architecture Design phase, which is sometimes 
referred to as the preliminary or general design stage. 
Software quality is significantly influenced by 
software design. Anti-patterns, high dependence 
design, and enormous source code files are a few 
examples of poor design. These complicate SE 
responsibilities by increasing the difficulties and costs 
of addressing software flaws (Zhang et al., 2017, 
McIntosh and Kamei 2017).   

To satisfy all system requirements, software 
design must be transparent and easy to comprehend. 
Many businesses and scholars are interested in 
figuring out how the link between Software Design 
and Maintenance works since later phases of the 
SDLC heavily rely on the Architecture Design phase. 
Researchers have been attempting to introduce 
several ML approaches for effective prediction of the 
influence of software design on system 
maintainability (Elmidaoui et al., 2020). In this stage, 
a variety of ML approaches are being used to 
problems like anticipating the user interface (UI) 
design of a mobile application, anticipating the 
architecture of safety-critical systems, detecting anti-
patterns in web services, etc. Design patterns, for 
instance, might increase complexity. As a result, 
maintenance and evolution activities rise. By utilizing 
ML for design pattern recognition, the complexity of 
the system is reduced, and the architecture and design 

of the program are made clearer (Mhawish and Gupta, 
2019, Dwivedi et al., 2016, Dwivedi et al., 2016). 

Since detecting Code Anomalies requires 
refactoring approach, Support Vector Machine is the 
most effective ML algorithm used for this matter 
(Gramajo et al., 2020). Data mining from design 
patterns, which is based on supervised learning and 
software metrics, is another of the most well-liked 
study areas in the design phase. By eliminating as 
many erroneous matches as feasible, ML approaches 
are utilized to improve pattern mining. This approach 
mostly utilizes ML algorithms as Layer Recurrent 
Neural Network, Random Forest, Support Vector 
Machine, and Boost (Navarro-Almanza et al., 2017, 
Giray, 2021). 

4.3 Software Implementation and 
Machine Learning  

The Implementation phase involves construction of 
the actual software system. Coding the system takes 
place in this phase and when it is complete, the result 
will be evaluated against the elicited requirements 
from the Analysis phase. Software defects are 
prevalent in software development and might cause 
several problems for users and developers alike. As a 
result, research has examined distinct techniques to 
diminish the impacts of these defects in the source 
code. One of the most prominent algorithms focuses 
on defect prediction using ML methods. This helps 
developers in managing these defects before they are 
commenced in the production (Esteves et al., 2020).  

One of the prominent study topics for this stage is 
code refactoring. Refactoring modifies the system in 
a way that doesn't affect the code's external behavior 
but enhances its internal organization. Software with 
code smells is a hint that the SDLC's design and 
coding standards have not been followed. If code 
smells are not addressed, this problem might grow 
since it will take exponentially more work to fix the 
problems (Aniche et al., 2020).  

The best method for forecasting code refactoring 
is known to be supervised machine learning 
techniques, which can aid developers in making 
quicker and more informed judgments on what to 
alter. Support Vector Machines, Naive Bayes, 
Decision Trees, Random Forest, Logistic Regression, 
and Neural Networks were among the ML methods 
studied. Using Apache, F-Droid, and GitHub datasets, 
Random Forest has emerged as the best accurate 
method for forecasting software refactoring (Sagar et 
al., 2021).   
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4.4 Software Testing and Machine 
Learning  

Engineers must identify a system's flaws and 
problems to evaluate and validate software systems. 
Thus, one of the most crucial stages in the SDLC is 
software testing. Software testing's goal is to identify 
flaws, especially during automated testing (Nasrabadi 
and Parsa, 2021). There should be automated tests to 
find these mistakes prior to a system being deployed 
since errors, failures, and defects might occur due to 
frequent modifications to a system's codebase. 
Finding system flaws might result in improvements 
that save expenses by up to a third (Lima et al., 2020).    

Developers use testing to make sure a system 
behaves as intended. To ensure time effectiveness, 
effort, and money consumption, testing activities 
must be anticipated (Syaeful et al., 2017).  

As software systems increase in complexity, it 
becomes more difficult to detect faults (Li et al., 
2020). During the software testing process, we may 
gather a variety of data types, such as execution 
traces, coverage details for test cases, failure data, etc. 
When used to software testing, machine learning 
algorithms find patterns in data that frequently relate 
to the data generating process and are then utilized for 
decision-making. To convert unstructured test data 
into a set of abstract test scenarios, experts must 
contribute (Bhavsar et al., 2019).   

To give test output information, test cases are 
created. In Software Testing, decision trees or 
induction rules are frequently utilized, particularly for 
fault prediction. Compared to more advanced 
approaches like neural networks or support vector 
machines, models created by these techniques are 
easier to understand. For these datasets (the most 
popular Testing dataset is from NASA), Support 
Vector Machine and Random Forest offer the best 
prediction models for fault prediction (Bhavsar et al., 
2019, Zhu, 2020).   

Techniques that suggest unique interactions inside 
a system have a lot to offer when it comes to software 
testing. However, methods like random testing, 
fuzzing, and exploratory testing have the drawback of 
requiring software engineers to manually review the 
outputs of the tests to ensure they are right, which 
adds to their workload (Roper, 2019). For assessing 
software usability at the moment, testing methods and 
software reengineering are necessary and most 
important. (Banga et al., 2019, Herzig and Nagappan, 
2015).   

Due to the quantifiable nature of Software Testing, 
there are many datasets available. Likewise, the 

number of publications is also significantly higher 
compared to other phases.   

4.5 Software Maintenance and 
Machine Learning  

Software maintenance is the practice of continuing to 
alter and update a software system after it has been 
deployed to fix bugs. The SDLC's last phase is this 
one. In SE, software maintenance has grown to be a 
crucial component of software quality. Therefore, 
accurate and timely prediction of this feature is a vital 
prerequisite for effective management throughout the 
SDLC's final phase (Gupta and Chug, 2021).  

Software maintenance includes a system's ongoing 
optimization as well as repair and preservation. Four 
major categories make up this phase: preventative 
maintenance, corrective maintenance, adaptive 
maintenance, and perfective maintenance (Sulaiman, 
2005). Software Maintainability Prediction has been 
investigated using a broad range of ML approaches, 
including hybrid, ensemble, and meta-heuristic 
techniques (SMP) (Alsolai, 2018, Gupta and Chug, 
2021, Baskar and Chandrasekar, 2018). Yet 
researchers continue to seek improvement in this area. 

About 60 to 70 percent of the overall cost of the 
SDLC is occasionally devoted to maintenance (Gupta 
and Chug, 2021). Maintenance has grown more 
challenging as software systems have grown in 
complexity and scale. Because of this, maintaining 
software has become a significant problem for 
businesses. Software upkeep is closely related to 
budgetary implementation and project success (Jha et 
al., 2019).  

The most often employed ML method in software 
maintenance prediction models is fuzzy logic 
(Haleem et al.,2021). Other techniques include ML 
algorithms such as Soft Computing, Fuzzy Networks, 
Evolutionary Algorithm, Deep Learning and ID3 (Xin 
et al., 2018).    

5 RESULTS  

We include publications from 2015 to 2023 in this 
review.    

The figure below summarizes how many journal 
articles and conference papers are published in ACM, 
IEEE and Springer for the period of 2015 to 2023 that 
focus on ML techniques applied in each phase of 
SDLC.   

Table 1 lists the keywords we used to retrieve 
these publications and ultimately generate the figures 
to show the overall results. For some of the phases, we 
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had to modify our search queries as it was a quite 
challenge to find more related and accurate results. 
Whereas some phases like Testing, had a very large 
number of publications.   

Table 1: Searched Keywords for Paper Retrieval.  

Keywords (Searched Queries)  

Software engineering AND Machine learning  

Software Development Life Cycle AND Machine 
Learning  

Machine  Learning  AND  Software  System 
Requirements Analysis  

Machine Learning AND Software in Each Phase 

Impact of Machine Learning in Each Phase  

Software Requirements Analysis AND Each 
Algorithm  

Software Design Phase AND Each Algorithm  

Software Testing AND Each Algorithm  

Software Maintenance AND Each Algorithm  

As shown in Figure 1, Software Requirements 
Analysis has the least number of papers published in 
this topic; in contrast, Software Testing has the largest 
number of publications. The reason is partially 
because there are many datasets available for 
Software Testing due to its quantifiable nature as well 
as the ease of obtaining data in this phase.   

 
Figure 1: ML Applied in SDLC – Papers published from 
2015 to 2023. 

Hence it is much easier to utilize ML techniques 
in Software Testing than in Requirements Analysis.  

In Figure 2, we narrowed our findings by selecting 
eight ML algorithms in all phases of SDLC (Random 
Forest, Support Vector Machine, Naïve Bayes and 
Decision Trees, Logistic Regression, Reinforcement 
Learning, K Nearest Neighbor and Gradient 
Boosting). Ultimately, we analyzed all the relevant 
publications done in ACM, IEEE and Springer in the 
same timeframe to see which ML methodologies are 
the most popular in particular phases.   

 
Figure 2: SDLC Software Requirements Analysis - ML 
Applied in SDLC – Papers published from 2015 to 2023.  

Based on the results shown in Figure 2, Decision 
Trees are most popular algorithms among the other 
elected techniques. One reason is because Decision 
Trees are quick to create and help with eliminating 
dead ends. This decreases the probability of errors 
made in this phase that can affect subsequent phases 
as well. This technique can greatly simplify the SR 
gathering process and saves engineers significant time 
and budget resources. Another popular ML 
techniques is Reinforcement Learning which is used 
on understanding the relationships among software 
requirements by generating traceable links between 
high-level and low-level requirements (Shafiq et 
al.,2021, Rezaei and Tabrizi, 2021).   

In the process of SR, due to their exclusive 
characteristics, the appropriate data sets are extremely 
dimensional, sparse, and are mostly the outcome of 
ambiguous expressions and, consequently show 
problematic challenges for data processing techniques 
(Borges et al., 2021). there are many repositories with 
duplicate code, which constitutes data inconsistency 
(Allamanis, 2018). Hence, more work needs to be 
done on creating more diverse and appropriate 
datasets for this phase.  
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Figure 3: SDLC Software Architecture Design - ML 
Applied in SDLC – Papers published from 2015 to 2023.  

Support Vector Machine (SVM) is one of the most 
popular ML techniques used in SDLC. It is a 
supervised learning algorithm used for both 
classification and regression problems. This 
technique is very accurate and robust in detecting 
design anomalies such as code smells also known as 
Bad Smells, Design Flaws, Anti Patterns and Code 
Anomaly (Zhang et al., 2006).   

ML demands massive datasets to train on and 
these should be unbiased and have great quality which 
sometimes requires new data to be generated. We 
suggest applying ML algorithms more in Software 
architecture design as little work has been done and 
needs to be explored more (Borges et al., 2021).   

 
Figure 4: SDLC Phase Implementation - ML Applied in 
SDLC – Papers published from 2015 to 2023.  

Again, Support Vector Machine is most frequent 
algorithm used in the third phase of Software 
Development Life Cycle known as Software 
Implementation. This technique is very popular in 
Design and Development of software applications.  

 
Figure 5: SDLC Phase Testing- ML Applied in SDLC – 
Papers published from 2015 to 2023.  

As shown in Figure 5, both Random Forest and 
Support Vector Machine are popular techniques in 
Software Testing phase. However, SVM has slightly 
more publications. One reason for this is SVM is the 
better classifier to eliminate infeasible test cases 
saving time and costs in projects which is a huge 
achievement as testers spend more time and their 
resources on testing mobile and hybrid applications. 
ML helps testers to better understand user’s needs and 
respond faster to the everchanging expectations by 
improving automation testing, reduced UI based 
testing, assisting in API testing, and improving 
accuracy. Right after those two algorithms, Decision 
Trees and Reinforcement Learning play a significant 
role in this phase. 

 
Figure 6: SDLC Maintenance - ML Applied in SDLC – 
Papers published from 2015 to 2023.  

Data Scientists and Software Engineers have 
shown the most interest in applying Support Vector 
Machine in last phase of SDLC than other techniques. 
However, Decision Trees have high usage as well. 
Classification and refactoring approaches play a 
significant role when maintaining software systems. 
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Available datasets are not sufficient to give 
conclusive results which provide information 
regarding the input data of the system (Jha et al., 
2019) and more work need to be done to create new 
datasets to determine the accuracy of the precision and 
decreasing the complexity.   

6 CONCLUSIONS  

Machine Learning is becoming one of the most 
important technologies used in Software 
Development Life Cycle. ML approaches are being 
used for inadequately implied problem domains 
where little knowledge exists for humans to develop 
effective algorithms. ML has different types: 
Supervised Learning, Semi-Supervised Learning, 
Unsupervised Learning and Reinforcement Learning. 
Our study shows Support Vector Machine (SVM) is 
one of the most popular supervised ML algorithms in 
current SE research. It is being applied on all the 
phases of SDLC as it can be used for both 
classification and regression problems. While SVM is 
not considered the best performing algorithm in all 
cases, it remains among the most highly used ML 
methods. Reinforcement Learning is gaining a lot of 
interests in recent works and has a high impact in 
requirements analysis. It has been used in Software 
requirements analysis for understanding the 
relationships between requirements at different levels 
of abstractions, it is an interesting topic that we can 
study on more in terms of simplifying SE. Software 
Testing is utilizing ML techniques more than any 
other SDLC phase since there are a lot of datasets 
available to researchers. Gradient Boosting is drawing 
lots of attention and proves to be one the most 
powerful algorithms (Gupta et al., 2020). 

Our future work aims at addressing the challenges 
outlined in Software Requirements Analysis, 
Architecture Patterns, Software Maintenance and 
ultimately creation of datasets for those phases. Also, 
future works could look at data mining, predictive 
design and modeling for different software 
applications including mobile applications.   
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