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Abstract: The circular economy (CE) is preferred to linear economy (LE) as it aims to keep resources in use for as
long as possible, extracting maximum value before recovering and regenerating them. This reduces the need
to extract new raw materials and reduces waste, leading to more sustainable economic growth. Contrarily,
LE also known as a ”take, make, use, dispose” model, is based on resources extraction, products creation, and
waste disposal, which can lead to depletion of resources, environmental degradation and several other hazards.
Several barriers are delaying the switching to CE. Artificial Intelligence (AI) and emerging technologies can
play significant roles in the implementation of CE. In this work, A novel AI-powered model that can serve as
a Decisions Support System (DSS) for CE models is proposed and demonstrated. Product life extension is
created via reuse, repair, remanufacture, recycle and cascade loop. The result of the model outperformed the
LE model. The study demonstrates that technologies can enable smart monitoring, tracking, and analysis of
products to support decision-making (DM). AI-powered sensors and devices can monitor the use of resources
in real-time, allowing for more accurate tracking and reporting of resource use.

1 INTRODUCTION

The finite nature of our planet and its resources
necessitates responsible and sustainable practices
of production and consumption, as evidenced by
the increasing number of environmentally conscious
consumers, and government policies (Brown and
Wahlers, 1998; Machnik and Królikowska-Tomczak,
2022). Unfortunately, today’s economy is a take-
make-dispose model where raw materials are ex-
tracted for making products and then discarded after
use, hence the term ”Linear Economy” (LE) (WEF,
2014). LE is considered unsuitable for both aquatic
and terrestrial environments, since it also generates
plastic wastes which is projected to outweigh fishes
in the ocean by 2050 (EMF, 2017). The population
of the world is estimated to rise by 392% in a cen-
tury (1950 and 2050). As a result, natural resource
consumption is also growing with a positive correla-
tion to country’s per capita GDP(Nobre and Tavares,
2017). Furthermore, LE is disadvantageous in that it

a https://orcid.org/0000-0003-1708-3052

is a system where virgin materials keep entering with
little or no reuse at all, thereby encouraging waste
generation. It has been projected that the world’s con-
sumption of raw materials will double by 2060 (The
E-waste Coalition, 2019). The yearly global Munici-
pal Solid Waste generation currently stands at 1.3 bil-
lion tonnes approximately and it is expected to hit 2.2
billion tonnes per annum before 2025 (Hoornweg and
Bhada-Tata, 2012). This will be a rise of 1.2 kg to
1.42 kg per person per day, with e-waste as a critical
component.
The World Economic Forum (WEF) defines e-waste
as ”anything with a plug, electric cord or battery
(including electrical and electronic equipment) from
toasters to toothbrushes, smartphones, fridges, lap-
tops and LED televisions that has reached the end of
its life, as well as the components that make up these
end-of-life (EOL) products” (The E-waste Coalition,
2019), and it is also termed as waste electrical and
electronic equipment (WEEE)1.

In 2016, worrying 44.7 million metric tonnes of

1European Commission https://tinyurl.com/4wm82ey2
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e-waste was disposed of globally (Baldé et al., 2017;
The E-waste Coalition, 2019) which is equivalent to
4,500 times Eiffel tower weight. From this, one per-
son throws away 61kg of e-waste everyday (Baldé
et al., 2017) and only 20% recycled. E-waste only
makes up 2% of solid waste streams, yet it is the
fastest growing waste stream and constitute a criti-
cal 70% of the hazardous waste (The E-waste Coali-
tion, 2019). A common smart phone could contain as
high as 60 elements of the scientific periodic table and
many have high chance of recoverability technically.
The volume of e-waste could top 120 million tonnes
annually by 2050 in the worst-case scenario, based on
United Nations University (UNU) estimate. There are
targets in place to minimise waste generation substan-
tially before 2030 based on the Sustainable Develop-
ments Goals (SDGs) (Forti et al., 2020), such as the
SDG 12, which is ”responsible consumption and pro-
duction”. The target is to ”substantially reduce waste
generation through prevention, reduction, repair, re-
cycling, and reuse”. The e-waste sub-indicator for
SDG 12.5.1 is stated as : (Forti et al., 2020)

=
(TotalEwaste−Recycled)
(TotalEwaste−Generated)

SDG 12.5.1 for 2019 is 17.7%, which suggests
that more still need to be done to increase this rate.
While business are encouraged to embrace CE prac-
tices for the benefits, there seems to be numerous bar-
riers such as uncertainty surrounding circularity deci-
sions. Emerging technologies such as AI which has
became the buzzword of recent can be employed to
address this this barriers. As part of efforts towards
these goals and more, whether directly or indirectly,
this paper proposes the use of cutting-edge technolo-
gies such as the Internet of Things (IoT), AI, and Ma-
chine Learning in building a Circular Economy Busi-
ness Model (CEBM). This paper particularly focuses
on the use of AI-powered DSS as a circular business
model that aims to help businesses in making data-
driven circularity decisions to achieve resource effi-
ciency, utilisation, productivity, and business bene-
fits. The remainder of the paper is as follows: Sec-
tion 2.1 will explore the barriers and opportunities of
transitioning to CE while Section 3 will present the
AI-Powered DSS model including the results and dis-
cussion, before ending the paper with conclusion and
recommendations in 4

2 TRANSITION TO CIRCULAR
ECONOMY: THE BARRIERS
AND OPPORTUNITIES

As businesses are pressured to pursue the triple bot-
tom line (TBL) which is social, environmental and
economic sustainability, there are several barriers and
opportunities in doing this. In this section, the paper
will first identify some of these numerous barriers and
opportunities, before going on to discuss the proposed
solutions.

2.1 Barriers and Challenges to Circular
Economy Implementation

Researchers have identified that there are various
business benefits of switching to CE. “Prof-
itability/market share/benefit”, “cost reduction”,
and “business principle/concern for environ-
ment/appreciation”, are among the top 3 bene-
fits/drivers of CE (Agyemang et al., 2019). These
and other factors are putting pressure on businesses
to implement CE practices which indeed, some busi-
nesses are willing to switch but are facing challenges.
“Unawareness/uncertainties”, “cost and financial
constraint”, and “lack of expertise”, are among the
eminent barriers/challenges in implementing CE
(Agyemang et al., 2019). By grouping the barriers
into TBL framework (Badhotiya et al., 2021), social
barriers include Low demand and acceptance of
remanufactured products, Lack of a standard system
for data collection and performance assessment,
Reluctance to replace EOF products, scepticism to
the quality of refurbished and recycled products,
and Lack of technical and qualified personnel on
CE (Agyemang et al., 2019). Other social barriers
include lack of design tools for circular business
models and circular products (Agrawal et al., 2021),
and associated risk in transitioning from LE to
CE due to uncertainties and inherent complexities
(Agyemang et al., 2019). The economic barriers
are High upfront investment costs and long-term
economic return (Kumar et al., 2019), lack of funding
and tax incentives (Agrawal et al., 2021), lack
of appropriate partners and complexity in supply
chains (SC) (Benton et al., 2017), need for advanced
technologies and facilities (Kumar et al., 2019), The
environmental barriers include lack of incentives to
promote greener activities, low-tech waste resource
management systems (Cuerva et al., 2014), and
lack of adequate technologies used in land-filling
and disposal methods (Agrawal et al., 2021) among
others.
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The list of barriers goes on and concerted and mul-
tidisciplinary efforts are needed to address these chal-
lenges (Agrawal et al., 2021). Most of the barriers
are linked to uncertainty in operational or strategic
DM which cutting-edge technologies can play a big
role in proffering solutions, especially in this AI age.
For instance, the problem of ”Lack of a standard sys-
tem for data collection and performance assessment”
(Kumar et al., 2019) can be addressed by leveraging
IoT and AI for tracking, monitoring, and analysing
products’ performance and usage on real-time. This
will then eliminate the uncertainties regarding product
residual values since real-time data will be collected,
stored, and processed for business and circularity de-
cisions. It could help in deciding incentives for re-
verse logistics purposes and creating transparency for
circular SC. While it is not the intention of this paper
to address all the challenges, the paper proposes solu-
tions to address some of these barriers via the use of
industry 4.0 technologies such as AI, IoT, and ma-
chine learning (Elghaish et al., 2022). specifically,
these technologies can help in tracking products in
real-time, gathering data, and analysing such data on
a real-time basis which could improve business value,
and achieve resource efficiency and a safe environ-
ment. Technology has the capacity to pursue the var-
ious aspects of the TBL, so the next section will look
at how technological potentials are available for en-
abling and implementing CE.

2.2 Opportunities/Enablers of Circular
Economy

Though there are numerous barriers to CE implemen-
tation as identified in Section 2.1, there are also many
opportunities and drivers for the implementation of
CE, especially where emerging technologies can
serve as enablers of CE practices to overcome the
challenges (Lopes de Sousa Jabbour et al., 2018;
Mboli et al., 2022; Bressanelli et al., 2018). Some
of these emerging technologies will be identified in
this section. In the construction sector, there have
been efforts that proposed the integration of IoT
and deep learning for detecting the deterioration of
structural health for bridges’ elements caused by
environmental factors. This can extend the lifecycle
of these elements in operations when dedicated
early(Elghaish et al., 2021). Digital technologies
could also be used for innovative business models
that aim to pursue CE practices. For instance, IoT
and Big Data analytics are being used by businesses
to servitise business today (Bressanelli et al., 2018).
As is the case with most academic work in this area,
this work was conceptual, limited to the construction

sector, and lacks real-time data collection which is
critical for CE. The use of technologies as enablers
for CE requires collection of real-time data for
effective analysis and decisions making (Agrawal
et al., 2021). Therefore, a framework that uses
low-cost sensors in reusable products or devices to
gather data was proposed in (Ramadoss et al., 2018).
The framework employs AI to analyse the collected
data so that reusable materials can be detected and
eventually reused for other products. While this
appears like a step in the right direction, it was a
theoretical/conceptual discussion that lack practical
implementation and evaluations. In practice though,
there are companies that are making efforts towards
CE implementations, though slow but still encourag-
ing. such examples include Philips Lighting, Cisco’s
sports shoes, Arup’s circular building, Uber, Airbnb
and many other examples as highlighted in (Nobre
and Tavares, 2017; Uçar et al., 2020). Another work
also identified the roles of digital technologies in
supporting CE, based on a literature review with 3
case studies which evaluated the relationship between
CE and digital technologies. Business Model Canvas
was employed for integrating R-principles such as
reuse, remanufacture and recycle for that research
(Uçar et al., 2020). Two roles of digital technologies
were identified as:

• “Digital technologies as an enabler: how digital
technologies can facilitate the development of CE
and improve the collaborations between actors of
its ecosystem?

• Digital technologies as trigger: how digital tech-
nologies can initiate or lead to innovation pro-
cesses or outcomes or associated organisational
routines and mechanisms?” (Uçar et al., 2020)

These works and others not cited here all indicated
that emerging technologies can play important roles
in the implementation of CE whether as an enabler
or a trigger. Since the main issue starts with the
LE which practices a linear SC, the first step is to
create a closed-loop supply chain (CLSC) leading to
CSC which is entirely different from the linear SC
by employing appropriate technologies (Mboli et al.,
2022). However, CLSC is not enough as it basically
represents the combination of forward and reverse
logistics such as movement of goods to consumers
and back to the original destination. A more preferred
system is the CSC which is not just about closing the
loop but also considers how circular the system is,
the value it creates, how resource efficient and how
sustainable it is (Mboli et al., 2022; Brändström and
Eriksson, 2022; de Lima et al., 2022). A CSC entails
a firm reusing or repurposing products, components,
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or materials and returns from customer to convert
same into new or refurbished products. This can
either be for same usage or different usage altogether
but it aims to minimise the use of raw materials and
waste generation. Due to its advantage over a CLSC,
it can be augured that scholars have lately raised
interest in exploring CSC and its benefits especially
management of uncertainties (de Lima et al., 2022).

Therefore, a novel innovative circular business
model that can serve as a DSS for business is pre-
sented. The model leverages on 4 Rs (reuse, repair, re-
manufacture/refurbish, and recycle) which are mostly
discussed in CSC literature (de Lima et al., 2022;
ResCoM, 2017). The novel model also draws strength
from a cascading framework presented in (Campbell-
Johnston et al., 2020). Hence, the five main terms that
this AI-powered model builds on are reuse, repair, re-
manufacture, recycle, and cascade. In practice, The
work will use technology to create 5 different cycles
in such a way that a product, its components, or its
inherent materials will pass through based mainly on
it lifecycle and use cycle and the next section will dis-
cuss how this is done.

3 THE AI-Power DSS FOR
CIRCULAR ECONOMY
BUSINESS MODEL

As many studies pointed out some barriers mentioned
in Section 2.1, most of the barriers are either di-
rectly or indirectly linked to technology. For instance,
lack of SC integration and effects of SC complexity,
lack of industrial support, quality of finished prod-
ucts, profit and market demand level, associated un-
certainty risk, lack of technical and technological ca-
pacity, cost and financial constraint, and top manage-
ment resistance were pointed out in (Agyemang et al.,
2019). It can be argued that a robust circular business
model with real-time, tracking, monitoring and prod-
uct analysis will provide the ability for businesses to
make both operational and strategic data-driven deci-
sions. Therefore, the top management will likely em-
brace it once decisions making becomes easier, SC
visibility and transparency could also help in mitigat-
ing the SC complexities. And this could a long way
in answering the challenges. Some businesses are un-
able to reuse materials from returned products since
the status or quality of those is unknown haven been
with users for sometimes. other barriers already iden-
tified from the analysis of scholars include the lack of
a standard system for data collection and performance

assessment and poor CE knowledge, scepticism to the
quality of refurbished and recycled products, need for
advancement of technology and facilities, and high
cost of establishing eco-industrial chains (Badhotiya
et al., 2021). Following what emerging technologies
are capable of accomplishing as discussed in Sec-
tion 2.2, it can be argued that this is right to explore
the capability of these technologies in domains with
no standard taxonomies with numerous uncertainties.
Hence, this paper proposed an AI-Power DSS for CE
Business Model which will be discussed in the fol-
lowing section.

3.1 AI-Power Decisions Support System
for Circularity Decisions

This is an AI component of a CEBM as proposed in
(Mboli et al., 2022) that utilises the power of AI for
material circularity and business decisions. The work
is a transformation of linear forward SC to a CSC
via enabling technologies. Various AI types such as
expert systems, rule-based systems, machine learn-
ing, deep learning, fuzzy logic systems, and so on
exist, however, this work employs a hybrid AI sys-
tem consisting of rule-based, machine learning, and
fuzzy logic systems. There are basically five circu-
lar keywords that the model depends on, which cre-
ates five different routes for the efficient and circular
flow of materials, products, and components. These
fives routes are also referred to as classes in techni-
cal terms for implementation in IoT and AI-enabled
circular model as depicted in 1 and discussed in the
following paragraphs.

The first route is Reuse which is a term that covers
all operations where a product is, or its components
are, put back into service for a new use cycle. Com-
ponents of a product can be reused in a new product
as well. (ResCoM, 2017). In the context of this work,
reuse (Figure 1) specifically refers to functional prod-
ucts/components that the first users intend to change
due to other reasons other than failure. It implies the
product is ready for a secondary user without any up-
date or upgrade and can be redistributed almost im-
mediately. The real-time data and analysis provide the
firm with up-to-date status and value of the product,
lowering the complexity of DM regarding the prod-
uct. This enables businesses to make decisions such
as the right amount of incentives, the logistics costs,
and the cost of securing a secondary market with min-
imal or no risk.

The second route is Repair, which focuses on cor-
recting “specific faults in a product to bring it back
to satisfactory working condition” (ResCoM, 2017).
Here, the repair route/class will normally apply to
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Figure 1: An Internet of Things-enabled decision support
system for a CEBM. Source: (Mboli et al., 2022).

products or components that need just minor fixes to
get them working again. The costs associated with
this route will normally be low which the AI model
can predict easily and also support DM around incen-
tives and secondary market.

The third route is Remanufacture which “denotes
the process of disassembly of products into compo-
nents, testing and recombining those components into
a product of at least original performance”. (ResCoM,
2017). In most cases, the resultant new product might
be given a warranty that is similar to that of an equiv-
alent product manufactured out of all new parts but
this will normally be decided by the business. Given
that Refurbishment refers to the process of returning
a product to a satisfactory working condition (Ghar-
falkar et al., 2016; ResCoM, 2017), this work cate-
gorises refurbishment to the same class as remanu-
facturing to avoid the disagreements and ambiguity
between the two terms.

The fourth route is Recycle which is “the pro-
cess that recovers material from products at the end of
their lifecycle. The materials recovered feed back into
the process as feedstock for the original or other pur-
poses” (ResCoM, 2017). The focus here is on upcy-
cling which can be described as “upgrading because
the resulting outcomes still need to enter the recycling
infrastructure” to create a product of higher quality or
value than the original (Korley et al., 2021). The pur-
pose here is to pursue zero waste, a CE key target,
hence, its choice over downcycling. Downcycling is
“recycling materials into new materials of lower per-
formance and/or functionality.” (ResCoM, 2017).

The fifth and the last route is Cascade “Cascade
here refers to the recovery of materials which can no
longer be used by the same company/industry or can-
not be employed for the original purpose but can still
serve another purpose whether in the same company
or a different company. For instance, textile material

can serve different purposes such as clothing, furni-
ture, carpeting”, etc (Mboli et al., 2022; Mishra et al.,
2018).

The main aim of this novel AI-powered CE busi-
ness model is to track and monitor the real-time status
of products and components to make material circu-
larity decisions based on the five routes/classes ex-
plained above, which currently do not exist. The de-
cision is made based on real-time data on lifecycle,
use cycle, usage pattern, temperature, and other fac-
tors as they contribute to the effects of wear and tear
on products, components, and the inherent materials.
“A lifecycle of a product starts when it is released for
use after it has been (re)manufacture. It ends when it
is disposed of (landfill/material recycling) or disman-
tled to harvest/reuse its components. The lifecycle of
some (or all) of the components can continue in new
products when the lifecycle of a product ends. If an
essential amount of components form part of the same
new product, the product lifecycle continues in that
product.” (ResCoM, 2017). This implies that a prod-
uct will still fail and not be suitable for use once its
lifecycle has elapsed though it might not have been in
use from the time it was (re)manufactured. Therefore,
if the lifecycle of a product and its components can
be monitored, the barriers relating to scepticism on
the quality of returned products as identified in Sec-
tion 2.1 can be overcome. Another factor to monitor
on a real-time basis is the quality of the products re-
garding the use cycle or mean time to failure (MTTF)
cycle (Motovilov and Lutchenko, 2022). The factor
is the information about how many times the prod-
uct or components should be used before it fails due
to wear and tear. Therefore, lifecycle depends on the
duration or lifespan of a product/component which is
drawn from constituting materials, MTFC is the rec-
ommended number of times used and the duration of
usage minus the actual number of times and duration
of usage. This leads to a third factor that needs to
be monitored too and that is consumer behaviours or
consumer usage patterns of a product. This also de-
pends on the number of users per product and the sea-
son as well. With this information, the AI and IoT-
backed model is able to provide insights for making
decisions as will be seen later. This will also motivate
businesses in implementing CE as the uncertainty bar-
rier identified in (Badhotiya et al., 2021) is overcome.
The key component of the model is performing de-
scriptive, diagnostics, predictive, and prescriptive an-
alytics in CEBM is the Intelligent Material Circularity
Detector (IMCD) which will now be discussed in the
next section.
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3.1.1 Intelligent Material Circularity Detector

The IMCD is an intelligent component that works
with real-time sensor data generated from CEBM.
CEBM is an IoT-enabled circular business model that
uses IoT chips to monitor products on a real-time ba-
sis and transmit data via WIFI. It depends on seman-
tic technologies and an ontological model that works
with reliable 5G networks for real-time products and
components tracking, monitoring, and analysis. The
focus of this paper is to discuss the working and ben-
efits of IMCD, which is the re-engineered building
block of CEBM. However, the full details on how
CEBM work, its architecture, the experimental use
case, the datasets, and more information can be found
in (Mboli et al., 2022). In favour of size and to keep
this work within its limits and scope, the paper will
now focus on IMCD only.

Figure 2: Intelligent Material Circularity Detector.

Data is obtained from smart products with the aid
of IoT and reliable 5G networks and analysed with AI
to support DM on the future flow of products. From
the analysis, five outcomes referred to as routes or
classes discussed earlier are possible as seen in Fig-
ure 2. Every product is monitored against function-
ality first, and if it is functional, re-commerce is pos-
sible without further analysis else, a component-by-
component examination is necessary to detect which
component has failed and that may either lead to re-
pair, remanufacture, recycle, or cascade loop (see Fig-
ure 2). The IMCD is dependent on the principle of
AI that utilises a rule-based system, fuzzy logic, ma-
chine learning, and semantics technology that support
DM despite the uncertainties and ambiguities around

residual values of products. Factors such as mate-
rial lifecycle, product use cycle, product usage dura-
tion, temperature, and current status of the product are
considered for this work. Each product is constantly
and automatically monitored for reusability and fail-
ure analysis by examining its components for func-
tionality with the IMCD. This ensures that the mate-
rial stays longer in use via the 5 different routes of
CEBM, thereby keeping the products, components,
and inherent materials in use longer at the highest
value possible. The next subsection will outline how
these AI rules are developed using machine learning,
fuzzy logic, and semantic web technologies.

3.1.2 Tools and Implementation

The work is implemented with Python, GraphDB, and
Protegee from modeling to data collection, analysis,
and visualisations. Fuzzy logic was employed due
to its capability to handle uncertainties including is-
sues of partial or incomplete data. The procedure for
implementation in protegee using web ontology lan-
guage (OWl) is fully explained in (Mboli et al., 2022).
Python programming was chosen for its wide accept-
ability, compatibility, and high-level nature. Imple-
mentation using fuzzy logic follows standard proce-
dures as recommended in (Wang and Mendel, 1992).
Since the focus is to classify products, components,
and materials based on lifecycle, use cycle, usage du-
ration, temperature, and usage patterns. In python, the
implementation package is called “SciKit-Fuzzy”2

which contains default membership functions that can
be 3, 5, 7, or customised functions. This provided the
opportunity to transform the independent variables
(properties of products, components, and materials)
and the dependent variables (classes) 2 to the 7 de-
fault membership functions available in Python. So,
instead of the Very Low, Low, High, Medium, and
Very High, IMCD was implemented with excellent,
good, decent, average, mediocre, poor, and dismal
fuzzy memberships. The classes reuse, repair, reman-
ufacture, recycle, and cascade were developed using
customised membership functions and the tempera-
ture was broken into high, good, and poor with the
customised membership functions as well. An exam-
ple of this is shown in Figure 4 for lifecycle only
though all the properties followed a similar approach.
All the properties are the independent variables except
the class (routes/outcomes) is the dependent variable
since the purpose is to predict the class of each prod-
uct, component or material based on its properties.

2Scikit-Fuzzy is a collection of fuzzy logic algorithms
intended for use in the SciPy Stack, written in the Python
computing language. https://tinyurl.com/5n7766hh
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Figure 3: Initial Membership Functions for Durability.

After fuzzification, Figure 3 then became Figure
4 as implemented with SciKit-Fuzzy for convenience.

Figure 4: Fuzzy Representation of Use Lifecycle as An-
tecedent (Input).

3.1.3 Rules and Decisions Matrix

The seven default intervals are “dismal”, “poor”,
“mediocre”, “average”, “decent”, “good” and “excel-
lent”. In order to prepare the real-time datasets for
modelling using a fuzzy modelling system, the fol-
lowing steps were adopted from (Wang and Mendel,
1992) for transforming the dependednt and indepen-
dent variables to triangular fuzzy sets since it is easier
to represent in embedded controllers as shown in Fig-
ure 4:

• Divides the input and output spaces of the given
numerical data into fuzzy regions.

• Generates fuzzy rules from the given data.

• Assigns a degree of each of the generated rules
for the purpose of resolving conflicts among the
generated rules.

• Creates a combined fuzzy rule base based on both
the generated rules and linguistic rules of human
experts; and,

• Determines a mapping from input space to output
space based on the combined fuzzy rule base us-
ing a defuzzifying procedure.

Several rules were created in line with recommen-
dations from CE and other disciplines’ domain ex-
perts (DEs) as it is an interdisciplinary work (Mboli

et al., 2021). For the scope and limited space, the de-
scription of the semantic web can be found in (Mboli
et al., 2022; Mboli et al., 2021) and the machine learn-
ing models used and the entire rule sets are not in-
cluded here, but below is a sample of the rules is be-
low. This is a simplified rule that depends on the cur-
rent status of the product but it is just one of the many
rules.

“IF lifecycle is good usecycle is excellent at room
temperature THEN class is reuse”

Rule14 = ctrl.Rule(lifecycle[’good’]
&usecycle[’excellent’],classes[’Reuse’])

The implementation of these rules makes classifi-
cations of products and components possible to sup-
port businesses in DM based on the properties. The
same rule is visualised in Figure 5 revealing the vari-
ous conditions as membership functions and the pos-
sible outcomes when simulated with data in Python.

Figure 5: Visual representation of the input n-dimensional
array for rule14.

3.1.4 Use Case and Description of Datasets

The datasets used in this work consist of two parts.
The first part is from a company that manufactures
and markets coffee machines via LE. The datapoints
in this dataset include MTTF cycle, lifecycle cycle,
manufacturing cost, logistics cost, etc. as described
in (Mboli et al., 2022) The other part of the datasets
is real-time sensor data from the IoT-enabled model.
The datapoint from this part includes temperature,
start time, end time, usage duration, and so on as seen
in Figure 6 (Though illegible, but it is only an indi-
cation as the datasets is larger than can be included
visibly here).

While it is difficult to fully describe the datasets
and each datapoint here, this section only provides a
brief overview of it for the benefits of understanding
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Figure 6: A snapshot of the datasets showing days, times,
lifecycle etc. of products and components.

Figure 7: Use Case Overview. More at (Mboli et al., 2022).

the working of the AI-powered CE model. The com-
pany is practicing LE and exploring means of circular
business model for manufacturing and marketing cof-
fee machines. Generally, coffee machines are made
of 6 different materials and 7 different components as
grouped in Figure 7. Figure 7 is only for illustration
and has no link with the company that provided the
datasets for this work. Figure 6 It is difficult to make
sense ofOR comprehend Figure 6 without analysis.
This necessitated the analytical processes to draw in-
sights from the data make data-driven decisions that
are environmentally, economically, and socially sus-
tainable.

3.1.5 Results and Discussions

Insights on the classification of products/components
into the 5 classes can support a company’s DM over
which component or product to increase/reduce pro-
duction, therefore enabling just-in-time (JIT) strate-
gies and so on. Considering Figure 8, the majority
of the components are classified into “Reuse” class,
while a few fall into “Recycle” and “Repair” classes.
“Cascade” and “Remanufacture” classes have the
least number of components based on the datasets.
This kind of information can be useful for companies
that are practicing or intend to implement JIT and can
even support inventory management, strategic and op-
erational DM.

Figure 8: Components Distribution by Class showing Reuse
Route with the Highest Quantity.

Similar insights from the datasets is in Figure 9
where products used by day is presented. The figure
reveals that of the analysed products, more products
are being used on Tuesdays than the other days with
Sundays being the least. This kind of insights can
inform DM for businesses to determine the days of the
week that their products are being used the most, and
which days they will likely experience high product
failures, issues, or returns. This can support business
DM toward CSC planning, return prediction, and so
on.

Figure 9: Products Usage Variations by Day.

Information on products’ temperature variations
can also suggest why and when these products may
fail as seen in Figure 10. With the ability to drill
down into the data, the temperature at which a prod-
uct is being used can affect how long the product will
last. If it is always used at an adverse temperature
other than the recommended temperature, then there
is a high chance that the product may not last up to its
lifecycle and/or MTTF cycle.

CEBM is capable of predicting the future class
of a product or its components based on real-time
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Figure 10: Temperature Distribution by classes and Years.

datasets on the properties of the products and current
classes using machine learning algorithms. The sim-
plified and summarised results of prediction is pre-
sented in Figure 11 for easy visualisation and com-
prehension. A similar prediction result is also possi-
ble using SPARQL Queryy as can be seen in 12 im-
plemented in GraphDB. The presented data included
class, returns on sales (ROS), use cycle, lifecycle and
temperature for each product.

Figure 11: Interactive Products Visualization Using
GraphDB.

Figure 12: Product Classification from SPARQL Query.

Acquiring data is important only if value can be
derived from the data, else a waste of resources and
time. Therefore, this AI-Powered model was devel-
oped to help businesses in acquiring and making sense
of their data for material circularity and business intel-
ligence. Four standard types of data analytics which
are descriptive, diagnostic, predictive, and prescrip-
tive analytics as discussed in (Menezes et al., 2019)
are used for this work. Descriptive analytic answers
such questions as what is happening in the business?
Comprehensive, accurate, and live data with effective
visualisations such as Figures 8, 10, 9, 11 and 12

seen in this work can be used to answer such ques-
tions. Diagnostic analytics provide reasons to why
what was discovered in the descriptive analytics stage
happened. The possibility to drill down to the root
causes of what is happening in the business is done at
this stage to further understand the situation. It entails
the ability to eliminate all confounding information
using integrative dashboards, so that the issues iden-
tified, and the causes become even clearer for sup-
porting informed DM. Predictive analytics offers an-
swers to the question of what will probably happen if
nothing is done. It investigates if business strategies
have remained moderately consistent over time but
now yielding different outcomes. Historical patterns
and datasets from the use case are employed to predict
specific outcomes using machine learning algorithms
suitable for each dependent variable as was done in
this work where combinations of technologies were
used for various predictive analysis. Most important
is what happens with the predicted results and that
is prescriptive analytics, requiring DM to take action
based on recommended solutions. Prescriptive ana-
lytics suggest what need to be done to mitigate the is-
sues discovered in the first 3 stages of the analysis. At
this point, recommended actions based on champion
and challenger testing strategy is employed which ex-
plains why multiple strategies and techniques includ-
ing DEs were used in developing the model (Menezes
et al., 2019). Advanced analytical techniques could
then be applied to make specific recommendations
regarding products circularity and returns/values as
seen in Figure 13. A comparison of the performance
of the AI-powered model presented in this work and
LE model shows that the novel AI circular model pre-
sented here outperformed the LE in all scenarios (see
Figure 13). The scenarios presented are for reuse,
repair, remanufacture and recycle. Having demon-
strated how technologies can be used to provide DM
support to businesses in this work, the next section
will focus on conclusions, recommendations, and fu-
ture research directions.

Figure 13: Model Contribution and Business value.

The ontological model was evaluated for technical
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compliance in OOP! scanner as presented in (Mboli
et al., 2022) while the DSS was evaluated for quality
of modelling and domain coverage with DEs as pre-
sented in (Mboli et al., 2021).

4 CONCLUSION AND
RECOMMENDATIONS

This paper proposed an AI-powered DSS model that
leverages hybrid AI concepts to enable CE principles.
The results of the novel model outperformed LE as
seen in Figure 13, where reuse scenario produced a
ROS of 60% as against 40% of LE. This is due to the
fact reuse loop has no manufacturing costs but there
is optimised cost for secondary market logistics and
incentives. The work provides businesses with real-
time tracking, monitory and data analytics of their
products which then reduces complexity due to uncer-
tainties and supports DM. With these results, it sug-
gests that emerging technologies can help achieve the
following:

Resource efficiency and optimisation: AI algo-
rithms are capable of optimising the use of resources
in manufacturing and production processes, reducing
waste and increasing efficiency. As demonstrated,
reuse, repair, remanufacture, recycle and cascade
were created as a means of product life extension en-
abled with technologies.

Predictive maintenance: With the real-time de-
scriptive, diagnostic, predictive, and prescriptive an-
alytics as done in this work, AI can help predict when
an equipment, product or its components is likely to
fail, allowing for proactive maintenance that can ex-
tend the life of these products, components or re-
sources via re-commerce. This supports SDG 12 and
will potentially contribute to the e-waste sub-indicator
for SDG 12.5.1 now at 17% as discussed in Section 1.

Recycling and waste management: The model and
indeed AI can be used to sort and classify waste for re-
cycling, making it more efficient and eliminating the
amount of waste sent to landfills with upcycling.

CSC management: Another critical area of CE is
the circular flow of materials and products in the SC,
reducing waste and making it easier to track the origin
of products/materials which AI can optimally enable.
This goes beyond SC visibility as this model also en-
abled real-time tracking, monitoring, and analysis of
products, components and materials whether in tran-
sits or already in use at the users’ end.

The bottlenecks encountered during this work in-
clude a lack of standard taxonomies for CE, a lack
of evaluation frameworks for interdisciplinary models
such as the smart AI model, a lack of data availabil-

ity, and limited DEs as CE is relatively new. There-
fore, future efforts in this area could be channeled to-
ward addressing these limitations. The particular fo-
cus of this paper was on a business-only DSS where
businesses are able to address uncertainties around
products residual values, incentives, secondary mar-
ket costs and other re-commerce-related costs before
delving into CE. Therefore future research in this area
should consider DSS for other SC partners so that
they are also able to make informed decisions. Other
areas that need to be researched include the explain-
ability and interpretability of complex AI models such
as the one presented here to encourage usability and
acceptance as this was picked up by DEs during eval-
uations. As it is the case with many IoT and AI ap-
plications, Security and privacy issues remain a con-
cern and were also highlighted by DEs and evaluators
of this work. So this is still a challenging area that
future researchers could look into. Policies around
market-based incentives or finance are other aspects
to consider if CE practices is to be recommended to
all businesses and users.
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Brändström, J. and Eriksson, O. (2022). How circular is a
value chain? proposing a material efficiency metric to
evaluate business models. Journal of Cleaner Produc-
tion, 342:130973.

Bressanelli, G., Adrodegari, F., Perona, M., and Saccani, N.
(2018). Exploring how usage-focused business mod-
els enable circular economy through digital technolo-
gies. Sustainability, 10(3):639.

Artificial Intelligence-Powered Decisions Support System for Circular Economy Business Models

665



Brown, J. D. and Wahlers, R. G. (1998). The environ-
mentally concerned consumer: An exploratory study.
Journal of Marketing Theory and Practice, 6(2):39–
47.

Campbell-Johnston, K., Vermeulen, W. J., Reike, D., and
Brullot, S. (2020). The circular economy and cascad-
ing: towards a framework. Resources, Conservation
& Recycling: X, 7:100038.

Cuerva, M. C., Triguero-Cano, Á., and Córcoles, D. (2014).
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Uçar, E., Le Dain, M.-A., and Joly, I. (2020). Digital
technologies in circular economy transition: evidence
from case studies. Procedia cirp, 90:133–136.

Wang, L.-X. and Mendel, J. M. (1992). Generating fuzzy
rules by learning from examples. IEEE Transactions
on systems, man, and cybernetics, 22(6):1414–1427.

WEF (2014). Towards the circular economy: Accelerat-
ing the scale-up across global supply chains. https:
//tinyurl.com/nhjsfxva. Accessed May 10, 2019.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

666


