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Abstract: Generative deep learning models based on Autoencoders and Generative Adversarial Networks (GANs) have
enabled increasingly realistic face-swapping tasks. The generation of representative synthetic datasets is an
example of this application. These datasets need to encompass ethnic, racial, gender, and age range diver-
sity so that deep learning models can avoid biases and discrimination against certain groups of individuals,
reproducing implicit biases in poorly constructed datasets. In this work, we implement a StyleGAN2-ADA
to generate representative synthetic data from the FFHQ dataset. This work consists of step 1 of a face-swap
pipeline using synthetic facial data in videos to augment data in artificial intelligence model problems. We
were able to generate synthetic facial data but found limitations due to the presence of artifacts in most images.

1 INTRODUCTION

Pre-trained AI models for people detection and facial
recognition are becoming increasingly common in in-
dustrial and commercial environments. These mod-
els are generally trained on large datasets of facial
images or images of human traffic in these environ-
ments. However, the problems of biased AI models
for facial recognition and the need for data augmen-
tation for a well-built solution for these models are
known.

In the case of facial images, facial manipulation
and facial switching techniques have evolved with a
variety of specialized approaches and techniques (Yu
et al., 2021). The most common approaches are face
swap, synthesized aging, and rejuvenation. Among
the solutions most investigated by these AI models
are the generation of representative synthetic data to
be later used in training deep learning (DL) networks.

The use of synthetic facial data has become neces-
sary because large datasets can contain biases and not
represent the test set of the model. Thus, the increas-
ing use of synthetic data is due to the growing con-
cern to avoid biases in the datasets that can lead the
model to make errors, such as racism and discrimina-
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Figure 1: Pipeline for the automatic generation of syn-
thetic facial data: step 1 - Deepfake generation: generation
of deepfake images; step 2 - Video pre-processing: pre-
processing the videos of the situation applied with the fa-
cial change, and; step 3 - Data generation: extraction of the
synthetic dataset with face swap - adapted from Meira et al.
(Meira et al., 2023).

tion against underrepresented groups in the training
dataset.

Generative models can potentially learn any data
distribution in an unsupervised way (Pavan Kumar
and Jayagopal, 2021). The models behind these syn-
thetic facial data generation tasks are based on Au-
toencoders (AEs) and Generative Adversarial Net-
works (GANs). Recently, models known as the Diffu-
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Figure 2: Overview of the conversion phase in the DeepFaceLab framework (DFL) - adapted from Perov et al (Perov et al.,
2020) and Meira et al (Meira et al., 2023).

sion Model for generating false images are also being
disseminated.

Therefore, this text presents the first steps towards
a StyleGAN2-ADA implementation for facial swap
in images. We display the theoretical framework,
present the first experiments, and discuss the main
limitations found in the usage of this technique to-
wards the proposed goals. Therefore, the main objec-
tive of this work is:

• Propose and test a pipeline for facial swap using
StyleGAN2-ADA.

Based on the discussion presented, the steps to
complete the proposed goal are:

1. Investigate the techniques of generative models:
Autoencoders, Diffusion Models, and Generative
Adversarial Networks in a brief review of the lit-
erature and describe them to justify the choice of
GANs for the implementation of this work;

2. Propose a pipeline for generating synthetic facial
data from the proposed discussion.

3. Introduce the StyleGAN2 architecture for gener-
ating synthetic data deepfake;

4. Implement the StyleGAN2-ADA architecture
for generating a representative synthetic facial
dataset.

Our work presents recent generative model ap-
proaches and techniques. In addition, we propose
a work pipeline for the generation of facial data to
contribute to the community to develop more repre-
sentative datasets without biases and discriminations,
mainly ethnic and racial ones. This work aims to be
STEP 1 demonstrated in Figure 1 for constructing a
pipeline for generating synthetic facial data that will
be replaced by the facial swap technique in videos
of situations applied to generate training datasets of
other models of AI.

We organized the remainder of this text as follows:
We discuss the theoretical background in Section 2,
presenting the main techniques of generative models
for facial manipulation . Then, we assess the materi-
als and methods in Section 3. Section 4 presents the
results of our experiments and the discussion of the

limitations and challenges of the current techniques.
Finally, we display our conclusions and final remarks
in Section 5.

2 THEORETICAL BACKGROUND

Generative models have been around for decades,
and with the advancement of DL models, implement-
ing generative modeling techniques has become more
popular. Generative models assume that a spatial dis-
tribution from a latent space can represent data. Thus,
these models make it possible to model a dataset in the
form of Markov chains or through an iterative gener-
ative process (Harshvardhan et al., 2020).

Generative models generate data through an esti-
mated probability distribution very close to the distri-
bution of the original input data (Harshvardhan et al.,
2020). Consider X an independent variable and Y a
target variable. The generative models estimate the
distribution given by P(X—Y) and P(Y).

Training deep generative models takes more time
than discriminative models, as creating a probabil-
ity distribution similar to the source dataset involves
more correlations to learn (Harshvardhan et al., 2020),
such as learning features than discriminative models
convolutional data could have been ignored to gener-
ate a completely new dataset. For Harshvardhan et
al. (Harshvardhan et al., 2020), generative models are
important because:

• Can be used as tools to select indicative features
that will improve the classification and accuracy
of the model;

• Can be applied to generate realistic data samples.

When it comes to deep generative models, the
techniques that allow applications like the one men-
tioned in this work are: Autoencoders, Diffusion
Models, and Adversarial Generative Networks.
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2.1 Autoencoders and Variational
Autoencoders

The first investigated techniques within the context of
Generative Adversarial Networks are Autoencoders.
Mainly, they can be classified among traditional im-
plementations and Variational Autoencoders.

2.1.1 Autoencoders

Harshvardhan et al. (2020) define Autoencoders as an
unsupervised approach to learning feature representa-
tions of lower dimensions from unlabeled data. Au-
toencoders are models consisting of three layers: an
input layer, where {xi}N

i=1 ∈ X, an intermediate layer,
also called the coding or bottleneck layer Z and an
output layer X̂ .

The intermediate layer stores coded and extracted
inputs in Z using weights. Then decoding Z generates
an output X̂ similar to X. The encoding step can be
expressed by a mapping function given in Equation 1
(Harshvardhan et al., 2020):

Z = f (WX +b) (1)

Where b is the bias and W is the weight vector.
The loss is calculated using an L2 loss function at the
end of an epoch given by the Equation 2 (Harshvard-
han et al., 2020):

L = ||x− x̂|| (2)

After calculating the loss, the error is propagated
back through the network to adjust the weights. Fur-
thermore, Autoencoders can be used to initialize su-
pervised classification models in which a classifier
replaces the decoder. This classifier runs on the ex-
tracted feature vector Z to classify only based on
the features coded as important (Harshvardhan et al.,
2020).

2.1.2 Variational Autoencoders

Similar to the previously described Autoencoders, in
the Variational Autoencoders models, we first assume
that our data {xi}N

i=1 is generated by a prior latent
distribution Z, assumed as a Gaussian and given by
pθ(z), where θ are the parameters learned by the
model (Harshvardhan et al., 2020).

To generate the data, we can sample from x from a
true conditional pθ(x|Zi) and estimate the proper pa-
rameters θ. This conditional can be represented by a
neural network (Harshvardhan et al., 2020).

2.2 Generative Adversarial Networks

VAEs are not the most accurate in generating data
similar to the original data because, in the case of
images, blurring can be noticed in the generated im-
ages, (Harshvardhan et al., 2020). The GANs, intro-
duced by Goodfellow et al. (Goodfellow et al., 2014),
consist of a family of generative models capable of
achieving high accuracy in data generation.

GANs are composed of two components: the dis-
criminator and the generator. Both components work
and learn features together, rather than one being pre-
trained.

We denote the distribution of the generator G by
pG over the source real data. We define a prior of
input noise, which consists of a latent random vari-
able pz(z). So G is a differentiable function since it
operates on non-discrete data z with parameters θG
whose data space is represented by G(θG) (Harshvard-
han et al., 2020).

We represent the D discriminator data space as
D(θD)(x) having parameter θD, which is the probabil-
ity that the data that came from the source data is not
false (Harshvardhan et al., 2020).

The objective function of a GAN consists of a
function minmax, as given by Equation 3 where the
generator tries to minimize the objective between a
false sample and a real sample while the discriminator
tries to maximize to differentiate real and fake sam-
ples1.

min
θ

max
φ

V (Gθ,Dφ) =

Ex∼pdata [logDφ(x)]+
Ex∼pz [log(1−Dφ(Gθ(z)))]

(3)

2.3 Diffusion Models

One of the families of Deep Generative Models is the
Diffusion Models (Croitoru et al., 2022). Some of
the applications of these models are image synthesis,
video generation, speech generation, and natural lan-
guage processing (Yang et al., 2022; Cao et al., 2022).
Despite recent promising results, Diffusion Models
have limitations, such as:

• Low time efficiency during inference caused by
thousands of evaluation steps (Croitoru et al.,
2022);

• Most of the improvements in the existing mod-
els for application are based on the original con-
figuration as DDPM (Denoising diffusion prob-
abilistic models). However, researchers need to

1https://deepgenerativemodels.github.io/notes/gan/
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pay more attention to the widespread configura-
tion of diffusion-based models. Thus, other sig-
nificant work is exploring other distributions.

Among the Diffusion-based Generative Models
that have already been proposed are: Diffusion Prob-
abilistic Models (Sohl-Dickstein et al., 2015), Noise-
Conditioned Score Network - NCSN (Song and Er-
mon, 2019), and Denoising diffusion probabilistic
models - DDPM (Ho et al., 2020).

Diffusion Models are based on a forward diffusion
stage, and a reverse stage (Croitoru et al., 2022). In
the first stage of forward diffusion2, the input data is
perturbed gradually into several Markov chain diffu-
sion steps by adding random Gaussian noise to the
(Croitoru et al., 2022) data.

Consider a real data distribution x0 ∼ q(x). Given
a sampled point, we define a forward diffusion pro-
cess by adding a small Gaussian noise to the sam-
ple in T steps. The result is a sequence of noise
samples x1, ...,xT . The step sizes are controlled by{

βtε(0,1)}T
t=1

}
.

q(X1:T |x0) =
T

∏
t=1

q(xt |xt−1) (4)

We can sample xt at any arbitrary time step by
reparameterization. As the t step progresses, the data
sample x0 gradually loses its distinguishable charac-
teristics (Croitoru et al., 2022). The larger the update
step, the noisier the sample. In the reverse stage, the
model tries to recover the original input data from the
gradual reversal of the diffusion process to build de-
sired data samples (Croitoru et al., 2022).

3 METHODOLOGY

This section presents the materials and methods em-
ployed in this work. Initially, we discuss the frame-
work used to produce this solution. Then, we present
the dataset employed for this case study.

3.1 Framework StyleGan2

The StyleGAN architecture consists of a style-based
GAN architecture proposed by Karras et al. (Kar-
ras et al., 2019). The unsupervised model archi-
tecture automatically separates high-level attributes
(e.g., pose and identity when trained on human faces)
and stochastic variation in the generated images (e.g.,
freckles, hair). Furthermore, it allows a scale to con-
trol the synthesis (Karras et al., 2019). The synthesis

2https://lilianweng.github.io/posts/2021-07-11-
diffusion-models/

Figure 3: While a traditional generator feeds the latent code
the input layer, the new proposal first maps the input to
an intermediate latent space W , which then controls the
generator through adaptive instance normalization (AdaIN)
in each convolution layer. Gaussian noise is added af-
ter each convolution before evaluating non-linearity. Here,
“A” stands for a learned affine transform, and “B” applies
learned per-channel scale factors to the noise input. The
mapping network f consists of 8 layers, and the synthesis
network g consists of 18 layers, where two of them are for
each resolution (42 −10242). The output of the last layer is
converted to RGB using a separate 1×1 convolution. The
generator has a total of 26.2 million trainable parameters,
compared to 23.1 million in the traditional generator (Kar-
ras et al., 2019).

concept is used when a deepfake is created without a
base target (Mirsky and Lee, 2021).

The authors’ motivation was to redesign the gen-
erator architecture to control the image synthesis pro-
cess (Karras et al., 2019). The generator takes a con-
stant learned input and adjusts the ”style” of the im-
age in each convolution layer based on the latent code.
StyleGAN has latent space as an input that follows the
probability density of the training data, and the in-
termediate latent vector is free of this restriction and,
therefore, disentangled is possible. Figure 3 shows
the architecture designed by the authors.

The work by Karras et al. (Karras et al., 2020)
proposed changes in the model architecture and train-
ing methods to deal with the generated artifacts. The
authors improved the state-of-the-art in terms of tra-
ditional distribution quality metrics and improved the
interpolation properties. They focused on the inter-
mediate latent space W, which is not as impacted
by disentangled as the input latent space Z due to
stochastic variation, making it easier to provide ad-
ditional random noise maps to the synthesis network.

Regarding the artifacts generated by StyleGAN,
Karras et al. (Karras et al., 2020) redesigned the
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generator normalization to remove the artifacts that
were generated to work around an architectural de-
sign flaw. The authors also proposed an alternative
design to progressive growth related to the genera-
tion of artifacts. The training starts by focusing on
low-resolution images and then progressively shifts
the focus to higher and higher resolutions — without
changing the network topology during training (Kar-
ras et al., 2020). For implementation, the authors have
provided the official StyleGAN2 repository3.

Then, the authors improved StyleGAN24 by
proposing an adaptive discriminator augmentation
mechanism to avoid discriminator overfitting. This
strategy enables training with smaller datasets (∼
30,000 images).

3.2 Dataset

The dataset for this implementation consists of the
Flickr-Faces-HQ Dataset (FFHQ)5, a dataset created
as a reference for GANs. The dataset consists of
high-quality images of human faces, 70,000 PNG im-
ages with 1024x1024 resolution, containing variation
in terms of ethnicity, background images, age, and ac-
cessories (glasses, hat).

Authors (Karras et al., 2020) trained StyleGAN2-
ADA with eight high-end NVIDIA GPUs of at least
12GB of GPU memory and provided pre-trained
weights from the dataset.

4 RESULTS

This section discusses the results obtained from the
experimental apparatus. As presented in the previ-
ous section, our starting point was the pre-trained
StyleGAN2-ADA model using the FFHQ dataset.
Then, we start feeding random seeds to this model
to obtain a latent representation as input to generate
artificial images.

The seed generates a latent vector containing 512
floating point values. The GAN uses the provided
seed to generate these 512 values. Furthermore, a
small change in the latent vector results in a slight
change in the image. From the observed results, we
assess that even tiny changes in the integer seed value
will produce radically different images.

We provide three seeds, and the value of steps the
model must vary between these images to generate the
deepfakes. The seed values that provide the most re-

3https://github.com/NVlabs/stylegan2
4https://github.com/NVlabs/stylegan2-ada
5https://github.com/NVlabs/ffhq-dataset

alistic results depend on the type of image being gen-
erated. For example, for faces, the best seed values
vary between 6000 and 6500. Figure 4 shows some
examples of generated realistic images.

In Figure 4, we observe few or almost no artifacts
at first sight. However, many images had notable arti-
facts, particularly in the forehead and teeth/gums re-
gion. Figure 5 presents some images with generated
artifacts.

Figure 4: These are examples of images generated with re-
alistic aspects with a low degree of artefacs. It is expected
to use images with this level of quality for facial swap in
videos to generate synthetic facial data for training other
DL models, such as fatigue detection, and monitoring of
work activity, among others.

Figure 5: These are examples of facial images generated
with many artifacts, easily detectable as fake faces, and
which cannot be used in the generation of synthetic facial
data.

4.1 Limitations and Challenges

We found some limitations in using this architecture
to generate faces. These identified challenges can
shape the next steps of further research toward this
goal:

• Although the generated faces are impressively
close to realistic faces, with more careful obser-
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vation, one can differentiate the images generated
by GAN from a real photo;

• The previous observation limits, or at least gen-
erates more work in separating deepfakes images
for the proposed implementation;

• We found limitations in the implementation to
train with the FFHQ dataset since the files and
metadata are very extensive, and we could not ac-
cess them;

• Despite the limitation reported above, the weights
made available by training with the FFHQ dataset
were sufficient to generate a synthetic image using
only the G generator;

• We were also unable to add the conditional to the
generator, a step that must be overcome in future
work.

5 CONCLUSION

This work displays the first steps in employing the
StyleGAN2-ADA framework toward the facial swap
task in images. We conducted our research starting
with a theoretical analysis of the face swap techniques
background. Then, we presented the proposed meth-
ods. Finally, we identified the main limitations and
challenges by observing this process.

In implementing the model for the generation of
synthetic faces in phase 1 of our pipeline, we ob-
tained a set of realistic facial images. The limita-
tions found were: hardware for training (the authors
of the StyleGAN2-ADA architecture used eight self-
performance NVIDIA GPUs for training the FFHQ
facial dataset) and a large part of the dataset gener-
ated with artifacts in the images. We observed that
the generator trained using this dataset was able to
generate synthetic images.

Our experiments allowed us to identify several
challenges in developing this solution. Among these,
the initial observation is the need for more detail in
generating synthetic faces. This aspect can jeopardize
the production of face swap technologies, as we ob-
served a visible loss in realism. There were also tech-
nical challenges, such as adding a conditional into the
generator.

The difficulty in accessing the dataset was a rel-
evant challenge in this research. In future works, we
intend to carry out our training with our facial dataset,
obtained from embedded hardware, 300x300 pixels
resolution for comparison purposes. Our dataset has
about 45,000 images. We also intend to reassess the
strategy for obtaining facial data. In future work, we
intend to use a 3D facial generator network to acquire

synthetic facial images in all positions of the same
identity.
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