
Impact of Machine Learning on Software Development Life Cycle

Maryam Navaei and Nasseh Tabrizi
Department of Computer Science, East Carolina University, East 5th St., Greenville, NC, U.S.A.

Keywords: Software Engineering, Software Development Life Cycle, Artificial Intelligence, Machine Learning, Machine
Learning Algorithms.

Abstract: This research concludes an overall summary of the publications so far on the applied Machine Learning (ML)
techniques in different phases of Software Development Life Cycle (SDLC) that includes Requirement
Analysis, Design, Implementation, Testing, and Maintenance. We have performed a systematic review of the
research studies published from 2015-2023 and revealed that Software Requirements Analysis phase has the
least number of papers published; in contrast, Software Testing is the phase with the greatest number of papers
published.

1 INTRODUCTION

The dominant industrial sector is software
engineering (SE). Therefore, automating SE is the
most important task of the present. Artificial
intelligence (AI) has the potential to strengthen SE in
that way (Bhagyashree et al.,2015). To ensure
delivery of the anticipated level of service, software
systems must be able to adapt to changing
circumstances (Elhabbash et al., 2019). Therefore,
software systems need to autonomously adapt to
changing environments to guarantee expected quality
of service (Wan et al, 2019).

The demand for increased automation and
intelligence has sparked new developments in ML and
AI. Researchers are using machine learning (ML) and
AI more frequently to solve defects and deficiencies
in software systems and the software development life
cycle (SDLC). (Khomh et al., 2018). ML is a subfield
of AI that raises software system performance
standards by using data or prior development
expertise. (Zhang et al., 2017, Zhu et al., 2018).

With the use of ML, computer systems may
imitate some aspects of human intelligence while
using data, examples, and experience without human
intervention. Computer systems may learn rules from
data with the aid of ML algorithms (England, 2018).
These technologies will be improved such that they
serve as the main building blocks of several software-
intensive systems. The Information Technology
sector is very interested in incorporating AI
capabilities into software and services as a result of

recent developments in ML. Systems that make use of
ML technology have unique traits that set them apart
from other software systems. The effectiveness of the
training datasets used to develop the prediction
models has a significant impact on the functionalities
of ML-based systems. The learning outcomes and,
consequently, the functional behavior of programs is
significantly impacted by changing the training
dataset (Bird et al., 2017, Nakajima, 2018).

 By assisting computer systems in learning from
experience how to carry out a certain activity
autonomously, machine learning is used to constantly
enhance system performance and efficiency on a
given task. The SDLC heavily utilizes ML, which has
been used in other fields (Alloghani et al., 2020,
Shafiq et al., 2021, Abubakar et al., 2020). ML has
emerged as the preferred method for developing
useful software systems in a variety of settings,
including computer vision, speech recognition,
natural language processing, robot control, health
systems, banking, defense, e-commerce, and many
more (Panichella and Ruiz, 2020, Bhatore et al.,
2021).

In several areas, such as behavior extraction,
testing, and problem repair, ML approaches are being
utilized to speed up the SDLC (Meinke and
Bennaceur, 2018, DE-Arteaga et al., 2018). As a
result, technological invention has adopted a new
paradigm. The development team must devote a lot of
time throughout the SDLC to debating how the
system must function to determine which features
should be prioritized and which ones should be

718
Navaei, M. and Tabrizi, N.
Impact of Machine Learning on Software Development Life Cycle.
DOI: 10.5220/0011997200003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 718-726
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

dropped. This requirement analysis must be followed
by the phases of design, implementation, testing, and
maintenance (Cetiner and Sahingoz, 2018).

Software developers may use ML algorithms to
speed up the decision-making process based on prior
projects to provide data-driven business decisions that
eventually aid in lowering development risks and
expenses. For software firms, this is priceless. It might
be difficult to create an exact budget and plan for
developing software systems since projects can run
beyond budget and deadlines. As a result, accurate
effort estimation is essential for software project
planning. The development team may use ML
approaches to examine data from previous projects to
produce a more accurate budget estimate and delivery
time frame (Yurdakurbann and Erdogan, 2018).

Developers may automatically maintain the code
and evaluate it using ML approaches. This leads to the
creation of Software Systems with a high level of
quality since maintenance is one of the most important
but costly parts of the SDLC. Rapid prototyping,
intelligent programming assistants, automatic
analytics and error handling, automatic code
rewriting, exact estimations, and strategic decision-
making might indeed benefit from ML models in
traditional SDLC (Khomh et al., 2018, Abubakar et
al., 2020). Even though ML datasets for SDLC
research are frequently poorly managed, documented,
and lack defined generation methods (Hutchinson et
al., 2021) The use of ML methods has several
benefits.

Due to the importance of ML approaches in the
SDLC and their benefits, we have produced a
comprehensive analysis to examine how data
analytics and ML algorithms affect each stage of the
SDLC. We were looking for phases in which ML
models were commonly used. Our objective was to
determine why ML techniques in some phases have
received more attention than others. We also sought
to see whether ML methods may be used in less well-
known stages.

We gathered and updated our previous database of
over 300 journal articles and conference papers from
the last seven years that were obtained from the ACM,
IEEE, and Springer digital libraries to prepare our
review. In order to illustrate graphically and
summarize current research trends, we generated
figures. Our study reveals notable variations between
the SLDC and software engineering's application of
ML methods (e.g., Requirements Analysis,
Architecture Design, Implementation, Testing and
Maintenance). The findings for each phase of the
SDLC are discussed after a review of similar work
and our approach. We then wrap up by summarizing

our findings and making recommendations for more
study.

2 RELATED WORK

This article extents our previous reviews on recent
studies on the use of ML in various SDLC phases and
SE broadly. Several earlier academics have carried
out practical investigations of SE for data science due
to the prominence of integrating ML methods into
SDLC. In 2022, We studied 300 publications with the
focus on eight most algorithms used in SDLC (Navaei
and Tabrizi, 2022). One research compared how ML
systems and non-ML systems developed in diverse SE
domains. As none of the SE stages have an established
set of tools and methodologies, that study employed
interviews to identify pain points from a general
tooling position to learn about the difficulties and
obstacles of deploying visual analytic tools (Kim et
al., 2018, Giray, 2021). Another research
characterized the roles and practices of professionals
in data science (Wan et al, 2019).

Even when the learning technique is used
correctly, faulty training data might occasionally
cause the ML model to be faulty. For these systems,
conventional testing methods are insufficient.
Software engineers must thus do research and provide
cutting-edge methods of reporting these difficulties
(Khomh et al., 2018). Software engineers
concentrated on the difficulty of testing and ensuring
the correctness of systems created using ML and AI
models.

Applying ML algorithms to each stage of the
SDLC has been the subject of several recent literature
studies (Talele and Phalnikar, 2021, Lima et al.,2020,
Sobhy et al., 2021, Syaeful et al.,2017). Although
their review was conducted for the period of 1991 to
2021, we found a paper that gives a larger context and
examines the link of ML approaches and its tools
within SDLC phases, which is somewhat similar to
our work (Shafiq et al., 2021). To analyze the
influence of ML throughout the whole SDLC in the
most recent papers, our work, however, employs a
systematic review technique (2015-2023) compared
to the majority of publications' single-phase emphasis.
The discovery of the eight most common ML
algorithms throughout the whole SDLC is another
contribution made by our study. To determine their
total popularity based on each stage of their life cycle,
we analyzed those algorithms individually in each
phase of the cycle.

Impact of Machine Learning on Software Development Life Cycle

719

3 METHODOLOGY

Based on interests shown in our recent publication, we
decided to expand our research to concentrate on
works published in (2015-2022). We ultimately made
the decision to update our evaluation on the journal
articles and conference papers published during the
past seven years. According to the number of
publications and refer to our latest research, we
discovered that the use of ML in SDLC has
significantly increased year by year even though it had
a slow start in the first half of last decade. This is due
recent developments in ML and their significant
impact on SDLS since ML techniques can be used to
modify and update software systems.

We searched the same databses: ACM, IEEE, and
Springer using various keywords and queries to find
our findings. Some inquiries returned the results we
were looking for in IEEE and Springer, but we had to
change our keywords and queries to get the results we
wanted from ACM. Additionally, we discovered that
utilizing verbatim searches like those used in the other
two libraries would cause ACM to return many
articles that were unrelated. As a result, when
searching the ACM database, we had to add extra
restrictions. To guarantee that our query returned
results that were pertinent, for example, we had to add
the phrase “Artificial Intelligence”.

In several cases, our inquiries brought up the same
or improved work in many publications. Because each
publication focused on a different subject, we
classified each of those cases as a new publication.
Additionally, there were instances in which one ML
approach was used in numerous phases; we counted
those individually for each phase. We extend our
research to study the eight of the most popular ML
algorithms in each phase to get a more concentrated
observation as a result of the latter situation.

4 CURRENT APPLICATIONS OF
MACHINE LEARNING TO
SDLC

ML plays a significant role throughout the SDLC. In
this section we discuss the impact of applying ML in
each phase of the SDLC:

• Software Requirements Analysis
• Software Architecture Design
• Software Implementation
• Software Testing
• Software Maintenance

We provide an overview of each phase of the SDLC
and discuss current research trends in ML for each
phase.

4.1 Software Requirements Analysis
and Machine Learning

Clarifying the specifications required for a software
system to satisfy the business requirements is the goal
of software requirements analysis, also known as
requirements engineering. Clear software
requirements (SR) that describe the needs and
expectations of the product in great details are a
crucial component of high-quality software
development. (Navarro-Almanza et al., 2017).

There are two primary phases of requirements
engineering (RE), which is a crucial part of the whole
software development process. Prioritization and
Identification of Requirements (Talele and Phalnikar,
2021). To what extent a software system succeeds or
fails depends on requirements analysis. Requirements
classification is another task that software engineers
must complete during the analysis stage. Software
Engineers were able to automate the process of
classifying the requirements into functional
requirements after employing ML methods (FRs) and
Non-Functional Requirements (NFR) (Quba et al.,
2021). RE is also one of the key factors in Software
Quality (Panichella and Ruiz, 2020).

Requirement analysis in the SDLC refers to the
processes of accurate requirement elicitation,
effective requirement inspection, and transparent
requirement documentation. Requirement
Engineering becomes a hard problem that drives up
development costs as software systems get more
complicated and large-scale. Engineers' interest in
automated requirement analysis approaches has
increased as a result, and these techniques may help
to analyze SR more quickly and accurately, which
might save development costs. Engineers must choose
which set of needs to evaluate first when doing
requirement prioritization, and this decision is made
using machine learning approaches. The classification
and prioritization of the needs using ML algorithms is
likely to be effective, and so is the method of
evaluation (Talele and Phalnikar, 2021).

Researchers have shown a lot of interest in
applying Supervised ML algorithms including
Support Vector Machine, Naïve Bayes, Decision
Tree, K-Nearest Neighbor and Random Forest
(Gramajo et al., 2020).

RE plays a key role in the success of a project.
Based on previous research that was conducted on 350
companies to understand project failure rates, 16.2%

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

720

projects were completed successfully, 52.7% faced
challenges and were partially completed. About 31%
of the projects were never completed due to poor RE
(Haleem et al., 2021).

There aren't many public ML datasets accessible
for requirements analysis, which is one of their key
drawbacks. The PROMISE repository, one of the
most popular RE databases, is imbalanced and has
only 625 categorized requirements stated in plain
language (Iqbal et al., 2018). Despite limitations of
current ML algorithms in recognizing and prioritizing
requirements, including scalability, dependency, and
complexity (Talele and Phalnikar, 2021), The crucial
function that these methods serve in assisting
developers to document their software more
accurately is what motivates academics to continue
showing interest in using ML algorithms in SR
categorization. As a result, the software system is
simpler to use and comprehend (Quba et al., 2021).

4.2 Software Architecture Design and
Machine Learning

The established requirements from the Analysis phase
are transformed into an implementable form during
the Architecture Design phase, which is sometimes
referred to as the preliminary or general design stage.
Software quality is significantly influenced by
software design. Anti-patterns, high dependence
design, and enormous source code files are a few
examples of poor design. These complicate SE
responsibilities by increasing the difficulties and costs
of addressing software flaws (Zhang et al., 2017,
McIntosh and Kamei 2017).

To satisfy all system requirements, software
design must be transparent and easy to comprehend.
Many businesses and scholars are interested in
figuring out how the link between Software Design
and Maintenance works since later phases of the
SDLC heavily rely on the Architecture Design phase.
Researchers have been attempting to introduce
several ML approaches for effective prediction of the
influence of software design on system
maintainability (Elmidaoui et al., 2020). In this stage,
a variety of ML approaches are being used to
problems like anticipating the user interface (UI)
design of a mobile application, anticipating the
architecture of safety-critical systems, detecting anti-
patterns in web services, etc. Design patterns, for
instance, might increase complexity. As a result,
maintenance and evolution activities rise. By utilizing
ML for design pattern recognition, the complexity of
the system is reduced, and the architecture and design

of the program are made clearer (Mhawish and Gupta,
2019, Dwivedi et al., 2016, Dwivedi et al., 2016).

Since detecting Code Anomalies requires
refactoring approach, Support Vector Machine is the
most effective ML algorithm used for this matter
(Gramajo et al., 2020). Data mining from design
patterns, which is based on supervised learning and
software metrics, is another of the most well-liked
study areas in the design phase. By eliminating as
many erroneous matches as feasible, ML approaches
are utilized to improve pattern mining. This approach
mostly utilizes ML algorithms as Layer Recurrent
Neural Network, Random Forest, Support Vector
Machine, and Boost (Navarro-Almanza et al., 2017,
Giray, 2021).

4.3 Software Implementation and
Machine Learning

The Implementation phase involves construction of
the actual software system. Coding the system takes
place in this phase and when it is complete, the result
will be evaluated against the elicited requirements
from the Analysis phase. Software defects are
prevalent in software development and might cause
several problems for users and developers alike. As a
result, research has examined distinct techniques to
diminish the impacts of these defects in the source
code. One of the most prominent algorithms focuses
on defect prediction using ML methods. This helps
developers in managing these defects before they are
commenced in the production (Esteves et al., 2020).

One of the prominent study topics for this stage is
code refactoring. Refactoring modifies the system in
a way that doesn't affect the code's external behavior
but enhances its internal organization. Software with
code smells is a hint that the SDLC's design and
coding standards have not been followed. If code
smells are not addressed, this problem might grow
since it will take exponentially more work to fix the
problems (Aniche et al., 2020).

The best method for forecasting code refactoring
is known to be supervised machine learning
techniques, which can aid developers in making
quicker and more informed judgments on what to
alter. Support Vector Machines, Naive Bayes,
Decision Trees, Random Forest, Logistic Regression,
and Neural Networks were among the ML methods
studied. Using Apache, F-Droid, and GitHub datasets,
Random Forest has emerged as the best accurate
method for forecasting software refactoring (Sagar et
al., 2021).

Impact of Machine Learning on Software Development Life Cycle

721

4.4 Software Testing and Machine
Learning

Engineers must identify a system's flaws and
problems to evaluate and validate software systems.
Thus, one of the most crucial stages in the SDLC is
software testing. Software testing's goal is to identify
flaws, especially during automated testing (Nasrabadi
and Parsa, 2021). There should be automated tests to
find these mistakes prior to a system being deployed
since errors, failures, and defects might occur due to
frequent modifications to a system's codebase.
Finding system flaws might result in improvements
that save expenses by up to a third (Lima et al., 2020).

Developers use testing to make sure a system
behaves as intended. To ensure time effectiveness,
effort, and money consumption, testing activities
must be anticipated (Syaeful et al., 2017).

As software systems increase in complexity, it
becomes more difficult to detect faults (Li et al.,
2020). During the software testing process, we may
gather a variety of data types, such as execution
traces, coverage details for test cases, failure data, etc.
When used to software testing, machine learning
algorithms find patterns in data that frequently relate
to the data generating process and are then utilized for
decision-making. To convert unstructured test data
into a set of abstract test scenarios, experts must
contribute (Bhavsar et al., 2019).

To give test output information, test cases are
created. In Software Testing, decision trees or
induction rules are frequently utilized, particularly for
fault prediction. Compared to more advanced
approaches like neural networks or support vector
machines, models created by these techniques are
easier to understand. For these datasets (the most
popular Testing dataset is from NASA), Support
Vector Machine and Random Forest offer the best
prediction models for fault prediction (Bhavsar et al.,
2019, Zhu, 2020).

Techniques that suggest unique interactions inside
a system have a lot to offer when it comes to software
testing. However, methods like random testing,
fuzzing, and exploratory testing have the drawback of
requiring software engineers to manually review the
outputs of the tests to ensure they are right, which
adds to their workload (Roper, 2019). For assessing
software usability at the moment, testing methods and
software reengineering are necessary and most
important. (Banga et al., 2019, Herzig and Nagappan,
2015).

Due to the quantifiable nature of Software Testing,
there are many datasets available. Likewise, the

number of publications is also significantly higher
compared to other phases.

4.5 Software Maintenance and
Machine Learning

Software maintenance is the practice of continuing to
alter and update a software system after it has been
deployed to fix bugs. The SDLC's last phase is this
one. In SE, software maintenance has grown to be a
crucial component of software quality. Therefore,
accurate and timely prediction of this feature is a vital
prerequisite for effective management throughout the
SDLC's final phase (Gupta and Chug, 2021).

Software maintenance includes a system's ongoing
optimization as well as repair and preservation. Four
major categories make up this phase: preventative
maintenance, corrective maintenance, adaptive
maintenance, and perfective maintenance (Sulaiman,
2005). Software Maintainability Prediction has been
investigated using a broad range of ML approaches,
including hybrid, ensemble, and meta-heuristic
techniques (SMP) (Alsolai, 2018, Gupta and Chug,
2021, Baskar and Chandrasekar, 2018). Yet
researchers continue to seek improvement in this area.

About 60 to 70 percent of the overall cost of the
SDLC is occasionally devoted to maintenance (Gupta
and Chug, 2021). Maintenance has grown more
challenging as software systems have grown in
complexity and scale. Because of this, maintaining
software has become a significant problem for
businesses. Software upkeep is closely related to
budgetary implementation and project success (Jha et
al., 2019).

The most often employed ML method in software
maintenance prediction models is fuzzy logic
(Haleem et al.,2021). Other techniques include ML
algorithms such as Soft Computing, Fuzzy Networks,
Evolutionary Algorithm, Deep Learning and ID3 (Xin
et al., 2018).

5 RESULTS

We include publications from 2015 to 2023 in this
review.

The figure below summarizes how many journal
articles and conference papers are published in ACM,
IEEE and Springer for the period of 2015 to 2023 that
focus on ML techniques applied in each phase of
SDLC.

Table 1 lists the keywords we used to retrieve
these publications and ultimately generate the figures
to show the overall results. For some of the phases, we

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

722

had to modify our search queries as it was a quite
challenge to find more related and accurate results.
Whereas some phases like Testing, had a very large
number of publications.

Table 1: Searched Keywords for Paper Retrieval.

Keywords (Searched Queries)

Software engineering AND Machine learning

Software Development Life Cycle AND Machine
Learning

Machine Learning AND Software System
Requirements Analysis

Machine Learning AND Software in Each Phase

Impact of Machine Learning in Each Phase

Software Requirements Analysis AND Each
Algorithm

Software Design Phase AND Each Algorithm

Software Testing AND Each Algorithm

Software Maintenance AND Each Algorithm

As shown in Figure 1, Software Requirements
Analysis has the least number of papers published in
this topic; in contrast, Software Testing has the largest
number of publications. The reason is partially
because there are many datasets available for
Software Testing due to its quantifiable nature as well
as the ease of obtaining data in this phase.

Figure 1: ML Applied in SDLC – Papers published from
2015 to 2023.

Hence it is much easier to utilize ML techniques
in Software Testing than in Requirements Analysis.

In Figure 2, we narrowed our findings by selecting
eight ML algorithms in all phases of SDLC (Random
Forest, Support Vector Machine, Naïve Bayes and
Decision Trees, Logistic Regression, Reinforcement
Learning, K Nearest Neighbor and Gradient
Boosting). Ultimately, we analyzed all the relevant
publications done in ACM, IEEE and Springer in the
same timeframe to see which ML methodologies are
the most popular in particular phases.

Figure 2: SDLC Software Requirements Analysis - ML
Applied in SDLC – Papers published from 2015 to 2023.

Based on the results shown in Figure 2, Decision
Trees are most popular algorithms among the other
elected techniques. One reason is because Decision
Trees are quick to create and help with eliminating
dead ends. This decreases the probability of errors
made in this phase that can affect subsequent phases
as well. This technique can greatly simplify the SR
gathering process and saves engineers significant time
and budget resources. Another popular ML
techniques is Reinforcement Learning which is used
on understanding the relationships among software
requirements by generating traceable links between
high-level and low-level requirements (Shafiq et
al.,2021, Rezaei and Tabrizi, 2021).

In the process of SR, due to their exclusive
characteristics, the appropriate data sets are extremely
dimensional, sparse, and are mostly the outcome of
ambiguous expressions and, consequently show
problematic challenges for data processing techniques
(Borges et al., 2021). there are many repositories with
duplicate code, which constitutes data inconsistency
(Allamanis, 2018). Hence, more work needs to be
done on creating more diverse and appropriate
datasets for this phase.

12
04

12
00

12
00

11
30

11
19

31
5

17
30

81
9

19
82

43
569

5

16
31

14
27

19
66

63
0

0

500

1000

1500

2000

SDLC PHASE 1 &
ML

SDLC PHASE 2 &
ML

SDLC PHASE 3 &
ML

SDLC PHASE 4 &
ML

SDLC PHASE 5 &
ML

ACM IEEE SPRINGER

71
3

57

31
2

12
00

57
2 73

3

72
3

61
5

19
8

47
2

12
6 26

6

13
4

38
2

12
9

5914
5

37
0

91

20
1

10
5

38
1

33
2

25
1

0
200
400
600
800

1000
1200

Ra
nd

om
 F

or
es

t

Su
pp

or
t V

ec
to

r M
ac

hi
ne

Na
ïv

e
Ba

ye
s

De
cis

io
n

Tr
ee

Lo
gi

st
ic

Re
gr

es
sio

n

Re
in

fo
rc

em
en

t L
ea

rn
in

g

KN
N

Gr
ad

ie
nt

 B
oo

st
in

g

ACM IEEE Springer

Impact of Machine Learning on Software Development Life Cycle

723

Figure 3: SDLC Software Architecture Design - ML
Applied in SDLC – Papers published from 2015 to 2023.

Support Vector Machine (SVM) is one of the most
popular ML techniques used in SDLC. It is a
supervised learning algorithm used for both
classification and regression problems. This
technique is very accurate and robust in detecting
design anomalies such as code smells also known as
Bad Smells, Design Flaws, Anti Patterns and Code
Anomaly (Zhang et al., 2006).

ML demands massive datasets to train on and
these should be unbiased and have great quality which
sometimes requires new data to be generated. We
suggest applying ML algorithms more in Software
architecture design as little work has been done and
needs to be explored more (Borges et al., 2021).

Figure 4: SDLC Phase Implementation - ML Applied in
SDLC – Papers published from 2015 to 2023.

Again, Support Vector Machine is most frequent
algorithm used in the third phase of Software
Development Life Cycle known as Software
Implementation. This technique is very popular in
Design and Development of software applications.

Figure 5: SDLC Phase Testing- ML Applied in SDLC –
Papers published from 2015 to 2023.

As shown in Figure 5, both Random Forest and
Support Vector Machine are popular techniques in
Software Testing phase. However, SVM has slightly
more publications. One reason for this is SVM is the
better classifier to eliminate infeasible test cases
saving time and costs in projects which is a huge
achievement as testers spend more time and their
resources on testing mobile and hybrid applications.
ML helps testers to better understand user’s needs and
respond faster to the everchanging expectations by
improving automation testing, reduced UI based
testing, assisting in API testing, and improving
accuracy. Right after those two algorithms, Decision
Trees and Reinforcement Learning play a significant
role in this phase.

Figure 6: SDLC Maintenance - ML Applied in SDLC –
Papers published from 2015 to 2023.

Data Scientists and Software Engineers have
shown the most interest in applying Support Vector
Machine in last phase of SDLC than other techniques.
However, Decision Trees have high usage as well.
Classification and refactoring approaches play a
significant role when maintaining software systems.

46
0

45
5

94
0

63

23
0 39

0

30
1

26
5

10
5 29

0

60

16
5

16

12
9

25 1010
2

12
66

31
7

91
6

10
5

12
3 29

8

88

0
200
400
600
800

1000
1200
1400

Ra
nd

om
 F

or
es

t

Su
pp

or
t V

ec
to

r
M

ac
hi

ne

Na
ïv

e
Ba

ye
s

De
cis

io
n

Tr
ee

s

Lo
gi

st
ic

Re
gr

es
sio

n

Re
in

fo
rc

em
en

t
Le

ar
ni

ng KN
N

Gr
ad

ie
nt

 B
oo

st
in

g

ACM IEEE Springer

21

74

31
4

27 21 24 14 1333

17
6

55

12
9

37

12
9

54

19

16
5

35
0

10
5

24
3

13
3

12
0

32
0

92

0
50

100
150
200
250
300
350
400

Ra
nd

om
 F

or
es

t

Su
pp

or
t V

ec
to

r
M

ac
hi

ne

Na
ïv

e
Ba

ye
s

De
cis

io
n

Tr
ee

Lo
gi

st
ic

Re
gr

es
sio

n

Re
in

fo
rc

em
en

t
Le

ar
ni

ng KN
N

Gr
ad

ie
nt

 B
oo

st
in

g

ACM IEEE Springer

14
7

32
4

11
9

28
7

23
8

25
6

14
4

55

22
2

60
5

13
6 27

1

14
0 28

9

21
2

62

84
5

44
3

15
8

49
9

13
8 28

5 41
2

85

0
100
200
300
400
500
600
700
800
900

Ra
nd

om
 F

or
es

t

Su
pp

or
t V

ec
to

r
M

ac
hi

ne

Na
ïv

e
Ba

ye
s

De
cis

io
n

Tr
ee

Lo
gi

st
ic

Re
gr

es
sio

n

Re
in

fo
rc

em
en

t
Le

ar
ni

ng KN
N

Gr
ad

ie
nt

 B
oo

st
in

g

ACM IEEE Springer

14
6

32
7

11
8

29
2

14
3 17

0

12
1

4454 73 54

93

47 33 20 11

13
5

38
9

11
6 13
6

12
9 16

8

11
9

10
7

0
50

100
150
200
250
300
350
400
450

Ra
nd

om
 F

or
es

t

Su
pp

or
t V

ec
to

r
M

ac
hi

ne

Na
ïv

e
Ba

ye
s

De
cis

io
n

Tr
ee

s

Lo
gi

st
ic

Re
gr

es
sio

n

Re
in

fo
rc

em
en

t
Le

ar
ni

ng KN
N

Gr
ad

ie
nt

 B
oo

st
in

g

ACM IEEE Springer

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

724

Available datasets are not sufficient to give
conclusive results which provide information
regarding the input data of the system (Jha et al.,
2019) and more work need to be done to create new
datasets to determine the accuracy of the precision and
decreasing the complexity.

6 CONCLUSIONS

Machine Learning is becoming one of the most
important technologies used in Software
Development Life Cycle. ML approaches are being
used for inadequately implied problem domains
where little knowledge exists for humans to develop
effective algorithms. ML has different types:
Supervised Learning, Semi-Supervised Learning,
Unsupervised Learning and Reinforcement Learning.
Our study shows Support Vector Machine (SVM) is
one of the most popular supervised ML algorithms in
current SE research. It is being applied on all the
phases of SDLC as it can be used for both
classification and regression problems. While SVM is
not considered the best performing algorithm in all
cases, it remains among the most highly used ML
methods. Reinforcement Learning is gaining a lot of
interests in recent works and has a high impact in
requirements analysis. It has been used in Software
requirements analysis for understanding the
relationships between requirements at different levels
of abstractions, it is an interesting topic that we can
study on more in terms of simplifying SE. Software
Testing is utilizing ML techniques more than any
other SDLC phase since there are a lot of datasets
available to researchers. Gradient Boosting is drawing
lots of attention and proves to be one the most
powerful algorithms (Gupta et al., 2020).

Our future work aims at addressing the challenges
outlined in Software Requirements Analysis,
Architecture Patterns, Software Maintenance and
ultimately creation of datasets for those phases. Also,
future works could look at data mining, predictive
design and modeling for different software
applications including mobile applications.

REFERENCES

Abubakar, H., Obaidat, M. S., Gupta, A., Bhattacharya, P.,
Tanwar, S. (2020) - Interplay of Machine Learning and

Software Engineering for Quality Estimations – IEEE
Allamanis, M. (2018) - The adverse effects of code

duplication in machine learning models of code –
Research Gate.

Alloghani, M., Al-Jumeily, D., Baker, T., Hussain, A.,
Mustafina, J., Ahmed J. Aljaaf (2020) - An Intelligent
Journey to Machine Learning Applications in
Component-Based Software Engineering - Springer.

Software Maintainability Metrics Prediction – IEEE.
Aniche, M., Maziero, E., Durelli, R., Durelli, V. H. S.

(2020) - The Effectiveness of Supervised Machine
Learning Algorithms in Predicting Software
Refactoring – IEEE.

Alsolai, H. (2018) - Predicting Software Maintainability in
Object-Oriented Systems Using Ensemble Techniques –
IEEE.

Banga, M., Bansal, A., Singh, A. (2019) - Implementation
of Machine Learning Techniques in Software

Reliability: A framework – IEEE.
Baskar, N. and Chandrasekar, C. (2018) - An Evolving

Neuro-PSO-based Software Maintainability Prediction
– IEEE.

Bhagyashree W. Sorte, Pooja P. Joshi, Prof. Vandana Jagtap
- Use of Artificial Intelligence in Software Development
Life Cycle: A state of the Art Review – Research Gate.

Bhatore, S., Reddy, Y., R., Sanagavarapu, L. M, Chandra,
S. S. (2021) - Software Patterns to Identify Credit Risk
Patterns – IEEE.

Bhavsar, K., Gopalan, S., Shah, V. (2019) - Machine
Learning: A Software Process Reengineering in
Software Development Organization – Research Gate.

Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N.,
Nushi B., Zimmermann, T. (2017) - Software
Engineering for Machine-Learning: A Case Study –
IEEE.

Borges, O. T., Couto, J. C., Ruiz, D., Priklladnicki, R.
(2021) – Challeneges in using Machine Learning to
Support Software Engineering – Research Gate.

Cetiner, M., Sahingoz, O. K. (2020) - A Comparative
Analysis for Machine Learning based Software Defect
Prediction Systems – IEEE.

perception in autonomous driving - IEEE.
Dwivedi, A. K., Tirkey, A. , Rath, S. K. (2016) - Applying

software metrics for the mining of design pattern –
IEEE.

Dwivedi, A. K., Tirkey, A., Ray, R. B., Rath, S. K. (2016)
- Software design pattern recognition using machine
learning techniques – IEEE.

DE-Arteaga, M., Herlands, W., Neill, D. B., Dubrawski, A.
(2018) - Machine Learning for the Developing World –
ACM.

Elhabbash, A., Salama, M., Bahsoon, R., Tino, P. (2019) -
Self-awareness in Software Engineering: A Systematic
Literature Review – ACM

Elmidaoui, S., Cheikhi, L., Idri, A., Abran, A. (2020) -
Machine Learning Techniques for Software
Maintainability Prediction: Accuracy Analysis –
Springer.

England, M. (2018) - Machine Learning for Mathematical
Software – Springer.

Esteves, G., Figueiredo, E., Veloso, A., Viggiato, M., Nivio
(2020) - Understanding Machine Learning Software
Defect Predictions – Springer.

Impact of Machine Learning on Software Development Life Cycle

725

Giray, G (2021) - A software engineering perspective on
engineering machine learning systems: State of the art
and challenges - Science Direct.

Gramajo, M., Ballejos, L., Ale, M. (2020) - Seizing
Requirements Engineering Issues through Supervised
Learning Techniques – IEEE.

Gupta A., Sharma Sh., Goyal, Sh., Rashid M. (2020) –
Novel SGBoost Tuned Machine Learning Model for
Software Bug Prediction - IEEE

Gupta, S., Chug, A. (2021) - An Optimized Extreme
Learning Machine Algorithm for Improving Software
Maintainability Prediction – IEEE.

Gupta, H., Kumar, L., Neti, L. B. M. (2019) - An Empirical
Framework for Code Smell Prediction using Extreme
Learning Machine – IEEE.

Haleem, M., Farooqui, M. F., Faisal, M. (2021) - Cognitive
impact validation of requirement uncertainty in
software project development – Science Direct.

Herzig, K. and Nagappan, N. (2015) - empirically detecting
false test alarms using association rules – IEEE.

Hutchinson, B., Smart, A., Hanna, A., Denton, E. (2021) -
Towards Accountability for Machine Learning
Datasets: Practices from Software Engineering and
Infrastructure – ACM.

Iqbal, T., Elahidoost, P., Lúcio, L. (2018) - A Bird's Eye
View on Requirements Engineering and Machine
Learning – IEEE.

Jha, S., Kumar, R., Son, L. H., Abdel-Basset, M.,
Priyadarshini, I., Sharma, R., Long, H. V. (2019) - Deep
Learning Approach for Software Maintainability
Metrics Prediction

Karim, M. S., Warnars, H. L. H. S., Gaol, F. L.,
Abdurachman, E., Soewito, B. (2017) - Software
metrics for fault prediction using machine learning
approaches: A literature review with PROMISE
repository dataset – IEEE.

Khomh, F., Adams, B., Cheng, J. , Fokaefs, M., Antoniol,
G. (2018) - Software Engineering for MachineLearning
Applications: The Road Ahead – IEEE.

Kim, M., Zimmermann, T., DeLine, R. and Begel, A.
(2018) - Data scientists in software teams: State of the
art and challenges – IEEE.

Li, J. J., Ulrich, A., Bai, X., Bertolino, A. (2020) - Advances
in test automation for software with special focus on
artificial intelligence and machine learning – Springer.

Lima, R. , Da Cruz, A. M. R., Ribeiro, J. (2020) - Artificial
Intelligence Applied to Software Testing: A Literature
Review – IEEE

Meinke, K., Bennaceur, A. (2018) - Machine Learning for
Software Engineering: Models, Methods, and

Applications – IEEE.
Mhawish, M. Y., Gupta, M. (2019) - Software Metrics and

tree-based machine learning algorithms for
distinguishing and detecting similar structure design
patterns – Springer.

Nakajima, S. (2018) - Quality Assurance of Machine
Learning Software – IEEE.

Nasrabadi, M. Z., Parsa, S. (2021) – Learning to Predict
Software Testability - IEEE.

Navaei, M., Tabrizi, N. (2022) - Machine Learning in
Software Development Life Cycle: A Comprehensive
Review – Research Gate

Navarro-Almanza, R., Juarez-Ramirez, R., Licea, G. (2017)
- Towards Supporting Software Engineering Using
Deep Learning: A Case of Software Requirements
Classification – IEEE.

Quba, G., Qaisi, H. A., Althunibat, A., AlZu’bi, S. (2021) -
Software Requirements Classification using Machine
Learning algorithm’s – IEEE.

Panichella, S., Ruiz, M. (2020) - Requirements-Collector:
Automating Requirements Specification from

Elicitation Sessions and User Feedback – IEEE.
Rezaei, M., Tabrizi, N. (2022) – Recommender System

using Reinforcement Learning: A Survey – DBLP.
Roper, M. (2019) - Using Machine Learning to Classify Test

Outcomes – IEEE.
Sagar, P. S., AlOmar, E. A., Mkaouer, M. W., Ouni, A.,

Christian Newman (2021) - Comparing Commit
Messages and Source Code Metrics for the Prediction
Refactoring Activities – Research Gate.

Shafiq, S., Mashkoor, A., Mayr-Dorn, C., Egyed, A. (2021)
- A Literature Review of Using Machine Learning in
Software Development Life Cycle Stages – IEEE.

Sobhy, D., Bahsoon, R., Minku, L., Kazman, R. (2021) -
Evaluation of Software Architectures under
Uncertainty: A Systematic Literature Review – ACM.

Sulaiman, S. (2005) - Viewing Software Artifacts for
Different Software Maintenance Categories Using
Graph Representations – Research Gate.

Talele, P., Phalnikar, R. (2021) - Classification and
Prioritisation of Software Requirements using Machine
Learning – A Systematic Review – IEEE.

Wan, Z., Xia, X., Lo, D., Murphy, G. C. (2019) - How does
Machine Learning Change Software Development
Practices? – IEEE.

Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao,
H., Hou, H., Wang, C. (2018) - Machine Learning and
Deep Learning Methods for Cybersecurity – IEEE.

Yurdakurbann, V., Erdogan, N. (2018) - Comparison of
machine learning methods for software project effort
estimation – IEEE.

Zhu, H. (2018) - Software Testing as a Problem of Machine
Learning: Towards a Foundation on Computational
Learning Theory – IEEE.

Zhang, L., Tan, J., et al, D. H.. (2017) - From machine
learning to deep learning: progress in machine
intelligence for rational drug discovery – IEEE.

Zhang, X., Gu, C., Lin, J (2006) - Support Vector Machines
for Anomaly Detection – Research Gate.

Zhang, X., Zhou, T., Zhu, C. (2017) - An Empirical Study
of the Impact of Bad Designs on Defect Proneness –
IEEE.

Zhu, Y, Chen, L, Zhou, H, Feng, W., Zhu, Q. (2018) -
Design and Implementation of WeChat Robot Based on
Machine Learning – IEEE.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

726

