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Abstract: We analyzed effectiveness of three generative pre-trained transformer (GPT) models in answering multiple-
choice question (MCQ) assessments, often involving short snippets of code, from introductory and interme-
diate programming courses at the postsecondary level. This emerging technology stirs countless discussions
of its potential uses (e.g., exercise generation, code explanation) as well as misuses in programming educa-
tion (e.g., cheating). However, the capabilities of GPT models and their limitations to reason about and/or
analyze code in educational settings have been under-explored. We evaluated several OpenAI’s GPT models
on formative and summative MCQ assessments from three Python courses (530 questions). We found that
MCQs containing code snippets are not answered as successfully as those that only contain natural language.
While questions requiring to fill-in a blank in the code or completing a natural language statement about the
snippet are handled rather successfully, MCQs that require analysis and/or reasoning about the code (e.g., what
is true/false about the snippet, or what is its output) appear to be the most challenging. These findings can be
leveraged by educators to adapt their instructional practices and assessments in programming courses, so that
GPT becomes a valuable assistant for a learner as opposed to a source of confusion and/or potential hindrance
in the learning process.

1 INTRODUCTION

This paper analyzes the effectiveness of gener-
ative pre-trained transformers (GPT), specifically
text-davinci-* models, to handle multiple-choice
question (MCQ) assessments, often involving small
snippets of code, from introductory and intermedi-
ate programming courses. We manually collected
a sizeable data set of 530 MCQs from three exist-
ing Python courses. Using a combination of sim-
ple pattern matching and manual curation, we orga-
nized the questions into meaningful categories ac-
cording to their type (e.g., true/false questions, or
questions asking about an output of the provided code
snippet). We analyzed the performance of the GPT
models across the categories to determine if ques-
tions of a certain type are handled more successfully
than questions of other types. We also benchmark the
older InstructGPT text-davinci-001 model against
the more recent GPT-3.5 text-davinci-002 and
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text-davinci-003 models to gauge the rate of im-
provement that has been achieved over the past sev-
eral years.

There has been a burst of public attention to GPT
models’ potential impact on education as the result of
the recent release of OpenAI’s ChatGPT1. For exam-
ple, the tool has been blocked by New York City pub-
lic schools (Elsen-Rooney, 2023) because it may en-
able student plagiarism and provide inappropriate or
incorrect content. Universities have also been react-
ing, adjusting assignments (Huang, 2023) and seek-
ing out tools like GPTZero that detect text generated
by AI tools (Bowman, 2023). OpenAI have released a
similar tool themselves. However, reliability of these
tools has not been thoroughly tested.

Programming instructors as well as CS educators
in general have been sensitized to this development
even earlier. Large language models, such as GPT,
can generate computer program code (i.e., perform
computer program synthesis) with a high degree of
success. They can also explain computer program
code in natural language terms. Recently, a number

1ChatGPT. https://chat.openai.com/ [Accessed 2023-
01-26]
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of computer program code generation tools have been
released. Among these, the most prominent ones are
OpenAI’s Codex (Chen et al., 2021), DeepMind’s Al-
phaCode (Li et al., 2022), and Amazon’s CodeWhis-
perer (Ankur and Atul, 2022). GitHub’s Copilot2 (a
version of Codex) conveniently integrates with IDEs,
such as Visual Studio Code, and hence has attracted
much attention. Microsoft dubs Copilot as “Your
AI pair programmer” (a reference to pair program-
ming (Beck, 2000; McDowell et al., 2002)). Since
it is available for free to students and educators, it is
inevitable that learners will use it to complete their
course assignments and assessments. Similarly, there
are no technical or cost barriers to using ChatGPT
which can be, among many other things, leveraged
to generate answers to MCQ questions.

To investigate how GPT models handle the MCQ
assessments of various types in a programming ed-
ucation context, we analyzed the following research
questions:

• Is there a difference between how successfully the
GPT models handle questions that contain only
natural language and those that also contain snip-
pets of computer code?

• Are there particular types of MCQs that are more
challenging for the GPT models compared to
other types of MCQs?

By carrying out this work, we provide the follow-
ing contributions to the CS education research com-
munity. To the best of our knowledge, this is the first
comprehensive study that:

• Evaluates the performance of GPT models on
MCQ-style assessments that involve code snip-
pets, across different types of such questions.

• Lays a systematic foundation for discussions
about suitable uses of GPT models in program-
ming classes by providing quantitative analysis of
the models capabilities and limitations in handling
of computer code.

2 MOTIVATING EXAMPLE

Consider the below Python script that asks a user to
input a value which is expected to be a number. The
entered value of type str is cast to an int and di-
vided by the length of the raw input (str). Note
that the code defends against the possibility of a

2GitHub Copilot: Your AI pair programmer. Available
at: https://github.com/features/copilot [Accessed 2023-01-
20]

ZeroDivisionError which cannot really occur, as
explained below. However, this likely confuses GPT
models when answering questions about this snippet.

try:
value = input("Enter a value: ")
print(int(value) / len(value))

except ZeroDivisionError:
print("Very bad input...")

If a user enters 22, then the output of the script would
be 11.0 (i.e., 22 / 2). As shown in Figure 1, if one pro-
vides ChatGPT (one of the state-of-the-art GPT-3.5
models) with the code snippet and asks, “what would
be the output if the user enters 0,” (letting ChatGPT
choose from “A. 0.0” or “B. Very bad input...”), the
provided answer is “B. Very bad input...” Of course,
this is an incorrect answer because the length of the
string "0" is 1 and, hence, the output is 0.0 (as shown
in Figure 1).

A human learner making this error would likely
be suspected of having several crucial misconcep-
tions. Firstly, selecting the “B. Very bad input...”
option would be somewhat more understandable if
the value variable were not placed within the len()
function call. In that case, one could assume that the
learner simply failed to recognize that the output of
the input() function call is a str and assumed it
was an int instead. However, applying the len()
function to an int would result in a TypeError be-
ing raised. Hence, the only input that could theoreti-
cally raise a ZeroDivisionError would be an empty
string. However, even that input would not result in
that particular error because it would fail on an at-
tempt to cast the value variable to int (ValueError)
that would occur prior to the division. Overall, a hu-
man learner selecting the “B. Very bad input...” an-
swer over the correct “A. 0.0” would clearly demon-
strate a lack of understanding of the workings of this
simple snippet of code.

Figure 1 shows the output of ChatGPT when
asked to explain the code snippet line by line. In-
terestingly, the explanation is correct, including the
line where the division takes place. With respect to
the statement on that line, it declares that: “[it] takes
the input value and first converts it to an integer us-
ing the int() function, then divides it by the length
of the input value using the len() function.” Fur-
thermore, Figure 1 also shows the output of ChatGPT
when asked to generate Python code with the same
functionality as the provided code snippet. From the
natural language description, ChatGPT generates cor-
rect Python code with the specified behavior.

In this example, a GPT model is capable of cor-
rectly explaining the behavior (execution) of a com-
puter program on a local level (i.e., line by line). It
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Figure 1: The upper-left screenshot depicts a conversation with ChatGPT when asked to explain a code snippet line by line.
It correctly explains the bahavior (1). The lower-right shows a conversation with ChatGPT when asked to generate the code
snippet with the same behavior. The generated code is correct (2). The upper-right screenshot depicts a conversation with
ChatGPT when asked a straightforward MCQ about a code it can correctly explain line by line as well as correctly generate.
The answer is wrong (3)—compare the actual output of the code snippet which is shown in the lower-left corner (4).

is equally capable of generating the computer pro-
gram from a natural language description. Yet, it fails
spectacularly in answering simple questions about the
very same program. This is quite likely in stark con-
trast with a typical human learner. A learner capable
of independently writing the program from the natu-
ral language description as well as correctly explain-
ing its execution line by line, would quite likely be in
a position to answer such questions with ease.

3 RELATED WORK

In prior work, we evaluated the capability of a
GPT model (text-davinci-003), to pass a diverse
set of assessment instruments, including MCQs, in
the realistic context of full-fledged programming
courses (Savelka et al., 2023). We found that the
current GPT models are not capable of passing the
full spectrum of assessments typically involved in
a Python programming course (below 70% on even
entry-level modules); but a straightforward applica-
tion of these models could enable a learner to obtain a
non-trivial portion of the overall available score (over

55%) in introductory and intermediate courses alike.
We observed that an important limitation of the GPT
models is their apparent struggle with activities that
require chains of reasoning steps, and that there ap-
peared to be a difference in success rate between
MCQs that contain a code snippet and those that do
not (Savelka et al., 2023). In this paper, we further
explore this phenomenon, focusing on discovery of
more fine-grained properties of MCQs that are chal-
lenging for the GPT models to handle.

To the best of our knowledge, there is no other
study of GPT’s performance on MCQs from the pro-
gramming domain. There is work evaluating the per-
formance on MCQ data sets from other domains; in
many cases the tool does better than random chance;
sometimes even well enough to pass a test. For ex-
ample, Robinson et al. apply InstructGPT (Ouyang
et al., 2022) and Codex to OpenBookQA (Mihaylov
et al., 2018), StoryCloze (Mostafazadeh et al., 2016),
and RACE-m (Lai et al., 2017) data sets which fo-
cus on multi-hop reasoning, recall, and reading com-
prehension, reporting 77.4-89.2% accuracy (Robin-
son et al., 2022). In some cases, GPT can gener-
ate code when applied to programming assignments
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in higher education courses. Drori and Verma used
Codex to write Python programs to solve 60 compu-
tational linear algebra MCQs, reporting 100% accu-
racy (Drori and Verma, 2021). Others have used GPT
models to solve various MCQ-based exams, includ-
ing the United States Medical Licensing Examination
(USMLE), with accuracy around 50% (Kung et al.,
2022; Gilson et al., 2022; Liévin et al., 2022), the
Multistate Bar Examination (MBE) (Bommarito II
and Katz, 2022), and the American Institute of Certi-
fied Public Accountants’ (AICPA) Regulation (REG)
exam (Bommarito et al., 2023).

Although, programming-related MCQs have not
been studied directly, some researchers in adjacent
fields have studied reasoning about similarly formal
topics. Although, GPT can often answer questions
about systems and rules, it is especially challenged by
tasks that involve applying them and reasoning about
their implications in novel examples. Hendryks et
al. created data set that includes a wide variety of
MCQs across STEM, humanities and arts, with GPT-
3 performing at levels above 50% for subjects such as
marketing and foreign policy, but below 30% for top-
ics like formal logic (Hendrycks et al., 2020). They
found that the model performed particularly poorly
in quantitative subjects. For example, in Elementary
Mathematics they note that GPT can answer questions
about arithmetic order of operations (e.g. that mul-
tiplications are performed before additions), it can-
not correctly answer questions that require applying
this concept. They also note that GPT performance
is not necessarily correlated with how advanced the
topic is for humans, doing better at College Mathe-
matics than Elementary Mathematics. Finally, they
noted that GPT does poorly on tests of legal and moral
reasoning (Hendrycks et al., 2020).

Lu et al. studied GPT models’ performance on a
large data set consisting of 21,208 MCQs on topics
in natural science, social science, and language (Lu
et al., 2022). They prompted the models to produce
an explanation along with its answer and reported 1-
3% improvement in accuracy (74.04%). In this work,
we do not adopt the approach and, hence, leave space
for future work as it appears quite promising and
definitely applicable in the context of programming
MCQs.

There is a growing body of related work on GPT
models’ capabilities in solving programming tasks
by generating code. Finnie-Ansley et al. evaluated
Codex on 23 programming tasks used as summative
assessments in a CS1 programming course (Finnie-
Ansley et al., 2022). Denny et al. focused on the
effects of prompt engineering when applying Copi-
lot to a set of 166 exercises from the publicly avail-
able CodeCheck repository (Denny et al., 2022). Out-

side of the educational context, there have been stud-
ies exploring GPT’s capabilities on competitive and
interview programming tasks. Chen et al. released
the HumanEval data set where Codex achieved 28.8%
success rate on the first attempt and 72.3% when al-
lowed 100 attempts (Chen et al., 2021). Li et al. report
Deepmind’s AlphaCode performance on Codeforces
competitions,3 achieving a 54.3% ranking amongst
5,000 participants (Li et al., 2022). Karmakar et al.
reported 96% pass rate for Codex on a data set of
115 programming problems from HackerRank4 (Kar-
makar et al., 2022). Nguyen and Nadi reported Copi-
lot’s effectiveness on LeetCode5 problems, achieving
42% accuracy (Nguyen and Nadi, 2022).

. Program code does more than control com-
puter execution; it also, some argue primarily, serves
as communication among developers (Knuth, 1984).
Since GPT is a text prediction model trained on code
in the context of human discussions about it, the
model’s representation of code is likely to capture
code’s design intent more strongly than code’s formal
properties. For example, work from multiple stud-
ies suggest that models that interpret code depend
heavily on function names and input variables (Mo-
hammadkhani et al., 2022; Yang et al., 2022). Al-
though, models like GPT are not trained to simulate
code execution, they can in many cases generate code
based on natural language description of the code’s
intent. Researchers have reported varying success at
generating code in response to programming assign-
ments, ranging from Codex’s 100% success gener-
ating Python computational linear algebra programs
(Drori and Verma, 2021), to 78.3% on some CS1 pro-
gramming problems (Finnie-Ansley et al., 2022), to
79% on the CodeCheck6 repository of Python pro-
gramming problems (Denny et al., 2022).

Researchers have identified distinct cognitive pro-
cesses involved in programming. Characterizing the
kinds of learning necessary to teach programming,
Robins et al. claim for example that the knowledge
of how programming constructs work is cognitively
different from the strategy or plan for how to build a
program; and that programming comprehension and
generation are distinct mental processes that must be
taught. Programming skill is a blend of related cog-
nitive processes; it is not surprising that a generative

3Codeforces. Available at: https://codeforces.com/
contests [Accessed 2023-01-22]

4HackerRank. Available at: https://www.hackerrank.
com/ [Accessed 2023-01-22]

5LeetCode. Available at: https://leetcode.com/ [Ac-
cessed 2023-01-22]

6CodeCheck: Python Exercises. Available at:
https://horstmann.com/codecheck/python-questions.html
[Accessed 2022-01-22]
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model would not mimic all these processes equally
well (Robins et al., 2003).

GPT’s ability to answer questions intended as ed-
ucational assessments naturally raises the question
of its use for cheating. Biderman and Raff noted
that GPT solutions can evade plagiarism detection
by code similarity tools such as MOSS (Biderman
and Raff, 2022). On the other hand, Wermelinger
notes that while Copilot-generated solutions can typ-
ically pass some tests, they do not pass enough to
get a passing grade on a typical assignment; he con-
cludes that Copilot can be a useful springboard to-
wards solving CS1 problems, but outside of very
common stereotyped beginners’ exercises, learners’
substantial contribution is still required (Wermelinger,
2023). Becker et al. include a broader discussion of
the opportunities and challenges posed by code gen-
erating tools (Becker et al., 2022).

4 DATA SET

We manually collected MCQ assessment exercises
from three Python programming courses. Python Es-
sentials - Part 1 (Basics)7 (PE1) aims to guide a
learner from a state of complete programming illit-
eracy to a level of programming knowledge which al-
lows them to design, write, debug, and run programs
encoded in the Python language. The course consists
of four content units and one completion (summary)
test. The units include (i) introduction to Python and
computer programming, (ii) data types variables, ba-
sic I/O, operations and basic operators, (iii) boolean
values, conditional loops, lists, logical and bitwise op-
erators, and (iv) functions, tuples, dictionaries, data
processing and exceptions.

Python Essentials - Part 2 (Intermediate) (PE2)8

is focused on more advanced aspects of Python pro-
gramming, including modules, packages, exceptions,
file processing, object-oriented programming. Simi-
larly to PE1, the course is organized into four content
units and one completion (summary) test. The course
units are (i) modules, packages, and pip, (ii) strings,
string and list methods, and exceptions, (iii) object-
oriented programming, and (iv) miscellaneous.

Finally, Practical Programming with Python9

7OpenEDG: Python Essentials - Part 1 (Basics). Avail-
able at: https://edube.org/study/pe1 [Accessed 2023-01-15]

8OpenEDG: Python Essentials - Part 2 (Intermediate).
Available at: https://edube.org/study/pe2 [Accessed 2023-
01-15]

9Sail(): Social and Interactive Learning Platform.
Available at: https://sailplatform.org/courses. [Accessed
2023-03-03]

Table 1: Descriptive statistics of the created dataset. Each
row provides information about the MCQs each of the
courses employ. Each column reports on the distribution
of the code content of each MCQ set in each course.

Course Units MCQ MCQ Course
(topics) (plain) (+code) Overall

PE1 4 53 96 149
PE2 4 65 83 148
PPP 8 89 144 233
Type Overall 16 207 323 530

(PPP) emphasizes hands-on experience with funda-
mental Python constructs and exposure to software
development tools, practices, and real-world appli-
cations. The course consists of eight units which
include (i) Python basics and introduction to func-
tions, (ii) control flow, strings, input and output, (iii)
Python data structures, (iv) object-oriented program-
ming, (v) software development, (vi) data manipula-
tion, (vii) web scraping and office document process-
ing, and (viii) data analysis.

In PE1 and PE2, formative assessments are called
quizzes while summative assessments are called tests.
The tests determine if learners pass the courses
whereas quizzes are meant as practice. The MCQs
often include small snippets of code for learners to
reason about. From the two courses, we collected
297 questions (179 have code snippets). PPP uses
MCQ-style inline activities as formative assessment
and tests as summative assessment. From this course,
we collected 233 MCQs (144 with code snippets). Ta-
ble 1 has additional details.

We used simple pattern matching combined with
manual curation as the second step to organize the
MCQs into several categories. The first distinction
was made between MCQs with code and MCQs with
no code. For an MCQ, to be considered as with code
one of the following two had to be true:

• Within the body of the question there had to be at
least one line fully dedicated to computer code.

• The choices were computer code expressions.
Inline mentions of names of functions or variables
were not considered as sufficient for an MCQ to be
considered with code.

The second distinction was made along the fol-
lowing lines, focusing on the overall syntax of what
the question writer asks the student to do:

• True/False
The learner is asked to assess the truthfulness of a
single statement. For example:

Developers that write code individually are
not expected to apply code standards.
A. True
B. False
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Figure 2: Distribution of MCQs into categories. Note that
the MCQs asking about the output of a code snippet as well
as MCQs focused on filling-in the blanks in a snippet are not
present in the MCQs with no code. This is to be expected
given the nature of those questions. The MCQs with code
are quite dominated by questions that ask about the output
of a code snippet as well as with questions of other type.
Otherwise, the distribution is relatively uniform.

Evaluate the following expression and deter-
mine whether it is True or False.
2 + 2 != 2 * 2

A. True
B. False

• Identify True/False Statement
The learner is asked to pick one or more answer
choices that are either true or false. Note that this
is different from the True/False questions (previ-
ous category). For example:

Which of the following statements is false?
A. The pandas module provides some CSV-
related methods.
B. Python has a built-in XML package with
several modules for XML parsing.
C. JSON data format has syntax to represent
all Python data structure types.
D. Python has a built-in csv module con-
taining methods for reading and writing into
CSV files.

Take a look at the snippet and choose one of
the following statements which is true:
nums = []
vals = nums[:]
vals.append(1)

A. nums is longer than ‘vals‘
B. vals is longer than nums
C. nums and vals are of the same length

• Finish Statement.
The learner is asked to complete a statement. For
example:

The ‘**‘ operator:
A. performs duplicated multiplication
B. does not exist
C. performs exponentiation

Right-sided binding means that the following
expression:
1 ** 2 ** 3

will be evaluated:
A. from right to left
B. in random order
C. from left to right

• Output
The learner is asked to identify the choice that cor-
responds to the output of a given snippet of code.
This category is applicable only to questions with
code. For example:

What is the output of the following snippet if
the user enters two lines containing 2 and 4
respectively?
x = int(input())
y = int(input())
print(x + y)

A. 2
B. 24
C. 6

What is the output of the following snippet?
my_list_1 = [1, 2, 3]
my_list_2 = []
for v in my_list_1:
my_list_2.insert(0, v)
print(my_list_2)

A. [1, 2, 3]
B. [1, 1, 1]
C. [3, 3, 3]
D. [3, 2, 1]

• Fill-in Blanks
The learner is asked to fill in a code snippet by se-
lecting the appropriate choice as an answer. This
category is applicable only to questions with code.
For example:

Fill in the blank of the is_negative func-
tion definition shown below, so that the func-
tion returns True when the argument pro-
vided to num is a negative number and returns
False otherwise.
def is_negative(num):

return _________________

A. not (num > 0)
B. num > 0
C. num <= 0
D. num < 0
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The following code snippet should open
the myfile file and assign the lines to the
all_lines variable. Which of the options
below should be used to fill in the blanks?
with __________________________

all_lines = file.readlines()

A. open("myfile",’r’) as file:
B. "myfile" in open as file:
C. with open "myfile" as file:

• Other
Any MCQ that does not fall into any of the above
categories. For example:

How many times will the code snippet below
print ‘X‘.?
for i in range(1, 7):

for j in range(2, 6):
print(’X’)

A. 24
B. 28
C. 35

Notice that the above example is closely related
to the questions asking for the output of the snip-
pet. However, there is a subtle difference since
this questions does not ask what is the output di-
rectly.

Given the piece of code presented in the
code snippet below, what is the value of
palindromes[1]?
palindromes = [’pop’, ’noon’, ’madam’]

A. ’pop’
B. ’noon’
C. ’p’
D. ’madam’
E. ’o’

Figure 2 shows the distribution of the MCQs into the
individual categories. The MCQs asking about the
output of a code snippet as well as MCQs focused on
filling-in the blanks in a snippet are not present in the
MCQs with no code. This is to be expected given the
nature of those questions. The MCQs with code are
quite dominated by questions that ask about the out-
put of a code snippet as well as with questions of other
type. Otherwise, the distribution is relatively uniform.
The fill-in questions are rare. The distribution of the
no code questions is close to uniform.

5 MODELS

The original GPT model (Radford et al., 2018) is a 12-
layer decoder-only transformer (Vaswani et al., 2017)

with masked self-attention heads. Its core capabil-
ity is fine-tuning on a downstream task. The GPT-2
model (Radford et al., 2019) largely follows the de-
tails of the original GPT model with a few modifica-
tions, such as layer normalization moved to the input
of each sub-block, additional layer-normalization af-
ter the first self-attention block, and a modified initial-
ization. Compared to the original model it displays
remarkable multi-task learning capabilities (Radford
et al., 2019). The next generation of GPT mod-
els (Brown et al., 2020) uses almost the same archi-
tecture as GPT-2. The only difference is that it uses
alternating dense and locally banded sparse attention
patterns in the layers of the transformer. The main fo-
cus of Brown et al. was to study the dependence of
performance and model size where eight differently
sized models were trained (from 125 million to 175
billion parameters). The largest of the models is com-
monly referred to as GPT-3. The interesting property
of these models is that they appear to be very strong
zero- and few-shot learners. This ability appears to
improve with the increasing size of the model (Brown
et al., 2020).

We are primarily interested in the performance of
text-davinci-003, one of the most advanced GPT
models offered by OpenAI. The text-davinci-003
model builds on top of previous text-davinci-002,
which in turn is based on code-davinci-002 (fo-
cused on code-completion tasks). To gauge the rate
of improvement over the several recent years, we
compare the performance of text-davinci-003 to
text-davinci-002 as well as to the previous gen-
eration’s InstructGPT model (text-davinci-001).10

Recently, OpenAI has also released gpt-3.5-turbo
which reportedly matches the performance of the
text-davinci-003 for tenth of the cost.

We set the temperature to 0.0, which cor-
responds to no randomness. The higher the
temperature the more creative the output but it can
also be less factual. We set max_tokens to 500 (a
token roughly corresponds to a word). This parame-
ter controls the maximum length of the output. We set
top_p to 1, as is recommended when temperature is
set to 0.0. This parameter is related to temperature
and also influences creativeness of the output. We set
frequency_penalty to 0, which allows repetition by
ensuring no penalty is applied to repetitions. Finally,
we set presence_penalty to 0, ensuring no penalty
is applied to tokens appearing multiple times in the
output.

10OpenAI: Model index for researchers. Available at:
https://beta.openai.com/docs/model-index-for-researchers/
instructgpt-models [Accessed 2023-01-15]
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6 EXPERIMENTAL DESIGN

To test the performance of the three text-davinci-*
models, we submit MCQs one by one using the
openai Python library11 which is a wrapper for the
OpenAI’s REST API. We embed each question in the
prompt template shown in Figure 3. The text of the
prompt’s preamble is inspired by OpenAI’s QA ex-
ample.12 The {{question}} token is replaced with the
question text. The {{choices}} token is replaced with
the candidate answers where each one is placed on
a single line preceded by a capital letter. Each model
returns one or more of the choices as the prompt com-
pletion, which is then compared to the reference an-
swer. For PE1 and PE2, we let partially correct an-
swers be incorrect, following the course creators’ as-
sessment guidelines. In PPP, there is always exactly
one correct answer.

As the baseline, we use a simple model that se-
lects the answer with the highest Jaccard similarity to
the question. In case of a tie the longest answer is se-
lected. Jaccard similarity is one of the simplest mea-
sures of text similarity. Hence, it is an ideal candidate
for a baseline as it allows to detect what ratios of the
questions within their respective categories could be
solved employing this simple, yet sensible, heuristic.
Such MCQs likely pose very little challenge for GPT
models.

We report the proportions of the correct an-
swers (i.e., the accuracy) for each model per MCQ
category. We specifically focus on the differences
in performance of the text-davinci-003 model on
MCQs that contain code snippets (with code) com-
pared to MCQs that do not (no code). We are also
interested in the difference between the performance
on completion-based MCQs (Finish Statement and
Fill-in Blanks) compared to the rest. This is because
these question types are not too far off from the pre-
training objective and, hence, the expectation is that
the models’ performance should be higher on these
types. To test statistical significance we use a simple
two-independent proportions test which is a statistical
hypothesis test used to determine whether two propor-
tions are different from each other.

7 RESULTS

Table 2 reports the results of our experiments. Firstly,
as one would expect all three GPT models clearly

11GitHub: OpenAI Python Library. Available at: https:
//github.com/openai/openai-python [Accessed 2023-01-16]

12OpenAI: Q&A. Available at: https://platform.openai.
com/examples/default-qa [Accessed 2023-03-04]

I am a highly intelligent bot that can easily
handle answering multiple-choice questions on
introductory Python topics. Given a question
and choices I can always pick the right ones.

Question: {{question}}

Choices:
{{choices}}

The correct answer:

1
2

3

Figure 3: MCQ Prompt Template. The text of the
preamble (1) is inspired by OpenAI’s QA example. The
{{question}} token (2) is replaced with the question text.
The {{choices}} token (3) is replaced with the candidate
answers where each one is placed on a single line preceded
by a capital letter.

outperform the simple Jaccard similarity baseline.
The text-davinci-003 model appears to perform
the best (65.5% overall) with a small margin over
the text-davinci-002 (64.5% overall). The perfor-
mance of the text-davinci-001 appears to be much
lower compared to the other two models. This is to
be expected. While the text-davinci-002 is a di-
rect predecessor of the text-davinci-003 (hence,
the small difference) the text-davinci-001 is quite
removed from the two. The major breakthrough
in OpenAI GPT-3’s capabilities in handling com-
puter code was Codex (code-davinci-002) (Chen
et al., 2021) which is the direct predecessor of
text-davinci-002.13

There appears to be a clear difference between the
performance of the most capable text-davinci-003
on the MCQs that contain code snippets (59.5% over-
all) compared to those that do not (77.9% over-
all). This difference is statistically significant (p <
0.0001). This is to be expected as the combination of
code and natural language likely constitutes (on aver-
age) more complex input than natural language alone.
Additionally, it is quite possible that in our particular
context the questions with code are (on average) more
difficult than questions with no code.

There also appears to be clear difference be-
tween the performance of text-davinci-003 on
the completion-oriented MCQs (87.1%) and the rest
(60.1%). This difference is statistically significant
(p < 0.0001). Since GPT models are primarily fo-
cused on prompt completion, be it text or computer
code, this finding is also as expected.

13OpenAI: Model index for researchers. Available at:
https://beta.openai.com/docs/model-index-for-researchers/
instructgpt-models [Accessed 2023-01-15]
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Table 2: Results of the experiments. The Jaccard column reports the performance of the baseline. The text-davinci-001,
text-davinci-002, and text-davinci-003 columns report the performance of the different GPT3 models. Results of the No Code
and With Code sections are summarized in the Total rows. The Overall row at the bottom reports the average performance of
the models across all the types of MCQs.

Question Type Jaccard text-davinci-001 text-davinci-002 text-davinci-003
No Code

True/False 11/25 13/25 19/25 20/25
(44.0%) (52.0%) (76.0%) (80.0%)

Identify True/False Statement 8/44 12/44 22/44 27/44
(18.2%) (27.3%) (50.0%) (61.4%)

Finish Statement 12/53 40/53 46/53 48/53
(22.6%) (75.5%) (86.8%) (90.6%)

Other 9/47 27/50 43/50 39/50
(19.1%) (53.2%) (86.0%) (74.0%)

Total 40/172 92/172 130/172 134/172
(23.2%) (53.5%) (75.6%) (77.9%)

With Code
True/False 9/23 12/23 10/23 10/23

(39.1%) (52.2%) (43.5%) (43.5%)
Identify True/False Statement 4/26 10/26 15/26 11/26

(15.4%) (38.5%) (57.7%) (42.3%)
Output 22/110 28/110 58/110 53/110

(20.0%) (25.4%) (52.7%) (48.2%)
Fill-in 2/13 5/13 10/13 11/13

(15.4%) (38.5%) (76.9%) (84.6%)
Finish Statement 8/27 10/27 22/27 22/27

(29.6%) (37.0%) (81.5%) (81.5%)
Other 39/159 42/159 97/159 106/159

(24.5%) (26.4%) (61.1%) (66.7%)
Total 84/358 107/358 212/358 213/358

(23.4%) (29.9%) (59.2%) (59.5%)
Overall 124/530 199/530 342/530 347/530

(23.4%) (37.5%) (64.5%) (65.5%)

8 DISCUSSION

Our experimental results suggest that there, indeed,
is a difference between how successfully the GPT
models handle questions that contain only natural lan-
guage and those that also contain snippets of com-
puter code (RQ1). Tentatively, we can conclude that
inclusion of a code snippet within an MCQ makes the
question more challenging for GPT models to handle.
This conclusion is supported by universally lower per-
formance on MCQs with code across all the subtypes,
i.e., True/False, Identify True/False Statement, Finish
Statement, and Other. The root cause for this discrep-
ancy is likely one or more of the following: (i) GPT
models are somewhat more limited with respect to
handling computer programs compared to natural lan-
guage; (ii) GPT models struggle with the combina-
tion of different types of expressions (i.e., natural lan-
guage and code); and/or (iii) the questions with code

snippets are inherently more difficult.
While the greater difficulty of the questions with

code might certainly be a factor it appears that the
GPT models sometimes struggle to answer questions
with code that one might judge as simple. For exam-
ple, consider the following MCQ:

The following statement:

assert var == 0

A. is erroneous
B. will stop the program when var != 0
C. has no effect
D. will stop the program when var == 0

The answer of text-davinci-003 to this question
was “D. will stop the program when var == 0”. Hence,
it appears there are certain limitations in the capabil-
ities of the GPT models to answer questions about
code. This is somewhat surprising if one considers the
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well documented capabilities of the models when it
comes to generation or explanation of computer pro-
grams.

The results also show that certain types of MCQs
are more challenging than others for the GPT mod-
els (RQ2). The questions that involve generation of
natural language and/or code appear to be handled
with much more success than other types of ques-
tions. This is to be expected as GPT models are pri-
marily focused on prompt completion. On the other
hand, it leads to somewhat paradoxical situations such
as the one illustrated in the motivating example (Sec-
tion 2). The models are capable of generating code
based on a natural language description, as well as
generating natural language explaining execution of
the code line-by-line. Yet, somehow these capabili-
ties do not seem to extend to the realm of answering
pointed specific questions about the code (often quite
simple ones).

We hypothesize that the above described para-
dox might be related to the phenomenon described
by (Détienne and Bott, 2002). They point out that
program code serves two simultaneous purposes: it
is both a narrative description of a programmer’s in-
tent, and an artifact that controls computer execution.
Accordingly, human programmers maintain, and syn-
chronize, at least two kinds of mental models of code,
a functional model that captures the purpose the pro-
gram is supposed to play in the world, and a structural
model that allows mental simulation of data and con-
trol flow.

Since GPT models are trained on large corpora
that include texts in natural language as well as pro-
gram code with comments and documentation, they
may acquire robust representations of the functional
relationship between code and the intent it expresses.
The training corpora likely do not contain code with
outputs or trace logs of its execution. Thus, models
may lack the required data to build a representation
of a structural model of code’s function. This is not
to say that including the mentioned resources into the
training corpora would necessarily result in the acqui-
sition of such a model. This is because an effective
use of the model may require the ability to simulate
execution of the code, or its part. The current large
language models, including GPT, do not have this ca-
pability. Note that there is an active area of research
in augmenting large language models with reasoning
skills and providing them with the ability to use tools,
such as the Python interpreter (Mialon et al., 2023).

Arguably, building up these connected mental
models of code’s purpose and operation should be a
key part of what CS education teaches. The particular
limitations of GPT models provide a useful lens into

what kind of mental model we are evaluating in typ-
ical higher education programming assessments. It
may be that True/False and Identify True/False State-
ments MCQs more likely require mental simulation of
the code execution. An experiment to validate our hy-
pothesis might be to classify MCQs according to their
focus on (a) predicting actual behavior, or (b) infer-
ring intent, and measure if and how the GPT models’
performance correlates with this classification.

There are ongoing debates as to the changes the
emergence of GPT-based tools such as ChatGPT or
GitHub Copilot will inflict on the software develop-
ment profession as well as programming education.
Firstly, it appears inevitable that the tools will become
an integral and accepted part in the software devel-
opment process. Therefore, future programmers will
likely need to write less code. On the other hand, they
will need to be able to validate the auto-generated
code, spot deficiencies, and correct them efficiently.
Hence, programming education might need to de-
prioritize teaching learners how to write code and start
emphasizing skills such as requirements formulation,
debugging, trade-off analysis, and critical thinking.

Finally, the GPT-based tools present numerous op-
portunities to improve current instructional and as-
sessment practices in programming classes. Our ex-
periments suggest that GPT models are capable of
explaining code in plain and easily understandable
terms. Similarly, they are capable of generating and
completing program code. A judicious use of these
capabilities might result in numerous novel tools and
instructional approaches for novices and advanced
learners alike. However, there are also potential
threats. An improper or misinformed use of the tools
may result in an academic integrity violation (AIV)
incident (i.e., cheating). Similarly, over-reliance on
GPT-based tools may rather hinder than improve the
learning process.

9 CONCLUSIONS AND FUTURE
WORK

We evaluated text-davinci-* GPT models on a
sizeable set of 530 MCQs, many of which con-
tained code snippets, from three Python program-
ming courses. The overall accuracy of the most ca-
pable text-davinci-003 model was measured at
65.5% (compared to the 23.4% Jaccard similarity
baseline). While such performance is impressive
there appear to be some noticeable limitations. First
of all, it appears that the MCQs containing code snip-
pets were somewhat more challenging (59.5%) for
the model than those with no code (77.9%). In ad-
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dition, MCQs that ask to complete a sentence or fill-
in a blank appear to be handled much more suc-
cessfully (87.1%) compared to other types of ques-
tions (60.1%). Therefore, GPT models’ capabili-
ties seem limited when it comes to handling MCQs
about computer code requiring reasoning beyond
mere completion (56.6%).

While our study of GPT models’ performance on
diverse types of MCQs yielded numerous valuable in-
sights, it is subject to countless limitations and leaves
much room for improvement. Hence, we suggest sev-
eral directions for future work: (i) further analyze the
effects of prompt-tuning (ii) and/or iterative prompt-
construction; (iii) examine the performance of GPT
models on other domains, e.g., competitive mathe-
matics; (iv) develop a systematic framework to com-
prehensively assess the capabilities and limitations
of GPT models; and (v) study possibilities of effec-
tive integration of GPT-based tools, e.g., ChatGPT or
Copilot, into programming education.
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