
Exploring Spectral Data, Change Detection Information and 
Trajectories for Land Cover Monitoring over a Fire-Prone Area  

of Portugal 

André Alves1 a, Daniel Moraes2,3 b, Bruno Barbosa1 c, Hugo Costa2,3 d, Francisco D. Moreira3 e, 
Pedro Benevides3 f, Mário Caetano2,3 g and Manuel Campagnolo1 h  

1Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, 
 Tapada da Ajuda, 1349-017 Lisboa, Portugal 

2NOVA Information Management School (NOVA IMS), Universidade NOVA de Lisboa,  
Campus de Campolide, 1070-312 Lisboa, Portugal 

3Direção-Geral do Território, Rua Artilharia Um, 107, 1099-052 Lisboa, Portugal 

Keywords: Land Cover Change Classification, Thematic Map, Spectral Composites, NDVI, CCDC, COSc, Earth Observation. 

Abstract: Land use/land cover (LULC) change detection and classification in maps based on automated data processing 
are becoming increasingly sophisticated in Earth Observation (EO). There is a growing number of annual 
maps available, with diverse but related production structures consisting primarily of classification and post-
classification phases, the latter of which deals with inaccuracies of the first. The methodology production of 
the “Carta de Ocupação do Solo conjuntural” (COSc), a thematic land cover map of continental Portugal 
produced by the Directorate-General for Territory (DGT) mostly based on Sentinel-2 images classification, 
includes a semi-automatic phase of correction that combines expert knowledge and ancillary data in if-then-
else rules validated by photointerpretation. Although this approach reduces misclassifications from an initial 
Random Forest (RF) prediction map, improving consistency between years and compliance with ecological 
succession, requires a lot of time-consuming semi-automatic procedures. This work evaluates the relevance 
of exploring an additional set of variables for automatic classification over disturbance-prone areas. A 
multitemporal dataset with 124 variables was analysed using data dimensionality reduction techniques, 
resulting in the identification of 35 major explanatory indicators, which were then used as inputs for RF 
classification with cross-validation. The estimated importance of the explanatory variables shows that 
composites of spectral bands, which are already included in the current COSc workflow, in conjunction with 
the inclusion of additional data namely, historical land cover information and change detection coefficients, 
from the Continuous Change Detection and Classification (CCDC) algorithm, are relevant for predicting land 
cover classes after disturbance. Since map updating is a more challenging task for disturbed pixels, we focused 
our analysis on locations where COSc indicated potential land cover change. Nonetheless, the overall 
classification accuracy for our experiments was 72.34 % which is similar to the accuracy of COSc for this 
region of Portugal. The findings suggest new variables that could improve future COSc maps.

1 INTRODUCTION 

Land use/land cover (LULC) products by remote 
sensing and satellite image classification are 
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becoming increasingly accurate in land 
representation. Earth observation (EO) has seen 
significant practical and theoretical advances as data 
and machine-learning tools have become more 
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accessible (Wulder et al., 2018). In the age of big data, 
these map products are becoming more refined in 
terms of both thematic and spatial detail, with 
increased class heterogeneity. Simultaneously, with 
the growing number of multi-annual maps (Brown et 
al., 2020; Buchhorn et al., 2020; Hermosilla et al., 
2018) and near-real-time products (Brown et al., 
2022), the temporal aspect has also received attention. 
However, measuring vegetation recovery and 
predicting post-disturbance classes in line with 
ecological succession principles, as well as other 
concerns of temporal consistency of land cover 
change direction, remains a challenge in time series 
of land cover (Bartels et al., 2016; White et al., 2022; 
Wulder et al., 2018). 

Land succession processes are complex since they 
can be of high or low magnitude, abrupt or subtle, and 
completed in months or take several years (Zhu et al., 
2022). Also, misclassifications can be numerous 
because of spectral confusion, land cover 
heterogeneity within the pixel resolution, different 
phases of vegetation growth and the broad conceptual 
definition of classes (e.g., bushland, scrubland, 
moorland, shrub-steppe, etc., are normally classified 
in the same class). Several examples of works 
presenting methodological contributions to post-
classification error reduction, improving annual 
consistency and better-predicting land cover change 
trajectories, can be found in the literature. Annual 
filters limiting LULC misclassifications (Franklin et 
al., 2015), spatial-temporal joint classifications (Cai 
et al., 2014) and time-series post-classification 
(Hermosilla et al., 2018), are a few examples that 
illustrate how diverse the proposed methodologies 
are. Those examples used several dimensions of data 
for consistency refinement. Ranging from transition 
rules based on prior knowledge, spectral and change 
detection information, historical land cover and class 
membership data, to contextual information of 
adjacent pixels, a wide range of potential features can 
be contemplated to more accurately predict the land 
cover class in a context of ecological succession. 

This study intends to explore an approach to 
improve the “Carta de Ocupação do Solo 
conjuntural” (COSc). The COSc is a 10-meter raster 
thematic annual map of land cover for continental 
Portugal with 15 classes. As the outcome of a 
supervised classification of satellite images and 
ancillary data, its production settles on a multi-stage 
workflow with preliminary maps being produced 
along the way (Costa et al., 2022b). The first phase is 
the COScA, a step of automatic data processing that 
consists of a supervised classification with the 
Random Forest (RF) algorithm to classify land cover 

classes based on stratified point samples. 
Subsequently, a semi-automatic phase takes place, 
COScR, minimizing misclassifications through 
expert knowledge implemented by if-then-else rules. 
It is estimated that COScR map is at least 13 % more 
accurate than COScA (Costa et al., 2022b). 
Subsequently, the intra-annual vegetation losses, 
such as wildfires during summer, are assessed in the 
COScP phase. Finally, a harmonization process over 
landscape units concludes the COSc workflow 
(COScH). 

The inputs for the automatic steps of the COSc 
workflow are partly derived from the time series of 
Sentinel-2 imagery. COScA uses as inputs monthly 
composites and COScP relies on detected temporal 
breaks of a vegetation index to identify potential 
intra-annual vegetation losses. The COSc map has 
been made available to users since 2018 and the 
release of successive yearly products follows a “map 
updating” strategy, where only pixels with evidence 
of change are possibly reclassified. More precisely, 
successive updates focus only on pixels expected to 
change (e.g., fire scars) or identified as disturbed 
according to a temporal analysis of the spectral 
profile and assume that the rest of the map remains 
unchanged (Costa et al., 2022a). COSc has been 
updated to 2020, 2021 and the 2022 version is under 
production. 

The current work explores the suitability of a 
broad range of variables as new input data for the 
COSc workflow. Towards that end, a dataset was 
created with a set of variables for land cover 
classification, which includes spectral data, historical 
land cover information, Markov chain transition 
probabilities, and change detection information from 
the Continuous Change Detection and Classification 
(CCDC) algorithm, which also models the temporal 
pattern of the land cover signal between transitions. 
At the time of writing, none of the existing versions 
of the COSc map were created using CCDC or past 
land cover and their transitions, thus their potential 
for classification is unknown. Since our set of 
variables is very large and exhibits some high 
correlations, data was processed to identify 
intercorrelated groups of variables, reduce the dataset 
dimensionality, and minimise multicollinearity when 
assessing for variables' importance. 

Our experiments were made using a reference 
dataset for a forest fire-prone region in the Center of 
Portugal (tile 29TNE), where high-intensity large 
fires occurred in 2017. Our reference data included 
300 plots, distributed over fire-affected and non-fire-
affected areas, and was created through 
photointerpretation of a temporal series of Sentinel-2 
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false colour (RGB 843) composites from September 
2018 to September 2021 and orthophotos from the 
summer of 2018 and 2021. 

The objectives of the paper are twofold: (i) assess 
the accuracy of fully automatic land cover 
classification; (ii) identify the relevance of new 
candidate variables to be included in the COSc 
workflow. The remainder of the paper is organized as 
follows: Section 2 – Data and Methods, Section 3 – 
Results, Section 4 – Discussion and Section 5 – 
Conclusions. 

2 DATA AND METHODS 

The methodological approach was supported in 
Python environment. First, a hierarchical clustering 
analysis identified groups of highly correlated 
explanatory variables, that were subsequently 
generalised by a principal component analysis (PCA) 
to obtain a parsimonious dataset. The supervised 
classification was performed using RF. Spectral, 
thematic, transition probabilities and change 
detection information were considered as inputs to 
predict the 2021 class given by photointerpretation. 
The accuracy of the model was evaluated using 
traditional metrics and the calculation of Receiver 
Operating Characteristic (ROC) curves. Feature 
importance was assessed, and the results were 
mapped.  

2.1 Case Study Area 

This research was conducted on the Sentinel-2 tile 
29TNE, which covers a ~100 km wide swath along 
the West coast of Central Portugal (Figure 1). This 
area of continental Portugal landscape is 
characterized by the coexistence of dense forest, 
agricultural areas and urban land use bordering 
wilderness (urban-rural interface areas). According to 
Alves et al. (2022), there have been significant 
changes in forest ecosystems in this area over the past 
few decades. One of the most notable changes has 
been the decline of maritime pine forests, as the result 
of the expansion of eucalyptus plantations which now 
dominate the region (Alves et al., 2022). Furthermore, 
the study area was affected by large forest fires in 
2017 (San-Miguel-Ayanz et al., 2020). As a result, it 
is a dynamic area with the potential for land change 
due to vegetation gains. 

To run classification tests, the study area was 
sampled with 300 circular plots with a 200-meter 
radius. Those plots were randomly located over tile 
29TNE, according to a stratification that separated the 

sample into 150 plots that exhibited a spectral change 
in the agricultural years from 2018 to 2021 and 150 
that did not. The occurrence of change was identified 
with the CCDC algorithm applied to the full 
Sentinel-2 Level-2A time series, which initiates in 
early 2017.  

After the 300 plots were chosen as described 
above, a team of photointerpreters relied on a series 
of monthly Sentinel-2 temporal composites from 
September 2018 to September 2021 as well as 25 cm 
orthophotos from the summer of 2018 and 2021 to 
segment those plots based on land cover and actual 
occurrence of change. When a change was identified 
by the photointerpreter, the thematic class for the 
polygon pre-change and post-change was registered 
according to the COSc legend. Therefore, the 
reference dataset includes the class (minimum 
mapping unit of 0.5 ha) for polygons that registered 
changes from September 2018 to September 2021. 
From these polygons originally 380,951 pixels were 
derived (10-meter spatial resolution). The official 
COSc2021 was used to label the polygons identified  

 

 
Figure 1: Definition of the study area: a) Plots in tile 
29TNE; b) Change/No-change polygons; c) Disturbed 
pixels under study; d) COSc map land cover classes 
considered. 
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as “no change” when the dominant class remained 
equal to 2020 and covered more than 80 % of the 
polygon area. “No change” polygons not meeting that 
threshold were not included in our study area. In 
addition, only pixels with potential vegetation gains 
were kept (COScA i.e., areas where a disturbance 
occurred in the last years (2015-2020) and COScP 
i.e., losses (clear-cuts and fires) in the 2021 
agricultural year). From the 15 classes of the COSc 
legend, only 6 classes were relevant over the study 
area: bare soil, natural grassland, shrubland, 
eucalyptus, other broadleaves and maritime pine. As 
a result, the analysis focused on those 6 land cover 
classes (see Figure 1). 

After these conditions were imposed, 147,060 
pixels remained for the classification experiments 
which covered about 14,7 km2. From 2020 to 2021, 
according to the photointerpreters, 73945 pixels 
changed land cover class, of which 20688 registered 
a loss of vegetation while 53257 had some type of 
growth. 

2.2 Data 

The multidimensional dataset (Table 1) was based on 
a literature review of studies that address 
multitemporal map production, annual consistency 
refinement and ecological succession (Abercrombie 
& Friedl, 2016; Franklin et al., 2015; Hermosilla et 
al., 2018; Liu et al., 2021; Xian et al., 2022; Xie et al., 
2022). The 124 selected variables arose from a 
compromise between information that is not 
considered for the current COSc classification and 
that could be easily generated without disrupting the 
existing workflow. Furthermore, the new variables 
were supposed to inform about the ecological 
succession trajectory and the type of land cover 
change. All information was resampled to the 10-m 
spatial resolution of Sentinel-2 visible and near-
infrared (NIR) bands. 

Table 1: Per-pixel raw data. 

Dimension Variable 
Historical land 

cover 
COSc2018 and 2020 land cover 

classes 
Class transition 

likelihood 
Markovian Conditional 
Probabilities 2018-2020

Spectral images 

B2, B3, B4, B8, B11, B12 and 
Normalized Difference 

Vegetation Index (NDVI) 
monthly composites

Change detection 
information 

(CCDC) 

Annual Cosine term of B2, B3, 
B4, B8, B11, B12 and NDVI

Annual Sine term of mentioned 
bands and NDVI

Magnitude change (mentioned 
bands and NDVI) 

Time trend slope (mentioned 
bands and NDVI) 

Time trend intercept (mentioned 
bands and NDVI) 

Time duration of the last 
segment 

Number of detected breaks
Change in the year 2021

2.2.1 Historical Land Cover Information 

The incorporation of prior land cover classes 
constitutes information relevant for predicting the 
next class and its inclusion in classification and post-
classification processes is not atypical (Cai et al., 
2014; Reis et al., 2020). The inclusion of previous 
classes can be informative for two main reasons. On 
the one hand because if a specific tree species class 
has already occurred in a determined location, it is 
more likely to occur in the future than other tree 
species. On the other hand, the model can learn what 
were the most common transitions to occur in the 
past, giving it greater confidence in predicting the 
future class. In this sense, the COSc2018 and 2020 
classes were used as inputs for classification. 

2.2.2 Class Transition Likelihood 

In research aimed at enhancing the consistency of 
annual maps, transition probabilities are typically 
used as input variables in post-classification schemes 
(Gong et al., 2017). In our approach transition 
probabilities were derived using Markov Chains 
based on the Markovian transition estimator in 
IDRISI Selva. The reference images used were the 
2018 and 2020 COSc maps of the study area, but 
since our objective was to predict the land cover class 
in 2021 it was defined that the period to project 
forward from the second image was only one year. 
The probability calculation assumed that the existing 
thematic error in COSc did not propagate over time.  

2.2.3 Spectral Images 

The spectral variables used correspond to the 
Sentinel-2 bands 2 (blue), 3 (green), 4 (red), 8 (near-
infrared), 11 and 12 (short-wave infrared). In 
addition, the Normalized Difference Vegetation 
Index (NDVI), with a known strong capacity for 
discriminating phenological profiles of different land 
covers (Balata et al., 2022; García et al., 2019), was 
calculated. These spectral data consisted of monthly 
composites computed using the median value of 
observations covering the 2021 agricultural year 
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(October 2020 until September 2021), with the 
Sentinel-2 Surface Reflectance image collection from 
Earth Engine Datasets. The s2cloudless was used as 
the cloud filter and gaps due to missing data were 
filled based on interpolation using a harmonic model.  

2.2.4 Change Detection Information 

The inclusion of change information in land cover 
classification can enable a result with a lower degree 
of misclassifications when considering areas 
experiencing changes since it is informative about the 
trajectory of each pixel. Change information was 
calculated using the CCDC algorithm (Zhu & 
Woodcock, 2014) in Google Earth Engine. CCDC 
uses linear harmonic models to detect breaks in time 
series based on EO data. In particular, the harmonic 
terms are modelled by periodic functions of sine and 
cosine for varying periods, although we only use the 
annual terms (see Table 1). The algorithm was 
executed on the Sentinel-2 Surface Reflectance image 
collection and its parameterization is exhibited in 
Table 2. 

The CCDC algorithm was not used to detect new 
areas with disturbance, since the study area mask was 
already defined based on the current COSc 
framework, but for deriving relevant information for 
classification. Although CCDC is designed to detect 
more than one change per pixel, and model all 
temporal segments between detected breaks in the 
time series, we restricted our analysis just to the most 
recent segment. 

Table 2: Parameters used to run the CCDC algorithm. 

Parameter Value
Lambda 50

Chi-square 0.995
Minimum number of years factor 1

Minimum observations 6
Maximum iterations 25000

Breakpoint bands B3, B12, NDVI
TMask bands B3, B12

 
The CCDC estimated coefficients (intercept, 

trend, and annual periodicity fitted with sine and 
cosine terms) model the pattern of the time series after 
the most recent disturbance and are suitable to land 
cover classification processes (Xian et al., 2022). The 
coefficients represent a temporal segment between 
two breaks. If no disturbance is detected by the 
algorithm since the beginning of the time series 
(which is early 2017 for Sentinel-2 surface 
reflectance data) the full series corresponds to the 
most recent segment. However, we used the total 

number of detected breaks for the whole time series 
as a proxy for the overall frequency of disturbance at 
the pixel location.  

2.3 Data Dimensionality Reduction 

To obtain a parsimonious model, avoiding data 
redundancy and multicollinearity when measuring 
the feature importance, a double-step dimensionality 
reduction approach was used. First, a hierarchical 
cluster analysis was performed using all variables' 
correlation as the distance matrix, applying Ward’s 
aggregation rule. This allowed us to identify groups 
of highly intercorrelated variables. The variable that 
represents each group was defined as its principal 
component according to a PCA. Due to their scales, 
the prior land cover class (2 variables), Markovian 
probabilities (6 variables, 1 for each class), and the 
binary variable of change in 2021 were set aside and 
added later to the representative variables determined 
as described above. This approach resulted in a total 
of 26 new variables (derived from clustering and 
PCA) plus the 9 ones that had been set aside (see 
Table 1). 

2.4 Random Forest Classification and 
Accuracy Assessment 

We used the sklearn library in Python (Pedregosa et 
al., 2011) to run RF classifications with stratified 10-
fold cross-validation. Data were partitioned into 
training and testing polygons stratified by the 2021 
class, ensuring that polygons used for training would 
not be used for testing, and vice versa. 
Parametrization ensured a maximum number of 300 
trees and √𝑛 as the number of features available at 
each split. 

The measurement of variable importance was 
obtained by the feature permutation algorithm, 
determining the mean decrease in accuracy for each 
variable. The permutation method to estimate 
variable importance takes an explanatory variable x 
and randomly shuffles its values in the dataset before 
re-fitting the model. Then, it measures the increase in 
prediction error regarding the model fitted to the 
original dataset. Repeating this procedure for each 
variable 𝑥  at a time estimates its importance and 
compares it to the remaining variables. 
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3 RESULTS 

Results highlight that some variables, due to their 
significance, have the potential for inclusion in future 
COSc map production, specifically, by aiding in the 
integration of land cover trajectory-related 
parameters into the classification.  

3.1 Accuracy 

Table 3 shows the cross-validation accuracy 
assessment with the RF classifier. The parsimonious 
model achieved an accuracy of 72.34 % (± 1.86 % at 
the 95 % confidence level). Pixels that were identified 
by the photointerpreters as “change” exhibited a 
slightly lower accuracy, particularly in the case of 
vegetation gains.  

Table 3: Model accuracy. 

Type of pixels Correctly classified 
pixels (%)

Global 72.34
No change in 2018-2021 77.30

Change in 2018-2021 67.61
Vegetation gains 2020-2021 65.31
Vegetation losses 2020-2021 73.52

Land cover changes leading to loss of vegetation 
(e.g., eucalyptus to bare soil; shrubland to natural 
grassland, etc.) had higher accuracy than vegetation 
gains. However, the model’s capacity to correctly 
classify vegetation gains seems to have been 
influenced by the type of occurrence that caused the 
disturbance. According to Table 4, a greater 
percentage of incorrectly classified pixels was related 
to wildfires (60 %), whereas polygons with clear-cuts 
had lower misclassification occurrences. Even though 
these proportions apply to all pixels and not only 
those with vegetation gains, it appears that the 
classification outcome was influenced by the fact that 
burned scars recover more slowly than areas that had 
tree cutting. 

Table 4: Error distribution by disturbance processes. 

Type of disturbance Incorrectly classified 
pixels (%)

No disturbance detected in 
2018-2021 2.16 

Fire in 2018-2021 59.89
Clear-cut in 2018-2021 37.96

 
The land cover classes with the greatest accuracy 

were shrubland and eucalyptus (Figure 2). The 
classification of maritime pine and other broadleaves, 

which are not abundant in the study area, were more 
prone to errors. 

 
Figure 2: Classification ROC curves. 

3.2 Dimensionality Reduction and 
Feature Importance 

The data dimensionality reduction approach led to the 
reduction of the original dataset of 124 variables to 
meaningful groups of just 35 variables, which are 
listed in Figure 3. For instance, the first group 
includes monthly vegetation indices (NDVI) for all 
spring and summer months, while the "Visible 
summer” group contains all Sentinel-2 visible bands 
for the summer months. Considering the variable 
selection approach, our results show that NDVI 
during spring and summer months, prior land cover 
classes (particularly COSc2018), the length of the 
CCDC's last segment and the number of valid breaks 
had the larger importance for classification (Figure 
3). Indicators from the CCDC algorithm and spectral 
information stand out as those with the greatest 
contribution to land cover monitoring. 

Generally, the variables corresponding to winter 
and fall months were of less importance. Transition 
probabilities based on Markov Chains appeared with 
low importance and those that seem to have been the 
most informative for the model correspond to class 
change to other broadleaves and eucalyptus, two 
classes with spectral similarity issues. 

 

GISTAM 2023 - 9th International Conference on Geographical Information Systems Theory, Applications and Management

92



 
Figure 3: Permutation importance given by the mean 
decrease in cross-validation estimated accuracy. 

3.3 Spatial Error Distribution 

The spatial distribution of classification errors 
highlights the predominance of misclassifications 
related to smaller polygons (Figure 4) and pixels near 
polygon boundaries (Figure 5). In other words, the 
model performed better on larger polygons and in 
pixels distant from borders (i.e., less heterogeneous). 
Despite the error rates being lower in non-forest 
classes (Figure 2), their higher prevalence in the study 
area caused the most misclassifications. More 
specifically, the absolute number of mis-
classifications occurred predominantly in the classes 
of natural grassland (23.69 %), shrubland (34.90 %), 
and bare soil (29.78 %).  

Polygons with high land cover heterogeneity and 
diverse types of forest species at distinct stages of 
evolution appear to have penalized the model since 
several plots with error patches have been observed 
as in Figure 6. This figure includes several polygons 
that were misclassified as shrubland, suggesting that 
our model tended to select that class over other 
classes with a similar spectral signal. It also illustrates 
an error type that may arise from the fact that 
photointerpretation sampling had a minimum 
mapping unit, which resulted in the inclusion of 
multiple land covers inside the same polygon. In the 
example in Figure 6, a eucalyptus stand is dominant 
in a polygon but it is mixed with shrubland leading to 
incorrect classification. The same explanation is valid 
for other classes that exhibit a large enough degree of 
heterogeneity. 

 
Figure 4: Small polygons error pattern (green – correctly 
classified; brown – classification error). The base map is a 
DGT Orthophoto for 2021. 

We stress that the validation partitioning approach 
that was followed to obtain the results described 
above ensured that pixels in the same polygon could 
not be used for both training and testing, mitigating 
spatial autocorrelation and potential overestimation 
of classification accuracy. 

 

 
Figure 5: Boundary error pattern (green – correctly 
classified; brown – classification error). The base map is a 
DGT Orthophoto for 2021. 
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Figure 6: Mixed polygons error pattern (green – correctly 
classified; brown – classification error; S – sample; P - 
prediction). The base map is a DGT Orthophoto for 2021. 

4 DISCUSSION 

In this research, we have explored a set of variables 
that can potentially improve the COSc annual map 
classification and also reduce the manual work in the 
post-classification stage. A multidimensional dataset 
including time-series spectral and change detection 
information, historical land cover, and transition 
probabilities was created for this purpose. We 
demonstrated how this methodological approach 
yielded insights about information useful for a better 
land cover change prediction. 

4.1 Major Findings 

Costa et al. (2022b) concluded that the accuracy of 
the semi-automatic COSc thematic map for 2018 for 
our study area (tile 29TNE) is close to 75 %. Even if 
the results are not fully comparable (Costa et al., 
2022a), our findings suggest that it is possible to 
obtain a similar accuracy using an automatic 
approach by adding new variables to the COSc 
workflow. 

We showed (see Table 3) that for pixels where no 
recent changes had been identified the accuracy is 
highest (77 %) even if we restricted our analysis to 
areas where evidence of change exists for the period 
2015-2021 according to the COSc workflow. This 
points out that automatic classification tends to have 
higher accuracy when no recent change occurs, which 

is expectable for change detection methods like 
CCDC that perform better with a sufficiently long 
series of observations to model the land cover signal 
after a change. Since classification tends to be more 
accurate for stable land covers, the obtained accuracy 
results are likely to underestimate overall accuracy 
since our reference dataset has a proportion of 
changed land cover (50.3 %, according to the 
photointerpreters) much higher than the average 
proportion of changed pixels for Portugal over 2018-
2020 which is 5.4 % according to Costa et al. (2022a). 

Change information, which Wulder et al. (2018) 
stated as an essential component of modern land 
cover monitoring, was especially pertinent to 
discriminate the classes under study. CCDC 
variables’ high importance confirms the potential of 
this change detection technique to generate pertinent 
data for land cover classification. The relevance of 
CCDC outputs for classification has already been 
demonstrated in LCMAP production (Xian et al., 
2022). However, the major novelty of our work in this 
domain is the use of a short time series of Sentinel-2 
images, while most work implementing CCDC relied 
on long series of Landsat data (Franklin et al., 2015; 
Xian et al., 2022; Xie et al., 2022). The importance of 
the temporal component in the classification process, 
considered by Gómez et al. (2016) as indispensable in 
the current state of EO, was confirmed by the CCDC 
because the coefficients used were of the last 
segment, i.e., information after the last disturbance. 
Other variables informed about trajectory parameters 
and ecological succession. The historical information 
revealed itself to be especially useful for the model to 
learn the class that follows, both in terms of 
vegetation losses and gains. In terms of spectral 
information, the months that mark the biggest 
difference in vegetation greenness of the land cover 
classes (spring and summer) were the most important. 
This outcome is not difficult to comprehend for the 
Portuguese Mediterranean climate since the 
interannual greenness variability of some classes is 
more pronounced at the end of summer, when the 
maximum dryness is reached, and at the beginning of 
fall, when the growth in greenness resumes. 
Transition probabilities were the least important data 
dimension. Its limited contribution may be attributed 
to its exclusive consideration of the study area's 
overall transition probabilities, thereby failing to 
distinguish contextual characteristics of pixel sets. 

The spatial distribution of misclassifications 
reflects essentially three situations: boundary pattern, 
small polygon, and heterogeneous polygon. 
Boundaries between different geographic features 
can cause diverse spatial patterns in the occurrence of 
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errors. Since the study samples comprised polygons 
with different shapes and sizes, the characteristics of 
these polygons (such as their size, shape, and spatial 
arrangement) influence the error patterns (Corcoran 
et al., 2015; Moraes et al., 2021). In addition, due to 
the minimum mapping unit of the polygons, a certain 
level of spectral diversity was inevitable, which made 
it more difficult to classify polygons with more 
intricate land cover patterns. 

Regarding the classification errors by land cover 
types, the phenological profiles of natural grassland 
and shrublands have common behaviours and spectral 
similarities. The model overestimated the number of 
shrubland pixels however, this class had high 
accuracy. Because we are dealing with a dynamic 
environment, the transition from herbaceous to 
shrubland can be gradual and undetectable. As a 
result, the model underperformed in classifying 
natural grassland, with more than 40 % of pixels 
misclassified as shrubland or bare soil. Since abrupt 
changes (losses) were better classified than gains 
(slower transitions), there is still a need to investigate 
a wider collection of metrics that can assist in 
monitoring more subtle changes and longer 
succession processes. 

4.2 Limitations and Future 
Development 

The ultimate goal of this research is to improve the 
COSc workflow for the whole Portuguese territory. 
Our study area was limited to a disturbance-prone 
region previously identified by the COSc processing 
steps. In future work, we will explore the suitability 
of the new candidate variables not only for 
classification but also for identifying pixels for map 
updating. 

Also, our approach was limited in describing 
long-term ecological succession. The Markovian 
transition probabilities, which we had anticipated to 
be highly informative due to their importance in 
previously cited studies, were found to have relatively 
low levels of significance. This is partly because the 
Markov Chain processes are memoryless, meaning 
that the land cover transition probabilities to 2021 
were independent of the previous classes in instances 
before the period 2018-2020. Although with residual 
importance, Figure 3 shows that the two most 
important probabilities from the six variables were 
transitions to other broadleaves and eucalyptus. These 
two classes are often difficult to distinguish in the 
COSc mapping due to their spectral similarities and 
the presence of mixed forest patches in the study area, 
which suggests that this type of stochastic transition 

element could be explored to discriminate forest 
species. If these probabilities are complemented by 
additional information, such as per-pixel vegetation 
growth suitability, their relevance may increase for 
dealing with the unique context of some pixel sets. 

Future work should focus on extending these 
experiments to a larger area and with a higher number 
of land cover classes. Additional spectral bands 
relevant to land cover monitoring, such as the red-
edge, should be explored. It may also be crucial to 
assess potential accuracy gains from the use of a 
classifier with spatial dependency or the 
incorporation of variables with contextual 
information from neighbouring pixels. 

5 CONCLUSIONS 

The main goal of this work was to identify new 
variables to improve the automatic steps of the COSc 
workflow. This was accomplished by testing a set of 
variables across multiple dimensions, including 
previous land cover data, transition probabilities, 
spectral and change detection information. The 
analysis applied to a fire-prone area showed that some 
variables not yet included in the COSc workflow, 
specifically land cover classes in previous years and 
change detection information produced by the CCDC, 
have a high potential for improving the classification. 
It was discovered that, when combined with Sentinel-
2 temporal composites, CCDC coefficients have high 
importance, particularly the duration of the last 
segment post-disturbance and the number of breaks in 
the study period. Variable selection combining 
hierarchical clustering and PCA effectively resulted 
in a more parsimonious model without compromising 
classification performance. 
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