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Abstract: Application data inevitably has inconsistencies that may cause malfunctioning in daily operations and com-
promise analytical results. A particular type of inconsistency is the presence of duplicates, e.g., multiple and
non-identical representations of the same information. Entity matching (EM) refers to the problem of de-
termining whether two data instances are duplicates. Two deep learning solutions, DeepMatcher and Ditto,
have recently achieved state-of-the-art results in EM. However, neither solution considered duplicates with
character-level variations, which are pervasive in real-world databases. This paper presents a comparative
evaluation between DeepMatcher and Ditto on datasets from a diverse array of domains with such variations
and textual patterns that were previously ignored. The results showed that the two solutions experienced a
considerable drop in accuracy, while Ditto was more robust than DeepMatcher.

1 INTRODUCTION

A well-known adage in the Database area is ”real-
world data is dirty” (Hernández and Stolfo, 1998).
In other words, data generated and used application
programs invariably exhibit inconsistencies, such as
outliers, violations of syntactic and semantic patterns,
violations of integrity constraints, and fuzzy dupli-
cates, i.e., multiple representations of the same en-
tity (Abedjan et al., 2016). Besides causing malfunc-
tioning of daily operations, e.g., billing and inven-
tory management, such inconsistencies may jeopar-
dize data analysis processes. Thus, identifying and
correcting data errors are fundamental tasks in data-
driven information systems.

In this paper, we focus on identifying fuzzy du-
plicates (duplicates, for short). This problem is of-
ten referred to as entity matching (Barlaug and Gulla,
2021). Entity matching (EM) is challenging because
duplicates are not exact copies of one another. Fig-
ure 1 illustrates different types of duplicates in a re-
lational database. Duplicates arise in a database for
various reasons. Examples of such are data entry er-
rors, different naming conventions, and integration of
data sources containing overlapping information.

Deep learning (DL) has promoted over the past
decade tremendous progress in machine learning
(Krizhevsky et al., 2012). DL achieves state-of-the-
art results on perceptual tasks (e.g., object detection,

image understanding, and speech recognition) and
natural language processing tasks. The underlying
data of such tasks is characterized by some hidden
structure, which DL excels at uncovering. Given a set
of labeled examples, DL completely automates fea-
ture engineering, thereby precluding manual interven-
tion. Thus, techniques based on DL have been making
a great impact on a wide range of fields, including im-
age, speech, and text processing, among many others.

Recently, DL has also been investigated to solve
the EM problem (Barlaug and Gulla, 2021). The work
in (Mudgal et al., 2018) presented DeepMatcher, a so-
lution based on recurrent neural network (RNN) and
attention mechanism. DeepMatcher obtained signif-
icant accuracy gains on unstructured and dirty data
as compared to Magellan (Konda et al., 2016), which
was the best learning-based solution for EM. Another
approach to EM employs pre-trained language mod-
els for transfer learning (Brunner and Stockinger,
2020; Li et al., 2020). The work in (Li et al.,
2020) presented Ditto, a solution that adopts pre-
trained models based on the Transformer architec-
ture (Vaswani et al., 2017), with an additional layer
fine-tuned for the downstream EM task. Ditto outper-
formed DeepMatcher in all scenarios analyzed, par-
ticularly those with less training data available.

DeepMatcher e Ditto considered three types of in-
put data: structured, textual, and “dirty”. Structured
data has a rigid schema, with simple and atomic val-
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Figure 1: Examples of the three types of duplicates considered in this paper.

ues, such as short strings and numbers (Figure 1(a)).
Textual data are characterized by long texts such as
product descriptions, texts obtained from web pages,
and content from social networks (Figure 1(b)). Fi-
nally, dirty data also has a rigid schema like structured
data but has attributes with missing values or referring
to other attributes. This situation is common when
structured data is obtained from information extrac-
tion processes. For example, a company name may
be incorrectly entered into the Product attribute (Fig-
ure 1(c)).

However, DeepMatcher and Ditto did not consider
data with character-level textual variations. Such vari-
ations are pervasive in real databases, being caused
by errors during manual data ingestion, such as typos,
or automated ingestion, such as failures in digitiza-
tion processes. These errors can introduce tokens not
covered in the training data (i.e., out-of-vocabulary
tokens) and degrade, for example, the effectiveness
of approaches based on pre-trained models. Note
that the previously mentioned dirty data contains only
the transposition of values between attributes, but not
variations in attribute values. In Figure 1, tuples t1
and t2 in the three data types exemplify the instances
considered by DeepMatcher and Ditto, whereas tuples
t3 illustrate instances with the presence of typos.

This paper presents an evaluation of DeepMatcher
and Ditto on data with character-level textual varia-
tions. To this end, we use the datasets considered in
these previous works, but with the injection of random
textual modifications in different proportions. The
objective of this evaluation is to answer the follow-
ing questions: 1) how robust are DeepMatcher and
Ditto in data with the previously mentioned varia-
tions?; 2) how do these variations affect the perfor-
mance of these solutions on each data type? and
3) how these variations comparatively affect Deep-
Matcher and Ditto?

The rest of this paper is organized as follows.
Section 2 presents background material. Section 3
presents and analyzes the experimental results. Re-
lated work is discussed in Section 4. Finally, Section
5 presents the conclusions and outlines future work.

2 BACKGROUND

In this section, we first present the formal definition of
the EM problem before covering the details of Deep-
Matcher and Ditto.

2.1 Problem Definition

We adopt the formalization of the EM problem in
(Mudgal et al., 2018). Let D and D′ be two
data sources with the same schema with attributes
A1, ...,AN . In both sources, each tuple represents a
real-world entity, which may be a physical, abstract,
or conceptual object. The objective of the EM pro-
cess is to find the largest binary relation M ∈ D×D′,
where each pair (e1,e2) ∈ M,e1 ∈ D,e2 ∈ D′, repre-
sents the same entity; we have D = D′, if the goal is to
find duplicates in a single data source. Further, we as-
sume the availability of a training dataset T of tuples
{(ei

1,e
i
2,r)}

|T |
i=1, where {(ei

1,e
i
2)}

|T |
i=1 ⊆ D×D′ and r is

a label with values in {”match”, ”no-match”}. Given
T , a DL-based solution aims to build a classifier that
can correctly distinguish pairs of tuples in D×D′ be-
tween ”match” and ”no-match”.

2.2 DeepMatcher

DeepMatcher is based on the architectural template
illustrated in Figure 2, which enables a rich design
space. The input data consists of pairs of tuples repre-
senting possible duplicates. In the tokenization step,
textual values of each attribute of the two tuples are
segmented into sequences of words (the terms token
and word are used interchangeably in this paper). In
the following steps, DL can be used in various ways
to build different EM solutions.

In the embedding step, sequences of words are
represented as sequences of numerical vectors. Possi-
ble approaches for this step can be defined along two
axes: embedding granularity and training strategy.
The granularity of the embedding can be word-based
or character-based. In the first case, a lookup table is
learned mapping each word to a numerical value. In
the second case, a model is trained to produce embed-
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Figure 2: DeepMatcher architectural template.

dings for words that contain characters in its vocab-
ulary. Character-level embeddings are more robust
in dealing with out-of-vocabulary words, which can
be caused by typing errors, as mentioned earlier. Re-
garding the training strategy, one can use pre-trained
embeddings or train them from scratch. The last op-
tion may be preferable in domains that contain tokens
with specific semantics, such as product codes.

In the summarization step, the sequences of vec-
tors representing the attributes of each tuple are ag-
gregated into a single vector. To this end, RNNss
can be used to capture the order and semantics of to-
ken sequences. This approach has limitations, how-
ever. First, in general, RNNs have difficulty learning
meaningful representations of long sequences of to-
kens. Second, the two sequences are not considered
together in the summarization process; as a result, the
underlying similarity between sequences of different
sizes may not be captured. A different approach is to
use an attention mechanism so that the sequence of
vectors from one tuple is used as context in summa-
rizing the sequence of vectors from the other tuple.
However, information about the position of input to-
kens will be lost in the summarization process. This
information may be important in some cases, for ex-
ample, when the most relevant token is the first. Fi-
nally, it is possible to adopt a hybrid strategy, com-
bining RNNs and attention mechanisms to obtain the
advantages and avoid the problems of each approach
at the cost of increasing the complexity of the learning
model and, in turn, requiring longer training times.

In the comparison step, the similarity (or distance)
of the summarized vectors is assessed using a met-
ric such as the cosine similarity or the Euclidean dis-
tance. The result of comparing each attribute is a
scalar similarity value; these values will compose the
set of characteristics of the neural network used in the
classification step. Another possibility is to use op-
erations such as concatenation and the element-wise
absolute difference between elements as a compari-

son function and relegate the task of learning a simi-
larity function to the classifier. Finally, the classifier’s
output will determine whether the input pair of tuples
represent the same entity.

In the empirical evaluation of (Mudgal et al.,
2018), DeepMatcher obtained results on structured
data similar to simpler learning models, such as ran-
dom forests and logistic regression, which require
much less training time. On the other hand, ex-
pressive gains in accuracy were obtained on textual
and dirty data. In addition, several instances of the
architectural template of Figure 2 were evaluated.
The model that obtained the best results used Fast-
Text (Bojanowski et al., 2017), a character-level pre-
trained embedding model, a hybrid summarization
approach combining bidirectional RNN with atten-
tion mechanism, learnable similarity function, and a
multi-layer perceptron as the classifier. We evaluated
this model in our experiments.

2.3 Ditto

The advent of language models based on the Trans-
former architecture promoted further progress in so-
lutions for EM (Brunner and Stockinger, 2020; Li
et al., 2020). These models are pre-trained on
large text corpora, such as Wikipedia, in an unsu-
pervised manner. The Transformer architecture com-
pletely replaces RNNs with a self-attention mecha-
nism (Vaswani et al., 2017) to generate token em-
beddings considering all the other tokens of the in-
put sequence. Thus, these embeddings capture se-
mantic and contextual information, including intricate
linguistic aspects such as polysemy and synonymy.
BERT (Devlin et al., 2019) is the most popular pre-
trained language model based on Transformers.

Ditto fine-tunes such pre-trained models for the
EM task. To this end, a fully connected layer and
an output layer using the softmax function are added.
The modified network is initialized with the pre-
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Figure 3: Ditto preprocessing pipeline.

trained model parameters and then trained with the
data in T until it converges. In addition to this fine-
tuning, Ditto uses a method to serialize the input pairs
into a sequence of tokens and performs three opti-
mizations in a preprocessing step: insertion of do-
main knowledge, summarization of long sequences,
and augmentation of training data with difficult ex-
amples. Figure 3 illustrates these preprocessing steps.

Ditto serializes a tuple t as follows:

serialize(t) = [COL]A1[VAL]v1...[COL]AN [VAL]vN ,

where [COL] and [VAL] are special tokens indi-
cating the beginning of attribute names and values,
respectively. For example, the result of serializing
the tuple t2 in Figure 1(c) is given by: [COL] Prod-
uct [VAL] Xbox Series X Microsoft [COL] Company
[VAL] NULL [COL] Price [VAL] 663.82.

Pairs of tuples are serialized as follows:

serialize(t1, t2) =
[CLS]serialize(t1)[SEP]serialize(t2)[SEP],

where [SEP] is the special token delimiting the
representations of t1 and t2 and [CLS] is the token
whose associated embedding will represent the en-
coding of the tuple pair.

Domain knowledge can be inserted into serialized
inputs in two ways: including special tokens identi-
fying snippets with specific semantics, such as prod-
uct codes and street numbers, and rewriting text spans
that refer to the entity (i.e., synonyms) into a single
string. Summarization reduces long strings in serial-
ized input to the maximum length allowed by BERT,
which is 512 tokens. Training data augmentation is
performed via operators that generate new serialized
input pairs from existing pairs. These operators ap-
ply random modifications to the original pairs, such
as token deletion and transposition.

In contrast to DeepMatcher, Ditto does not require
the input data to have the same schema. The seri-
alization method even allows applying Ditto to hier-
archical data such as XML and JSON using special
tokens to represent nested attribute-value pairs. An-
other difference with DeepMatcher is that in Ditto
the cross-attention mechanism between the pair of
tuples is not limited to words of the same attribute.
These differences can be mitigated by applying the
serialization method also to DeepMatcher and asso-
ciating the result to a single attribute — the evalu-
ation of this strategy is left for future work. Nev-
ertheless, Ditto still has a simpler architecture than

DeepMatcher, where the components of embedding,
summarization, and comparison (see Figure 2) are re-
placed by a pre-trained language model.

Finally, Ditto has support for language models
other than BERT. The model that showed the best re-
sults was RoBERTa (Liu et al., 2019), a variant of
BERT with a set of improvements and trained on a
larger volume of data. We evaluated the version of
Ditto based on RoBERTa in our experiments.

3 EXPERIMENTS

This section presents the results of our experimen-
tal study, whose objective was to evaluate and com-
pare the performance of DeepMatcher and Ditto on
data with character-level textual variations. We first
describe the experimental environment, i.e., datasets,
the configuration of the analyzed techniques, hard-
ware and software configuration, and metrics. Then,
we present and discuss the results.

3.1 Experimental Setup

We experimented with publicly available datasets,
which were also used for evaluating DeepMatcher and
Ditto. The datasets are from a variety of domains
and have different characteristics, five of which are
structured, one textual, and four dirty; the latter were
generated from structured datasets by transposing val-
ues between attributes, as mentioned in Section 1. In
all datasets, each data item is composed of a pair of
tuples and a label that classifies this pair as ”match”
or ”no-match”. Details about these datasets are pre-
sented in Table 1. The size of datasets, the number
of pairs classified as duplicates, and the number of at-
tributes are informed in columns 4 to 6, respectively.

For each dataset, we generated eight copies with
different percentages of changed tuple pairs; we call
these copies erroneous datasets. We injected modifi-
cations on each changed pair by applying character-
level transformations, i.e., character insertion, dele-
tion, and substitution. Table 2 describes the erro-
neous datasets. For example, in dataset E1, 10% of
tuple pairs had 1–2 character transformations. Each
modified pair was randomly selected from the origi-
nal dataset, as well as the character and type of each
modification. As such, modifications can affect both
tuples of each pair or just one of them. For each
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Table 1: Description of the original datasets.

Type Dataset Domain Size # Positives # Attributes

Structured

Amazon-Google softwares 11.460 1.167 3
BeerAdvo-RateBeer drinks 450 68 4

DBLP-ACM citation 12.363 2.220 4
DBLP-Google citations 28.707 5.347 4

Walmart-Amazon electronics 10.242 962 5
Textual Abt-Buy products 9.575 1.028 3

Dirty

DBLP-ACM citations 12.363 2.220 4
DBLP-Google citations 28.707 5.347 4

iTunes-Amazon music 539 132 8
Walmart-Amazon electronics 10.242 962 5

dataset, two attributes with values considered more
informative were chosen to be modified. For exam-
ple, in DBLP-ACM, the attributes title and author
were modified. Each modified pair of tuples replaces
the original pair while maintaining the associated la-
bel. Therefore, the E1-8 erroneous datasets maintain
statistics of the original datasets shown in Table 1. Fi-
nally, we split each dataset into training, validation,
and test sets according to the ratio 3:1:1, the same ra-
tio used in the DeepMatcher and Ditto papers.

As already mentioned, we evaluated the models of
DeepMatcher and Ditto that obtained the best results
in the original papers: for DeepMatcher, we consid-
ered the Hybrid model, which employs the more com-
plex summarization strategy; for Ditto, we considered
the version that employs all the optimizations and the
pre-trained RoBERTa language model. The exper-
iments used implementations of DeepMatcher1 and
Ditto 2 made publicly available by the authors. Deep-
Matcher was implemented using Torch3, a framework
with support for using GPUs to speed up training.
Ditto was implemented using PyTorch4 and Hugging
Face Transformers5. Further for Ditto, the maximum
size of the input sequence was fixed at 256, the learn-
ing rate at 3e-5 in a linearly decreasing manner, and
the batch size was set to 32. All experiments were per-
formed through Google Collaboratory6, which allows
the user to run Python through the browser and use
GPUs for free. Due to the limited computational re-
sources, training was carried out in 15 epochs. Other
parameters were defined according to the settings de-
scribed in the respective paper.

Accuracy results are reported by the F1 metric,
which is the harmonic mean between precision and
recall. Given the result of testing a model, let V P be
the number of pairs correctly classified as a match, FP

1https://github.com/anhaidgroup/deepmatcher.
2https://github.com/megagonlabs/ditto.
3http://torch.ch/.
4https://pytorch.org.
5https://huggingface.co.
6https://colab.research.google.com.

the number of pairs incorrectly classified as a match,
and FN the number of pairs incorrectly classified as a
no-match. Precision P is given by P= T P/(T P+FP)
and recall R is given by R = T P/(T P+FN). There-
fore, F1 is given by 2× ((P×R)/(P+R)).

3.2 Results and Discussion

Accuracy results of DeepMatcher and Ditto on struc-
tured, textual, and dirty data are shown in Tables 3,
4, and 5, respectively. For each dataset, we report
results obtained in its original version, without mod-
ifications, and in its erroneous versions, E1–8, with
character-level textual variations. Note that we ran ex-
periments on the original version of the datasets from
scratch instead of simply reproducing the numbers in
the papers of DeepMatcher and Ditto. The results of
each erroneous version are accompanied by their dif-
ference from the result obtained in the original ver-
sion. The best result obtained in each dataset is high-
lighted in red.

We first discuss the results obtained in the original
datasets. They followed the same trends observed in
(Li et al., 2020), with Ditto showing a clear advan-
tage over DeepMatcher owing to its language under-
standing capability. In structured data, Ditto is supe-
rior in 4 out of 5 datasets; the largest accuracy advan-
tage is 22.27% on the Walmart-Amazon dataset. Ditto
also outperforms DeepMatcher on the textual dataset
by 19.12%. On the dirty datasets, Ditto’s results are
close to those of DeepMatcher on the DBLP-ACM
and DBLP-Google datasets but still better, while on
the iTunes-Amazon dataset, there is an advantage of
25.38%. DeepMatcher and Ditto both perform poorly
on the Walmart-Amazon dataset. In particular, we
consider F1 score of Ditto for this dataset an outlier
because it excessively deviated from the number re-
ported in (Li et al., 2020): 17.21% and 85.69%, re-
spectively. This was the only case we observed such
a great divergence between our results and those in
the original papers. After rerunning the tests for this
dataset with 40 epochs, we obtained a much better
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Table 2: Description of the erroneous datasets.

erroneous datasets E1 E2 E3 E4 E5 E6 E7 E8
% changed pairs 10% 30% 10% 30% 50% 90% 50% 90%
# transformations 1-2 1-2 3-5 3-5 1-2 1-2 3-5 3-5

Table 3: F1 scores on structured datasets.

dataset/technique Original E1 E2 E3 E4 E5 E6 E7 E8

Amazon-Google DeepMatcher
∆F1

68.94
-

62.78
-6.16

53.50
-15.44

54.74
-14.20

47.20
-21.74

56.07
-12.87

40.60
-28.34

48.16
-20.78

42.83
-26.11

Ditto
∆F1

71.58
-

74.10
2.52

68.80
-2.78

18.51
-53.07

63.72
-7.86

68.79
-2.79

57.14
-14.44

56.01
-15.57

50.39
-21.19

Beer DeepMatcher
∆F1

70.97
-

72.22
1.25

66.67
-4.30

68.75
-2.22

62.86
-8.11

70.97
0.00

64.52
-6.45

64.52
-6.45

45.71
-25.26

Ditto
∆F1

85.71
-

90.32
4.61

73.33
-12.38

66.66
-19.05

68.96
-16.75

66.66
-19.05

55.17
-30.54

28.57
-57.14

51.61
-34.10

DBLP-ACM DeepMatcher
∆F1

98.76
-

98.65
-0.11

98.33
-0.43

98.77
0.01

98.00
-0.76

98.31
-0.45

98.43
-0.33

97.99
-0.77

97.33
-1.43

Ditto
∆F1

98.00
-

98.75
0.75

98.10
0.10

98.52
0.52

97.83
-0.17

98.53
0.53

98.42
0.42

98.29
0.29

98.29
0.29

DBLP-Google DeepMatcher
∆F1

94.90
-

94.85
-0.05

94.05
-0.85

93.29
-1.61

92.56
-2.34

93.51
-1.39

91.80
-3.10

91.28
-3.62

89.88
-5.02

Ditto
∆F1

95.05
-

95.14
0.09

94.89
-0.16

94.17
-0.88

94.38
-0.67

94.56
-0.49

94.00
-1.05

94.37
-0.68

92.25
-2.80

Walmart-Amazon DeepMatcher
∆F1

63.66
-

62.18
-1.48

64.15
0.49

62.05
-1.61

61.28
-2.38

62.32
-1.34

60.57
-3.09

59.57
-4.09

63.16
-0.50

Ditto
∆F1

85.93
-

85.05
-0.88

17.09
-68.84

84.55
-1.38

29.08
-56.85

80.40
-5.53

81.52
-4.41

17.21
-68.72

21.23
-64.70

Table 4: F1 scores on textual datasets.

dataset/technique Original E1 E2 E3 E4 E5 E6 E7 E8

Abt-Buy DeepMatcher
∆F1

70.03
-

71.26
1.23

65.99
-4.04

65.96
-4.07

64.66
-5.37

61.63
-8.40

56.31
-13.72

53.20
-16.83

51.19
-18.84

Ditto
∆F1

89.15
-

90.51
1.36

82.72
-6.43

84.93
-4.22

78.46
-10.69

88.05
-1.10

24.74
-64.41

86.93
-2.22

74.87
-14.28

Table 5: F1 scores on dirty datasets.

dataset/technique Original E1 E2 E3 E4 E5 E6 E7 E8

DBLP-ACM DeepMatcher
∆F1

97.20
-

95.26
-1.94

95.53
-1.67

92.63
-4.57

94.53
-2.67

95.51
-1.69

93.41
-3.79

89.29
-7.91

86.57
-10.63

Ditto
∆F1

97.62
-

97.63
0.01

97.29
-0.33

98.30
0.68

97.96
0.34

97.87
0.25

98.08
0.46

97.62
0.00

96.37
-1.25

DBLP-Google DeepMatcher
∆F1

92.22
-

91.89
-0.33

91.56
-0.66

91.49
-0.73

90.39
-1.83

91.26
-0.96

90.32
-1.90

90.38
-1.84

86.63
-5.59

Ditto
∆F1

95.07
-

94.69
-0.38

94.66
-0.41

95.04
-0.03

94.44
-0.63

94.69
-0.38

94.06
-1.01

93.25
-1.82

93.22
-1.85

iTunes-Amazon DeepMatcher
∆F1

70.77
-

64.52
-6.25

69.84
-0.93

63.49
-7.28

67.74
-3.03

66.67
-4.1

67.80
-2.97

67.65
-3.12

70.97
0.2

Ditto
∆F1

96.15
-

94.11
-2.04

83.87
-12.28

88.13
-8.02

72.22
-23.93

86.20
-9.95

90.56
-5.59

81.35
-14.8

90.90
-5.25

Walmart-Amazon DeepMatcher
∆F1

38.73
-

53.23
14.5

41.29
2.56

47.77
9.04

33.49
-5.24

42.39
3.66

42.61
3.88

33.43
-5.3

36.16
-2.57

Ditto
∆F1

17.21
-

82.63
65.42

83.33
66.12

81.86
64.65

78.19
60.98

81.01
63.8

82.19
64.98

40.16
22.95

85.26
11.95
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convergence, and the F1 score increased to 84.53%.
We now discuss the results obtained on the er-

roneous datasets. On the structured datasets, Ditto
outperforms DeepMatcher on Amazon-Google and
DBLP-Google; results are similar on the other three
datasets. On the textual dataset, Ditto outperforms
DeepMatcher by a significant margin, except for the
outlier result on E6. On the dirty datasets, Ditto is
superior to DeepMatcher on all erroneous datasets.

In general, both solutions experienced a decrease
in accuracy in almost all cases. The largest drop in F1
scores occurred on Amazon-Google. This dataset is
more challenging for the EM task because the distinc-
tion between matches and no-matches is more subtle;
note that the two solutions also achieved their worst
results on the original version of this dataset. On
the other hand, the few cases in which accuracy in-
creased or only slightly decreased occurred on DBLP-
ACM and DBLP-Google. These datasets can be con-
sidered easier for EM because they exhibit a better
separation between matches and no-matches. More-
over, DBLP-ACM and DBLP-Google are the largest
datasets, thereby providing more training data; note
that DeepMatcher and Ditto also obtained their best
results on the original version of these datasets. Such
results indicate that the effect of the textual modifica-
tions at the character level follows the characteristics
of the original datasets in terms of the separation be-
tween matches and no matches: the impact of these
modifications is negligible on easy datasets and sig-
nificant on difficult ones.

Table 6 shows the training time of each model
in the original datasets —note the hh:mm:ss format.
DeepMatcher required a shorter training time on
the three datasets types: the total training time of
DeepMatcher corresponds to 36.69% of Ditto on the
structured datasets (Table 6(a)), 24.09% on the tex-
tual datasets (Table 6(b)), and 41.57% on the dirty
datasets. Note that these values only indicate the
training time needed in a shared processing environ-
ment such as Google Colab. Of course, an accurate
comparison would require dedicated hardware.

4 RELATED WORK

The EM problem has been studied since the late
1950s, starting with the pioneering work in (New-
combe et al., 1959). Since then, various scientific
communities, including Databases, Information Re-
trieval, Natural Language Processing (NLP), Machine
Learning, Semantic Web, and Statistics, have ad-
dressed many aspects of the problem. EM is often
referenced in these communities by a variety of differ-

ent terms, such as entity resolution, record matching,
deduplication, and reference reconciliation, among
others. A review of the literature prior to the emer-
gence of DL is presented in (Elmagarmid et al., 2007).
Another review, more recent and focusing on DL-
based techniques, is presented in (Barlaug and Gulla,
2021). DeepMatcher and Ditto are representative ex-
amples among the current set of DL-based solutions.
For example, DeepER (Ebraheem et al., 2018) corre-
sponds to a simpler instance of the architectural tem-
plate of DeepMatcher, whereas the solution in (Brun-
ner and Stockinger, 2020) corresponds to the basic
version of Ditto without optimizations.

EM is closely related to other problems in NLP
and data integration, often with interchangeable so-
lutions. Some examples include entity linking (Shen
et al., 2015), which aims to link mentions of entities
in a document to an entity represented in a knowledge
base. Entity alignment (Leone et al., 2022) refers to
the problem of finding equivalences between entities
from two different knowledge bases. Coreference res-
olution (Clark and Manning, 2016) identifies text seg-
ments in documents that refer to the same entity.

EM has an intrinsic quadratic complexity as it re-
quires comparing each entity representation with one
another. For this reason, EM is typically preceded
by a blocking step, which divides the input data into
(possibly overlapping) blocks and considers only en-
tities within the same block for matching. In an ap-
proach similar to (Mudgal et al., 2018), the work in
(Thirumuruganathan et al., 2021) defines a space of
DL solutions for blocking from which a representa-
tive set was evaluated.

5 CONCLUSION

This paper presented a comparative evaluation of
DeepMatcher and Ditto on data with textual patterns
not considered in previous experiments. The results
showed that the two solutions experienced a drop
in accuracy in most of the analyzed scenarios, and
Ditto presented, in general, greater effectiveness and
robustness compared to DeepMatcher at the cost of
requiring more training time. Furthermore, we ob-
served that the effect of textual modifications on the
classification accuracy is dictated by the characteris-
tics of the original datasets in terms of the separation
between matches and no-matches: the impact of these
modifications is negligible on easy datasets and sig-
nificant on difficult ones. Future works include study-
ing improvements in the training process to capture
the textual modifications considered in this paper and
experiments with different data representations.
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Table 6: Training time comparison between DeepMatcher and Ditto (hh:mm:ss format).

technique/dataset Amazon-Google Beer DBLP-ACM DBLP-Google Walmart-Amazon Total
DeepMatcher 0:07:08 00:00:28 00:12:12 00:27:08 00:10:30 0:57:26

Ditto 0:19:17 0:02:14 0:41:02 1:08:02 0:25:57 2:36:32

(a) Structured data.

technique/dataset Abt-Buy
DeepMatcher 00:09:11

Ditto 00:38:07

(b) Textual data.

DBLP-ACM DBLP-Google iTunes-Amazon Walmart-Amazon Total
0:14:28 0:30:41 0:01:22 0:11:04 0:57:35
0:41:36 1:08:34 0:03:53 0:24:29 2:18:32

(c) Dirty data.
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