
Investigate How Developers and Managers View Security Design in
Software

Asif Imran a

Department of Computer Science, California State University San Marcos,
333 S Twin Oaks Valley Rd, San Marcos, CA 92096, U.S.A.

Keywords: Software Security, Secured Design, Security Trade-Off, Software Work Environment, Security Requirements,
Cyber-Attack.

Abstract: Software security requirements have been traditionally considered as a non-functional attribute of the soft-
ware. However, as more software started to provide services online, existing mechanisms of using firewalls
and other hardware to secure software have lost their applicability. At the same time, under the current world
circumstances, the increase of cyber-attacks on software is ever increasing. As a result, it is important to con-
sider the security requirements of software during its design. To design security in the software, it is important
to obtain the views of the developers and managers of the software. Also, it is important to evaluate if their
viewpoints match or differ regarding the security. Conducting this communication through a specific model
will enable the developers and managers to eliminate any doubts on security design and adopt an effective
strategy to build security into the software. In this paper, we analyzed the viewpoints of developers and man-
agers regarding their views on security design. We interviewed a team of 7 developers and 2 managers, who
worked in two teams to build a real-life software product that was recently compromised by a cyber-attack. We
obtained their views on the reasons for the successful attack by the malware and took their recommendations
on the important aspects to consider regarding security. Based on their feedback, we coded their open-ended
responses into 4 codes, which we recommended using for other real-life software as well.

1 INTRODUCTION

The recent trend in world events has made cyber
threats an issue of ever-increasing importance. Tra-
ditionally, software engineers have not focused on
building security into their systems. The main con-
cern has been to make data and networks secure
through peripheral security measures. Under the cur-
rent circumstances, software companies are striving
to include quality attributes such as security in the
software design and analysis phase. The concept of
”building security into the software” is a talked about
topic in the industry, however, we do not see any ac-
tionable steps from the companies on how to make
their existing and new systems adhere to the security
requirements.

Sparked by the requirements of the industry, re-
cent studies have shown an increase in cyber threats
for real-life software (Ulsch, 2014). Researchers
identify defensive mechanisms at the hardware and
operating systems level to counter malware threats

a https://orcid.org/0000-0002-1780-0296

(Lawson and Middleton, 2019). Software industries
which produce in-house software have focused on de-
ploying firewalls, whereas increasing number of soft-
ware services are being provided online using the in-
ternet (Kumar et al., 2008). Security needs to be
ensured for real-life software at the design and de-
velopment stages to make them cyber-attack proof
(Beznosov and Chess, 2008). Despite the requirement
to make the software more secure, what current chal-
lenges prevent software engineers from building secu-
rity into their systems need to be explored in greater
detail.

In this paper, we described our approach and find-
ings based on our investigation of how software teams
looked into the current challenges which prevented
the security of software applications. A survey partic-
ipated by 9 respondents of a software company who
were responsible for designing software that recently
got compromised by a malware attack was conducted,
and we aimed to determine what factors which pre-
vented the secured design of the software. The 9 re-
spondents were divided into two teams, who worked

Imran, A.
Investigate How Developers and Managers View Security Design in Software.
DOI: 10.5220/0011994700003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 693-700
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

693



on different components of the compromised project.
For purpose of anonymity, we cannot publish the
names of the respondents, product or the company.
We tried to identify if the developers and the man-
agers shared the same views related to software secu-
rity challenges, or do their views differed. We further
explored what recommendations in terms of collabo-
ration and design challenges suggested by developers
and managers which would enable mitigation of the
current challenges.

Under the current circumstances, it is important
to identify the viewpoints of software developers and
managers regarding security vulnerabilities in soft-
ware. Motivated by the research in (Storey et al.,
2022), we explored the perspectives of developers and
managers on the reasons for malware vulnerability in
software.

The survey of managers and developers high-
lighted that managers and developers agreed on cer-
tain criteria of security, however, they differed in their
views on other criteria. We explored why being in
the same cohort they had differing views on certain
aspects of building security into their systems. Our
findings showed that both developers and managers
agreed that software can become vulnerable to mal-
ware attacks due to the lack of skills of the project
team members who designed it, negligence or igno-
rance by end users, and trade-off between security
and key aspects.

Developers and managers could not reach an
agreement if work environment and well-being of the
project team had a role to play in getting the team
more motivated and designing security into the soft-
ware systems. It was seen that although many devel-
opers stated the role of team cohesiveness towards de-
signing secure software, managers emphasized more
on building skills of developers.

The major contributions of this paper include the
following:

• Survey of software developers and managers who
worked in two groups to design a commercial
software that was recently compromised by mal-
ware.

• An empirical evaluation of the common and dif-
fering views of developers and managers on what
caused the malware attack to be successful on
their software.
The rest of the paper is organized as follows: Sec-

tion 2 explains the methodology of the research. Sec-
tion 3 presents the survey design and selected re-
sponses. Section 4 highlights the analysis and find-
ings of the survey and states important recommenda-
tions regarding developers and manager views of soft-
ware security design. Section 5 discusses the related

work in this area, Section 6 identifies the threats to
validity of this research, and Section 7 concludes the
paper.

2 METHODOLOGY AND
SURVEY SETUP

To determine the views of developers and managers
on the cause of security vulnerabilities in software,
we surveyed professionals from a large software com-
pany who worked on a product that recently suffered
from cyber attacks. Our research questions were as
follows:

1. How developers and managers define reasons why
software suffer from malware attacks?

2. Are developer’s view of security threats to a soft-
ware aligned with each other and views of man-
agers?

Our goal is to identify the views of developers and
managers regarding software security. We try to find
the recommendations of the developers and managers
regarding mitigating security vulnerabilities in soft-
ware design based on their real-life experience.

3 SURVEY DESIGN

To ensure that the survey questions were accurate, we
worked closely with two developers and one manager
who helped us to recursively design the questionnaire.
We conducted the survey recursively and the team of
software professionals helped us pilot it.

The survey was made available to the respondents
in March 2022. Based on our prior association with
the software company, we were able to contact the re-
spondents via email. We contacted the developers and
managers of two small teams within a large company,
who combinedly designed and developed one prod-
uct that faced cyber attacks on January 2022 and was
compromised.

We advertised the survey to them as a general sur-
vey to obtain their views and recommendations for
software security design. The survey was kept avail-
able for 20 days, and 2 managers and 7 developers
responded. Our initial results showed that both devel-
opers and their managers had a clear concept of how
each perceived software security in terms of user be-
havior, skills, and trade-off. However, they did not
seem to agree on the perspective of integrating se-
curity into software design and its relationship to the
work environment of the team.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

694



Management

M1

API team

D1 D2

Database team

D5 D6 D7

Global clients

Software
project
teams

Cloud infrastructure

Management

M2

UI team

D3 D4

reports

reports

Figure 1: Project team structure for the surveyed software.

3.1 Survey Structure

We identified the respondents based on our prior as-
sociation with the company. The respondents worked
in the same software team that designed and imple-
mented an application interface (api) that was used
by the core product of the company which was a
Database Management System (DBMS).

The api acted as a middleware used by the DBMS
to launch itself in the Windows platform. The team
structure and roles of the 9 respondents were high-
lighted in Figure 1. This was a large software com-
pany, that served many energy and storage industries
in the USA and abroad. The surveyed company and
respondents have been kept anonymous for the pur-
pose of security. We surveyed 2 managers who were
leading the team which designed and developed the
api that acted as a middleware between DB and OS.
We surveyed 7 developers who were working under
the managers, we tried to gather their views on soft-
ware security design of the compromised api.

Based on our earlier relationship with the com-
pany we learned that the api that was designed had
been compromised by Azorult malware that lurked
in the host operating system of a client, thereby it
successfully obtained access to the dashboard of the
DBMS. Azorult malware was used by the attackers to
infect the target software. This malware was first dis-
covered in 2017 (Rendell, 2019).

Azorult is primarily used to confiscate user infor-
mation on communication platforms like Discord. It
is also used by the attacker to steal the browser his-
tory, cookies, and cryptocurrency keys of the victims.
Finally, the data is sent back to the attacker via a
zipped file. Recently, malware has been found that
Azorult can load other malware and the recent ver-
sions have improved delivery mechanisms compared

to earlier ones.
Prior to data collection, we consulted industry ex-

perts in survey design and asked them to answer the
survey as a test pilot. The survey included 16 ques-
tions that were conducted in a semi-structured format.
We iteratively tried to determine developers and man-
ager views. The responses were coded by the second
and third authors and assigned to the the pre-specified
codes. Any ties in coding were dissolved by the au-
thor. It took 9.10 minutes on average to complete
which was an acceptable completion time, thus not
consuming the excess time of the respondents.

The respondents included both developers and the
manager of the api project. We aimed to determine
the views of the developers and managers regarding
any issues related to software engineering practices
that led to a faulty design thus resulting in the mal-
ware compromise. We aimed to identify if the views
of developers and managers differed in this regard and
tried to determine ”why” the difference existed.

Additionally, any recommendations by the re-
spondents based on their experience during that pro-
cess on how to securely design similar software for
DBMS to thwart such attacks were discussed here.
The survey instrument is shown in Figure 2. The
questionnaire precisely asked the respondents to re-
late the cause of the detected cyber attack compromise
to the reasons like skills of the development team, user
behavior, trade-off, and work environment. The re-
spondents provided their responses which show-cased
their different viewpoints. We recorded all the re-
sponses and mapped those to the software attributes
described above. The data were compiled and pre-
sented in the following section.

Investigate How Developers and Managers View Security Design in Software

695



Figure 2: Survey instrument to obtain viewpoints of developers and manager on software security challenges.

3.2 Survey Takeaways

We found that developers and managers agreed to
some extent regarding the cause of malware attacks,
however, they seemed not to agree on the steps which
were required in software design to make sure the
malware cannot attack in the first place. The open-
ended responses were coded by us in an inductive
manner, and initial codes namely Skills (S), User be-
havior (U), Trade-off (T), and Work environment (E)
(SUTE) were refined after further discussion. Follow-
ing are the codes for developers and the manager. Re-
garding skills, the following managerial feedback can
be considered.

The two managers have been identified as M1 and
M2 respectively, and the seven developers are identi-
fied as D1, D2,...,D7 respectively. Regarding the code
S, manager M1 stated: ”yes, I personally think virus
writers are better programmers than some of my team
members, the issue is when we make a team, we select
people who are good software engineers, however, to
address security we should have a policy where all
teams need cyber security experts”. The response
provided by M2 is similar and notable, ”we design
and develop large database apps that communicate
with the host OS. Now, I have a big team of engineers
working on our project and someone is always a weak
link”.

Regarding skills and expertise, developer D1
stated that ”Malware developers continuously de-
velop new ways to get around design to which is de-
ployed to prevent malware. On the other hand, our
skills are mostly applicable for after-attack situations.
Another developer, D2 stated that ”we react to at-
tacks, rather than focusing on predicting and prevent-
ing the malware attack in the first place”. D3 men-
tioned ”our teams only constituted of domain experts
and software developers, we definitely lacked the in-
puts of a cyber security expert, this is something we
are planning to include in our future projects”. An-

other developer, D6 noted that ”I primarily focused
on finishing the different functional requirements of
the api, which included incorporating the different
features, never really got time to check if the features
meet security guidelines”.

Regarding user behavior, M1 stated, ”Most mal-
ware got into our software through the OS because
of the user’s mistakes like clicking on suspicious links
that allowed the Azorult to infect the system and ul-
timately gain access to our api. M2 mentioned that,
Users are “click robots”, they are asked to click some-
thing, and they click it”. From the developer perspec-
tive, we got feedback from D5 such as ”users do not
keep their systems up to date, because they are not IT
people, they do not have IT people”.

Also, another developer, D7 responded by stat-
ing, ”They open attachments from people they do not
know, or from people who pretend like someone they
know”. Developer D1 mentioned ”The weakest vul-
nerability of our api was probably the human ele-
ment. User behavior is the chief reason for creation
of access points which were exploited by the Azorult”.
D2 stated that ”I think besides developers and man-
agers, general users with minimal technical knowl-
edge should be trained about system health, aware-
ness about suspicious behaviors, and creating strong
passwords”.

Tradeoff is another important consideration for se-
curity. According to manager M2, ”inevitably some
decisions are made in favor of usability, rather than
security, so there was a tradeoff between usability and
security. The reason for the tradeoff was mentioned as
otherwise people will not buy and use our solution”.
Developers also highlighted that quality requirements
such as security was traded off for this project.

Developer D4 mentioned that ”it is a cat and
mouse game, think of building a house, why cannot
architects and contractors build homes and business
buildings that are impervious to burglars”? D3 re-
sponded ”amount of time I can spend doing actual

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

696



development compared to attending team meetings, I
had to tradeoff my productivity and time with attend-
ing meetings, some of which were not really useful”.

Developer D2 mentioned that ”we wanted to en-
sure least privileges in all aspects of the software,
however, user-friendliness often came in the way and
we had to make the software more easily accessible
by the users, which was definitely a wrong decision
in my opinion”. It was visible that tradeoff happened
due to usability, ensuring least privileges, and attend-
ing team meetings in a large institution not directly
related to the project.

Regarding environmental condition and personal
well-being, manager M1 noted, ”personally I think
work environment does not impact security aspects
of the software rather the focus is more on building
developer skills”. Another response from manager
M2 was such that ”developers tend to focus on how
many artifacts they produce in a sprint whereas I tell
them to get the job done efficiently and preserve high-
est quality, we always do that in good team spirit so
I think team environment is not a concern”. It can
be inferred that both the managers believe that their
teams have good working environments and there is
no issue in this regard. We analyze the responses ob-
tained from the developers in the following.

The developers had a different opinion regarding
the personal well-being and work environment and
their impact on including quality attributes in soft-
ware design. Feedback from developer D1 included
”When I feel engaged in the work I am doing, I do not
feel held back and try to implement new security de-
signs in the component I was developing”. Addition-
ally, we obtained feedback from developer D2 such
as ”when I am truly engrossed in a task, I felt that I
worried more about non-functional requirements like
security.

Developer D3 stated, ”My manager seemed to
avoid many questions I had regarding the api during
the design and development stages, after some time, I
lost a lot of motivation and tried my best to obtain the
answers to my questions using the web. If my man-
ager provided timely feedbacks and appreciated my
efforts, I think we would have worked in a more co-
hesive environment”. D4 mentioned that ”I person-
ally was not impressed on how our team communi-
cation was maintained, we did not get feedback in a
timely manner from other members, including devel-
opers and managers, so it was a 9 to 5 job where I
was concerned with finishing my tasks to meet func-
tional requirements only”. Finally D7 said, ”I fo-
cus on building real software and gaining new knowl-
edge, and this can only happen when I am working
in a place where people care and provide timely an-

swers to my queries”. As a result, multiple respon-
dents mentioned the requirement of a supportive team
to build secured software.

4 ANALYSIS OF FINDINGS

The thematic analysis was conducted by one of the
authors of the paper based on the responses sub-
mitted by survey participants during the interview.
The survey questionnaire was prepared in an online
form that was provided to the respondents. The data
was exported in an excel file and the responses were
recorded that were used to review and complete the
findings. The exporting of the data into an excel file
helped to harness the power of the survey tool that we
used and it helped to leverage the design of our sur-
vey for analysis. Responses to each question were
analyzed on a per-question method, which resulted
in finding similarities across all responses and coding
the results. The codes were provided in Table 1.

The survey had open-ended questions as seen in
Figure 2. It was important to code the open-ended
question to obtain correct takeaways from those. We
proceeded to code the open-ended responses recur-
sively and inductively. Two authors initially coded
all the open-ended responses. Next, we conducted
a dedicated session where all three authors analyzed
the coded responses and reached an agreement. After
multiple rounds of coding, 4 codes were determined
to be applicable to analyze both developer and man-
ager views. We proceeded to analyze the coded re-
sponses to determine any similarities or differences in
the perspectives of developers and managers.

The four main codes that resulted from coding the
productivity definition question are as follows: skills
of the developers and managers, user behavior when
using the software, trade-off between security and us-
ability, and developer satisfaction and work environ-
ment. We noted that these four codes from recur-
sive coding practice are in-line with the dimensions
provided by the SPACE framework (Forsgren et al.,
2021).

• S: both the developers and managers agree that
there is a lacking in the current skill set of en-
gineers and recommended new upcoming engi-
neers to “think out of the box and focus on de-
veloping malware threat prediction-based action
skills” rather than “reactive skills”. In this regard,
the software teams should include cyber security
experts in them.

• U: 100% of the respondents stated that user neg-
ligence has a role to play in software getting im-
pacted by malware. One thing to remember is that

Investigate How Developers and Managers View Security Design in Software

697



Table 1: Description of the codes.

Code Description of code
S: skills do not possess the skills required to remove all bugs which may result in secu-

rity vulnerabilities
U: end user behavior ignorant and negligent activities from end users result in malware attacks suc-

ceeding
T: trade-off trade-off between completion of user stories to security
E: environment impact of personal well-being and team cohesiveness towards designing a more

secure software

malware primarily does not attack the software, it
attacks OS first in most cases. How users use the
OS is very important in this regard.

• T: over 78% of respondents identified trading se-
curity for multiple reasons that are highlighted in
Figure 3. Limited budget, exhaustive testing of
security features, lack of collaboration with cy-
ber security experts, strict time to market, com-
pany culture, and user requirements are a few at-
tributes that forces the team to tradeoff security
for user-friendliness. Around 22% of respondents
stated that they will not tradeoff security for us-
ability as they stated ”software which follows se-
cured design with the highest importance is likely
to achieve higher user satisfaction in the long run
than software that looks to reduce security for
usability”. The respondents also mentioned the
importance of collaboration between development
team and cyber security experts to achieve highly
secured software.

• E: although developers and managers agree on the
S, U, and T aspects of security design into their
systems, they have different views when it comes
to work environment. Developers addressed the
relationship of team cohesive, caring work envi-
ronment and building security into their systems.
Developers defined “building secured software”
as related to their work environment satisfaction
whereas managers focused more on improving the
skillset of developers to achieve this goal.
Developers and managers addressed software se-
curity challenges in terms of SUT codes, however,
they seem to differ in their viewpoints regarding
a cohesive work atmosphere. More specifically,
developers and managers, as cohorts, were not in-
line with their viewpoints regarding the impacts
of a cohesive work environment and designing se-
curity into the software. Managers tend to view
security design as dependent on the SUT codes
rather than the E code. On the other hand, devel-
opers, emphasized the need for E code, which is a
friendly work environment, as a critical aspect if
addressing security in software design.

software security

short time 

to market

lack of collaboration with 

cyber security experts

company wide culture

of focusing on quantity


of output 

user requirements

exhaustive security 

testing requirements

budget limitations

Figure 3: Identification of the different reasons according to
developers and managers which lead to trading off security
in software design.

5 RELATED WORK

The importance of methods, processes, and tools for
improving the security of software created by a wide
range of developers is emphasized in existing re-
search (Beznosov and Chess, 2008). Modern software
works mostly in a connected and collaborative man-
ner, therefore they need flawless access to other sys-
tems in different geographic locations (Imran et al.,
2013) (Imran et al., 2016). Security needs of modern-
day software need to be addressed from the perspec-
tive of software design, developer skills, user behav-
ior, and legislation governing software engineering
(Kołodziej and Xhafa, 2011). At the same time, soft-
ware engineers need to collect security requirements
during the software requirements elicitation phase.

Security is mostly considered an afterthought and
incorporated only after the software has been devel-
oped (Khan and Zulkernine, 2008). It was stated that
there is a lack of processes to quantify the security of a
Software Development Life Cycle (SDLC) artifact. As
a result, the number of vulnerabilities was detected
to calculate a vulnerability index of an SDLC artifact
which acted as an indicator of the current vulnerabil-

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

698



ities. However, a mechanism to code the different ar-
eas of human factors which lead to the vulnerabilities
in design is required.

Activities to solve software security issues are
mainly considered after completion of the coding
phase (Jürjens, 2005). Security professionals ad-
dress security concerns by using tools like antivirus,
proxies, firewalls, and intrusion prevention systems
mainly during the final stages of SDLC (Jürjens,
2005). However, addressing security challenges af-
ter the coding phase may require more expensive re-
works (Khan and Zulkernine, 2008). As a result,
security needs to be considered at an early stage of
SDLC through the incorporation of feedback from the
project team.

Existing research focuses on the security of soft-
ware primarily designed for military, government, and
safety-critical systems where budget and time to mar-
ket have less priority and security is the primary con-
cern (Bressan et al., 2021). However, the focus should
be also provided to software which is designed by
software industries where cost, time to market, and
usability are the main concerns, and security is con-
sidered a non-functional requirement.

Software security in earlier publications stated
the importance of security practices such as ac-
cess control, firewalls, encryption, and authentication
(G. Kagombe et al., 2021). We agree that all security
features are important, however, from a software en-
gineering perspective, the processes and designs fol-
lowed to build the software are equally important.
Therefore, we think further research should be con-
ducted in this regard.

The importance of secured software design was
highlighted in (Zhang et al., 2022). The authors
mentioned that following a structured security de-
sign practice during software development should be
given importance. They argued that although re-
dundancy can help during random cyber attacks, fo-
cusing on reliability only will not ensure security
against well-planned and coordinated cyber-attacks
since such attackers are capable of compromising re-
dundant copies of the same system if they can com-
promise the deployed version.

The importance of collecting security require-
ments besides regular software requirements is em-
phasized in (Tondel et al., 2008). The authors stated
that correct identification of security requirements
will make sure that the software performs the cor-
rect operation. Whereas, wrong security requirements
will lead to failure of performance by the software,
which often leads to finger-pointing by the engineers.
Also, if the software team lacks any security experts,
then these problems will increase manifold. In addi-

tion to collecting software requirements, the process
and time when to collect these requirements should be
specified after discussion with developers and man-
agers.

Threat analysis has been proposed as a critical ac-
tivity to identify and prioritize different threats dur-
ing software design and development (Ingalsbe et al.,
2008). Given the situation where cost, usability, and
time to market take greater importance to security, an
effective threat analysis mechanism will enable soft-
ware professionals to detect the most critical threats
and resolve those with the given budget and time.
However, besides threat analysis, importance should
be provided to gathering real-life experiences of both
developers and managers to prioritize threats in future
software.

6 THREATS TO VALIDITY

We identify the common threats to validity as experi-
enced by similar qualitative research. Generalization
of the survey results beyond the scope of the sampled
respondents needs to be conducted with care. We in-
terviewed only industry experts and not the clients of
the software, also we interviewed the teams related
to designing and developing the software, the opinion
may vary among teams working on different software
projects in the same company. We limited our scope
to one software company only, however, the findings
may not be reflected across different sized companies
at different geographic locations. Furthermore, our
number of respondents was small, and hence our re-
sults may not be generalized to other software teams.
More specifically, the number of managers we inter-
viewed was low.

7 CONCLUSION

We determined that developers and managers had
different viewpoints regarding the work environment
and its impact on designing security into software.
Based on the findings regarding the misalignments
between the views of developers and managers about
quality, we suggested that the development team and
managers should regularly communicate their views
on security design and state what the work envi-
ronment means to them. We suggest, even be-
fore obtaining security requirements and starting a
security-focused software design process, developers
and managers should first communicate what secu-
rity level they want the software to achieve. At the
same time, they should openly discuss the necessary

Investigate How Developers and Managers View Security Design in Software

699



skills, tools, and work environment which is required
to build security into the software.

We also recommend software companies use our
provided coding mechanism called SUTE to evaluate
the security challenges faced by their software teams.
Although the codes have been tested on two teams
in one company, we believe they should be piloted
across different projects to establish our recommenda-
tions. Our coding mechanism reveals a misalignment
between developers and managers when it comes to
a working environment and security design. Simi-
lar findings have been stated in earlier research ef-
forts (França et al., 2018), (Graziotin et al., 2013).
Hence, we believe the proposed coding technique can
help companies evaluate security challenges in exist-
ing projects.

At the same time, our coding mechanism can be
used with the popular SPACE framework as discussed
earlier in the paper. Using such a framework will en-
able practitioners to identify a wide range of metrics
that will enable practitioners to capture the require-
ments and challenges of building security into the
software concerning their company and project. We
would also like to extend our research by incorpo-
rating feedback from more respondents and increas-
ing the number of project teams. Including a greater
number of respondents will enable us to reach more
concrete answers to our research questions.

ACKNOWLEDGEMENTS

This project is in part supported by the California
State University San Marcos Professional Develop-
ment funds.

REFERENCES

Beznosov, K. and Chess, B. (2008). Security for the rest
of us: An industry perspective on the secure-software
challenge. IEEE Software, 25(1):10–12.

Bressan, L., de Oliveira, A. L., Campos, F., and Capilla,
R. (2021). A variability modeling and transformation
approach for safety-critical systems. In 15th Interna-
tional Working Conference on Variability Modelling
of Software-Intensive Systems, pages 1–7.

Forsgren, N., Storey, M.-A., Maddila, C., Zimmermann, T.,
Houck, B., and Butler, J. (2021). The space of devel-
oper productivity: There’s more to it than you think.
Queue, 19(1):20–48.

França, C., Da Silva, F. Q., and Sharp, H. (2018). Moti-
vation and satisfaction of software engineers. IEEE
Transactions on Software Engineering, 46(2):118–
140.

G. Kagombe, G., Waweru Mwangi, R., and Muliaro Wa-
fula, J. (2021). Achieving standard software security
in agile developments. In 2021 The 11th International
Conference on Information Communication and Man-
agement, pages 24–33.

Graziotin, D., Wang, X., and Abrahamsson, P. (2013). Are
happy developers more productive? In International
Conference on Product Focused Software Process Im-
provement, pages 50–64. Springer.

Imran, A., Aljawarneh, S., and Sakib, K. (2016). Web
data amalgamation for security engineering: Digital
forensic investigation of open source cloud. J. UCS,
22(4):494–520.

Imran, A., Ul Gias, A., Rahman, R., and Sakib, K. (2013).
Provintsec: a provenance cognition blueprint ensuring
integrity and security for real life open source cloud.
International Journal of Information Privacy, Security
and Integrity, 1(4):360–380.

Ingalsbe, J. A., Kunimatsu, L., Baeten, T., and Mead, N. R.
(2008). Threat modeling: diving into the deep end.
IEEE software, 25(1):28–34.

Jürjens, J. (2005). Secure systems development with UML.
Springer Science & Business Media.

Khan, M. U. A. and Zulkernine, M. (2008). Quantifying se-
curity in secure software development phases. In 2008
32nd Annual IEEE International Computer Software
and Applications Conference, pages 955–960.

Kołodziej, J. and Xhafa, F. (2011). Meeting security and
user behavior requirements in grid scheduling. Sim-
ulation Modelling Practice and Theory, 19(1):213–
226.

Kumar, N., Mohan, K., and Holowczak, R. (2008). Locking
the door but leaving the computer vulnerable: Factors
inhibiting home users’ adoption of software firewalls.
Decision Support Systems, 46(1):254–264.

Lawson, S. and Middleton, M. K. (2019). Cyber pearl har-
bor: Analogy, fear, and the framing of cyber security
threats in the united states, 1991-2016. First Monday.

Rendell, D. (2019). Understanding the evolution of mal-
ware. Computer Fraud & Security, 2019(1):17–19.

Storey, M.-A., Houck, B., and Zimmermann, T. (2022).
How developers and managers define and trade pro-
ductivity for quality. In Proceedings of the 15th Inter-
national Conference on Cooperative and Human As-
pects of Software Engineering, pages 26–35.

Tondel, I. A., Jaatun, M. G., and Meland, P. H. (2008). Se-
curity requirements for the rest of us: A survey. IEEE
software, 25(1):20–27.

Ulsch, M. (2014). Cyber threat!: how to manage the grow-
ing risk of cyber attacks. Wiley Online Library.

Zhang, Y., Xiao, Y., Kabir, M. M. A., Yao, D., and
Meng, N. (2022). Example-based vulnerability de-
tection and repair in java code. In Proceedings of
the 30th IEEE/ACM International Conference on Pro-
gram Comprehension, pages 190–201.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

700


