
Facial Expression Recognition with Quarantine Face Masks Using a
Synthetic Dataset Generator

Yücel Çelik and Sezer Gören
Department of Computer Engineering, Yeditepe University, Istanbul, Turkey

Keywords: Facial Expression Detection, Face Masks, Covid-19, AI, Machine Learning, Convolutional Neural Network.

Abstract: The usage of face masks has increased dramatically in recent years due to the pandemic. This made many
systems that depended on a full facial analysis not as accurate on faces that are covered with a face mask,
which may lead to errors in the system. In this paper, we propose a Convolutional Neural Network (CNN)
model that was trained solely on face masks to be more accurate and on point, that could more easily determine
facial expressions. Our CNN model was trained with a seven different expression category dataset that only
had people with face masks. Although we could not find a suitable dataset with face masks, we opted to
generate a synthetic one. The dataset generation was done using Python and the help of the OpenCV library.
The process is, after finding the dimensions of the face, we Perspective Transform the face mask object to be
able to overlay it on the face. After that, the CNN model was also generated using Python with a CNN model.
Using this method we gathered favorable results on the test subjects with 70.1% accuracy on the validation
batch where previous facial expression recognition systems mostly failed to even recognize the face since they
were not trained to recognize faces with face masks.

1 INTRODUCTION

FER (Facial Expression Recognition) Figure 1 is the
act of recognizing a person’s mood from the various
elements and mimics on their face such as the curva-
ture of the mouth, position of their eyebrows, crow’s
feet at the edge of their eyes, and so forth. Being able
to detect the changes stemming from many of these
human mimics could open various opportunities for
use in many fields. For example, in psychology it is
critical that a patient’s psychological status could be
determined throughout any time of the day. To give
another example, with FER it is possible to get auto-
matic customer feedback for various services and to
determine the disposition of the workers as well.

Figure 1: Facial expression examples (Singhal, 2021).

Admittedly, if the process of FER could be auto-
mated by a machine, this would enable incredible po-
tential. Since, the machine could be able to pick up on
many minute details a human would potentially miss,
less prone to human errors, and take a fraction of the
time to determine the result.

Fortunately, there have been many papers and
work published on this topic and great advancement
is made already. Remarkably, one of the first to pub-
lish a research paper goes back to 1992 (Kobayashi
and Hara, 1992). In the aforementioned paper, the
authors were trying to classify six distinct emotions
with the help of a neural network, which is a type
of machine that is modeled after the human brain to
be able to think alike and made using many intercon-
nected nodes and artificial neurons that process infor-
mation, that eventually produce a result. Thereafter,
much more work has come to light. Amongst those
that have a focus on FER, most are trained on a per-
son’s face without obstruction and regrettably, those
models that have been trained to work with an un-
masked face might not be viable enough to be used in
the modern world with so many face masks worn by
people. In today’s standards, since those models lose
a remarkable amount of patterns and features when a
person wears a face mask such as the mouth where

Çelik, Y. and Gören, S.
Facial Expression Recognition with Quarantine Face Masks Using a Synthetic Dataset Generator.
DOI: 10.5220/0011992500003497
In Proceedings of the 3rd International Conference on Image Processing and Vision Engineering (IMPROVE 2023), pages 199-205
ISBN: 978-989-758-642-2; ISSN: 2795-4943
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

199



the model is specifically trained to take data from,
they might not be working as intended. For instance,
the AI model this paper (Sharifara et al., 2014) had
developed, uses Haar Cascade to detect human faces
but since it was developed without subjects with face
masks in the dataset, it has trouble detecting subjects
with face masks.

This is why the focus on this paper is how a
CNN model could be used to detect facial expres-
sions even with a face mask on the person’s face. Our
CNN model was specifically trained with a expression
dataset that has been synthetically overlaid with face
masks. The reason behind that is the lack of a usable
and viable face masks FER dataset open to the pub-
lic. There are few face mask dataset generators (Yang
et al., 2020). In addition, with this dataset generator
in mind, many models are going to have a much easier
time finding a dataset in the future.

While generating our dataset to make a better at-
tention map for our CNN model to focus, we have
synthetically overlaid masks using OpenCV’s homog-
raphy methods to have good symmetry. The afore-
mentioned methods are “getPerspectiveTransform” to
make a transformation matrix and “warpPerspective”
(DeTone et al., 2016) to apply the transformation ma-
trix to the mask image. Randomly picked samples
could be seen in Figure 2.

Figure 2: Facial expressions (Singhal, 2021) with syntheti-
cally added face masks.

After that, when all seven expressions containing
the facial expressions are completed being overlaid
with perspective transformed masks, the CNN model
was trained over this dataset to generate a model.
Since this process is automated by the Convolutional
Neural Network (CNN) model, the system could po-
tentially pick up many easy to miss subtleties from the
subject’s face from the view of a naked human eye.

Consequently, in this work after the training of
our CNN model was done it could be plugged into
any webcam to get real time detection of facial ex-
pressions with face masks. Since this process does
not take too much resources it could be installed on
most modern computer architectures to be used con-
veniently.

2 RELATED WORK

We have been able to find a similar work that has a
FER system where it also focuses on facial expression
detection with face masks (Yang et al., 2021). There
are papers that only focus on real-time face detection
(Yang et al., 2021), and papers that focus on detec-
tion of faces in real-time with face masks (Das et al.,
2020).

If we were to compare this paper to similar work
the closest one is by B. Yang, W. Jianming, et al.
(Yang et al., 2021). In the aforementioned paper, the
authors had used a binary classifier deep learning AI
model to classify a FER and in this paper we worked
with a CNN machine learning model. On the other
hand, the paper one and our paper have dissimilarities.
Our paper has seven expression categories that are
’Angry’, ’Disgust’, ’Fear’, ’Happy’, ’Neutral’, ’Sad’,
’Surprise’ but the paper (Yang et al., 2021) has the
three categories of ’Positive’, ’Negative’, ’Neutral’.
Also, our paper was trained over a synthetically made
dataset over a CNN model, while the mentioned paper
(Yang et al., 2021) has been trained by deep learning
binary classifier network.

One other similar work that has been published is
(Castellano et al., 2022). It is a work that focuses on
facial emotion recognition with face masks likewise
but uses another dataset generation method and uses
a deep learning model instead. Another similar paper
on this topic is (Henke et al., 2022), which looks at the
link between recognition of people with face masks of
various ages. Henke, Lea, et al. achieve this goal by
analyzing images with AI and drawing conclusions.

Lastly, one key difference between all referenced
work is that our work’s dataset has been entirely gen-
erated synthetically by our self-made masked image
generator. More information regarding our dataset
generator is in the following section 3.1.

3 PROPOSED METHOD

The steps we followed were starting with the conver-
sion of the dataset, we fed the converted dataset into
the model. After the CNN model’s training is done,
we send images in real-time from our webcam to be
processed by our model to get a result. The dataset
generator, CNN model, and real-time usage are run
on a cloud environment using Google Colab.

3.1 Dataset Creation

The custom synthetic dataset has been crafted by
overlaying the face mask image over the selected face.

IMPROVE 2023 - 3rd International Conference on Image Processing and Vision Engineering

200



Firstly, with the method of Facial Landmark Detec-
tion System (Wu et al., 2021) the coordinates of the
facial elements. Example in Figure 3 and their posi-
tions were recorded in a numpy (Van Der Walt et al.,
2011) array to be used.

Figure 3: Facial landmarks.

With the coordinates taken, the ratio of these
points was recorded so that the mask could be appro-
priately placed over the face. If no measures were
taken and the mask is directly placed over the face
some unwanted results were occurring. For example,
if the face did not have any tilt vertically or horizon-
tally the placement would not have any problems but
if the face had a noticeable tilt at all the face masks
that are overlaid would look out of place with the in-
correct perspective as in Figure 4a. To fix this issue,
the ratios of the face were calculated and some adjust-
ments were made to the pivot points of the homogra-
phy transformation according to the algorithm. Ho-
mography transformation is mostly used for straight-
ening an image to each of its corners to 90° for most
use cases. However, in this paper, the reverse of this
process is applied to the image in question. The first
input matrix is generated by giving the method to each
of the corners of the original image. After that, four
new pivot points are calculated using the aforemen-
tioned algorithm that takes the face’s landmarks and
calculates ratios using these points. After the cal-
culated new points are given to the method a new
transformation matrix is created which is applied on
the face mask image to create a custom per-face face
mask image ideal to the specific face that is being pro-
cessed such as Figure 4b.

Afterwards, a set of other alterations are applied
on the mask to make it possible to be overlaid. The
first is cropping the image to the last calculated pivot
points. This makes generation more efficient since
this process lowers pixel amount, it takes less time
per image transformation. This is also important since
AI models require large amounts of reference images,
we need to be able to convert them swiftly. The new
cropped image only consists of the transformed mask,
as seen in Figure 5a.

Following that, first a layer that consists of the
face mask image’s supposed alpha layer is created.

(a) Face with incorrect
perspective mask ap-
plied.

(b) Face with the altered
correct perspective mask
applied.

Figure 4: Mask and face alignments.

This is done by creating a matrix sum of the 3 RGB
(Red Green Blue) layers of the image using Numpy’s
“Sum” method. After that, each pixel in the alpha
layer is multiplied by 255 since the original layer vari-
ables were doubles between 0 and 1, but the RGB val-
ues are 8-bit which is between 0 and 255. Afterwards,
this layer is stacked on top of the original image with
Numpy’s ’Stack’ method as the fourth alpha layer in
the format RGBA (Red Green Blue Alpha), example
in Figure 5b.

(a) Cropped mask. (b) Alpha (transparency)
layer added.

Figure 5: Image operations.

After those processes, we finally convert the im-
age to the Pillow format from the OpenCV image for-
mat to be compatible with the newly opened face that
is also on the Pillow image format and overlay the
face mask image on top of the first pivot’s x axis and
y axis positions. The original face that has been used
to find facial landmarks could have been used for this
but we have decided to go with Pillow since it has
better support for image overlay save features.

Ultimately, the face has been overlaid with a
face mask that has been altered to fit over the face
smoothly, such as Figure 6. We have tried to make it
as realistic as possible, so that the AI model can pick
features that are the most essential to get the best out-
put without errors. Each generated emotion category
has approximately between 2000 and 5000 images for
the training of the CNN model and approximately be-
tween 500 and 1000 additional images for the trained
CNN model to be tested for accuracy.

Facial Expression Recognition with Quarantine Face Masks Using a Synthetic Dataset Generator

201



Figure 6: Different facial expressions (Singhal, 2021).

One of the reasons why we had gone this route
was to have a dataset that had a good amount of
images that is why we choose this facial expression
dataset that has close to twenty thousand images and
seven expression categories that are Angry, Disgust,
Fear, Happy, Neutral, Sad, Surprise.

Therefore, to convert this entire dataset that had
faces without face masks, we have converted the pre-
viously explained algorithm into a function that can
be called repeatedly, defined pathways into both input
and output folders and created a basic loop that can
handle sub-categories to convert the dataset to people
with face masks which marks the end of the dataset
creation.

3.2 CNN Model Creation and Training

Required libraries are mentioned in the section 3.4.
The dataset is fed to the program in the form of a
zip file. After unzipping it we get seven different
categories of emotions. After this for the training
of the model, these seven categories of emotion are
separated into their respective batches with the seven
classes. After that the CNN of the model is created,
it consists of 4 convolutional layers and after the flat-
tening layer it has two dense layers and one final acti-
vation layer.

After the CNN model with the properties Table 1
is created. We finally began training it. Where the
dataset that is created passes by the model completely
and where then the gradients of the images are back-
propagated and the weights are updated.

Table 1: Layers used in the CNN model (Conv: Convolu-
tional Layers, Flatten Layers, Connected Layers, Act: Acti-
vation Layers).

Layer Type Conv. Flatten Connected Act.
Num. of Layers 4 1 2 1

The dataset is first passed through the four con-
volutional layers. But first, the layers are initialized
by the ’sequential’ function. Only after that, the four
convolution layers are passed through. Each convo-
lution layer consists of five parts that are added to
the model by the ’add’ function. The first part is
’Conv2D’ which specifies the layer that is going to
be added to the model is a convolutional layer that
also takes parameters for the size of the input and
pooling. Pooling helps to cut the cost of processing
cost of the image by precisely ”pooling” the image
into batches that are shrunken down. These batches
are made of the maximum of the pixels or the aver-
age of the pixels. Secondly ’Batch Normalization’
is added which applies a transformation that keeps
the mean output close to zero and the standard devia-
tion of the model close to one. Thirdly, the activation
method is added to the layer. Which in this case is the
“ReLU” (Linear Rectifier Unit) function. The Recti-
fied Linear Unit activation function works by keeping
the activation cost linear in the given value and always
greater than zero. This helps with ever-increasing ex-
ponential growth of activation costs of neurons. The
fourth part of the convolutional layer is the ’Max-
Polling2D’. As the name suggests it works on 2D in-
put and takes the best sample out of the group. Fi-
nally, ’Dropout’ is added to the layer to prevent over-
fitting of the model. It works by negating the con-
tributions of some neurons of the model and leaving
others untouched. Through all four convolutional lay-
ers in the model, every part is kept the same except the
’Conv2D’ method. The dimensions of the input and
layers change throughout the four convolution layers
in the model.

After the convolutional layers are done process-
ing information, we flatten the input from the con-
volutional layers into a one-dimensional array for
dense layers to be able to absorb it. The dense
layers are where the classification of the images is
made based on the previously calculated neurons and
their weights. Following that, ’Batch Normalization
layer’, ’activation’ and finally ’dropout layer’ parts
are added. Next to all this, we add a dense layer
with its activation cost set to ’softmax’ which is a
method that converts the incoming numbers into prob-
abilities so that we can get a reading of the classi-
fication. The classification is between the numbers
’0’ representing impossible and ’1’ representing total
confidence in classification. The optimizer here used
is the Adam Optimization Algorithm. It takes a pa-
rameter for learning rate. After that, the loss metric
is added in the form of ’categorical crossentropy’ to
determine the success of the model. After the CNN
model is complete, with each epoch’s pass the cur-

IMPROVE 2023 - 3rd International Conference on Image Processing and Vision Engineering

202



rently trained model with the weights and multipliers
are saved. After that there is ’ReduceLROnPlateau’
which adjusts the learning rate when a plateau or slow
down in learning performance is detected. For exam-
ple no accuracy increase for some number of epochs.
The ’ModelCheckPoint’ that allows to define check-
points for model weights. Following that, ’Callbacks’
with ’PlotLossesCallback’ function to give reports in
real-time about the training done. Finally, ’model.fit’
method starts the training and validation of our model
and we get Figure 7 in each epoch.

Figure 7: Accuracy and loss graph of test and validation
batches up to 250 epochs.

From this figure, we can see a considerable im-
provement in the early epoch stages up to 150, where
it starts to slow down and begin hitting a plateau on
epoch 250. Also considering the trend of validation
batch’s loss line has started to take an upwards turn,
we found it plausible to stop the training of the model
to prevent any unintentional overfitting.

3.3 Real-Time Usage of the Trained
Model

In this part, we are going to be focusing on how the
newly trained model could be used to identify expres-
sions on a person’s face in real-time with a face mask.

With all the necessary libraries imported that are
mentioned before we can continue. First of all, for the
trained CNN model to be used the trained weights and
multipliers are imported as ’FacialExpressionClass’
to the system. In this class, the seven categories of
emotions that we are working on are listed. After that,
the imported weights are loaded into the model so that
we can create a predictor model.

To interpret live-camera ,feed into it we take each
image as JavaScript objects, decode and then encode
them again as OpenCV image objects. It is important
that the images are in the OpenCV image format so
that we can run the model through them and overlay

graphical elements over them such as the face box and
most importantly, the detected expression.

We take the converted OpenCV format images and
feed it through the Haar Cascade Classifier (Viola and
Jones, 2004) first to filter the face part of the image or
else the model would not work since it was trained
to find expressions on a face with a mask not to find
the face. After the Cascade filter takes out the face
and we run the predictor through it we finally get the
data that is going to be overlaid on the image. We
do this by OpenCV’s ’putText’ function to insert the
expression and ’rectangle’ function to outline the face
in the webcam live feed as can be seen in Figure 8.

So, the final product is a smooth continuous video-
feed that shows what the current expression currently
detected person is showing.

Figure 8: Real-Time usage.

3.4 Used Methodologies

For the IDE (Integrated Development Environment)
and backend support, Google Colab has been used.
The paper’s coding has been coded entirely in Python
version 3. For the unaltered dataset this (Sing-
hal, 2021) has been used and later been trans-
formed to the appropriate dataset using the algo-
rithm that we had developed. For the mask per-
spective transformation algorithm the following li-
braries have been used: Numpy, OpenCV (Howse,
2013), google.colab.patches, dlib (King, 2009), Pil-
low (Clark et al., 2015), os Python modules.

As for the CNN usage and learning section,
these libraries have been used: python-utils, liveloss-
plot v0.5.2, Numpy, seaborn (Bisong, 2019), mat-
plotlib.pyplot (Ari and Ustazhanov, 2014), os, tensor-
flow (with also keras API (Application Programming
Interface) wrap (Brownlee, 2016)).

Lastly, for the real time FER detection
these libraries have been used: IPython.display,
google.colab.output, base64 (both encoding and

Facial Expression Recognition with Quarantine Face Masks Using a Synthetic Dataset Generator

203



decoding), OpenCV (Howse, 2013), Numpy (Van
Der Walt et al., 2011), Pillow (Clark et al., 2015), io,
html, time (Christ et al., 2018)

4 TEST AND RESULTS

For the results, there have been some losses in accu-
racy due to parts of the facial features missing with
the face masks. Not to mention, many mimics of the
mouth are used to determine between many expres-
sions but since it is covered some of the images have
become quite difficult to tell even from a human eye’s
perspective. Despite that, the validation batch when
training the model shows a value of 70.8% current ac-
curacy at epoch 250. If we use the mode category for
our baseline score, it would be 14.29%. On the other
hand, our overall accuracy was 45.6%. When com-
pared to the most similar paper (Yang et al., 2021).
This paper has lower precision but when the cate-
gories are compared this paper has a 2.3 times larger
classification range. To be exact, this paper features:
’Angry’, ’Disgust’, ’Fear, ’Happy’, ’Neutral’, ’Sad’,
’Surprise’. The aforementioned paper (Yang et al.,
2021) features: ’Positive’, ’Neutral’, ’Negative’. The
statistics can be seen in Table 2.

Table 2: Accuracy and Loss for Both Training and Valida-
tion Sets.

Training Validation
Max Accuracy 79.1 70.8
Current Accuracy 79 70.8
Min Accuracy 69.1 64.7
Max Loss 0.821 1.131
Current Loss 0.572 1.220
Min Loss 0.596 1.094

As mentioned before in section 2, each expres-
sion category in the training set approximately has
between 2000 and 5000 images and between 500 and
1000 in the training set. Making the training set to
validation set ratio near 5:1.

Table 4 represents subjects with synthetically
generated face masks made using our dataset gener-
ator and Table 5 represents subjects that do not have
a face mask. Both tables show results from subjects
that are randomly picked and these values were found
by running the CNN model and looking at the results
in real-life not by simulation. We have included the
two tables Table 4 and Table 5 to be able to have
a grasp on our work does on both masked and un-
masked faces.

The performance evaluation results are shown in
Table 3 and its data are based on Table 4. Formu-

las of the calculated values shown below. (TP: True
Positive, FP: False Positive, TN: True Negative, FN:
False Negative, P: Total Positive, N: Total Negative).
The values calculated on Table 3 are based on Eqn 1,
2 and 3.

Accuracy = (T P+T N)/(P+N) (1)

Precision = (T P+T N)/(P+N) (2)

Recall = T P/(T P+FN) (3)

Table 3: Performance evaluation table (values shown are
percentages. Ang: Anger, Dis: Disgust, Hap: Happy, Neu:
Neutral, Surp: Surprise).

Ang Disg Fear Happ Neut Sad Surp
accuracy 89.4 89.4 83.0 85.7 76.6 84.0 91.5
precision 50.0 100.0 40.0 58.3 45.5 33.3 25.0
recall 60.0 16.7 66.7 77.8 50.0 33.3 50.0

Table 4: Confusion matrix of subjects with face masks.

Ang Disg Fear Happ Neut Sad Surp
Anger 50.0 0.0 16.7 11.1 0.0 0.0 0.0
Disgust 0.0 16.7 0.0 0.0 0.0 0.0 0.0
Fear 16.7 33.3 66.7 0.0 20.0 16.7 0.0
Happy 16.7 16.7 0.0 77.8 20.0 0.0 25.0
Neutral 0.0 0.0 0.0 11.1 50.0 50.0 50.0
Sad 16.7 33.3 0.0 0.0 10.0 33.3 0.0
Surprise 0.0 0.0 16.7 0.0 0.0 0.0 25.0

Table 5: Confusion matrix of subjects without face masks.

Ang Disg Fear Happ Neut Sad Surp
Anger 50.0 0.0 16.7 11.1 0.0 0.0 0.0
Disgust 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fear 16.7 40.0 66.7 0.0 20.0 16.7 0.0
Happy 16.7 20.0 0.0 77.8 20.0 16.7 0.0
Neutral 0.0 0.0 0.0 11.1 50.0 50.0 50.0
Sad 16.7 40.0 0.0 0.0 10.0 33.3 0.0
Surprise 0.0 0.0 16.7 0.0 0.0 0.0 25.0

From these confusion matrices, it could be seen
that some of the expression categories are much eas-
ier to classify compared to others. On a closer look,
we could make out that expressions such as ’Dis-
gust’ are much harder to determine. We have ascer-
tained that there are several factors as to why that
is the case. One of which is, some expressions are
especially distinguished from the mouth. For exam-
ple, ’Disgust’, ’Sad’ or ’Surprise’ emotions particu-
larly lean on mouth mimics to convey oneself. An-
other reason is that, with the mouth region blocked,
the boundary between the two emotions ’Anger’ and
’Disgust’ are nearly identical and proved to be incred-
ibly hard to recognize from one another. Even from
the standpoint of a human’s perspective.

IMPROVE 2023 - 3rd International Conference on Image Processing and Vision Engineering

204



Also to improve the accuracy even higher, We
have a few proposed ideas such as mask saturation
randomization to eliminate bias for different illumi-
nated environments or to expand the dataset. Not
to mention, one of the state-of-the-art CNN mod-
els might yield completely different results and tests
should be done to be determined.

5 CONCLUSION

Ultimately, in this paper, we had proposed a CNN
artificial intelligence solution for automatic analysis
of a person’s facial expression and determination.
Which had seven different expression categories that
are ’Angry’, ’Disgust’, ’Fear’, ’Happy’, ’Neutral’,
’Sad’ and lastly ’Surprise’.

One reason so many expression categories have
been used is to have a paper that is not too similar to
others. Even though some expressions are incredibly
hard to make out with a face mask even from a hu-
man’s perspective. Although, reducing the number of
emotions would have a dramatic increase in test accu-
racy, we would not want to downgrade our goal. To
accomplish the objectives in this paper we have used
Python in tandem with Google Colab and these two
combined to offer an incredible workspace for devel-
opers.

The paper consisted of three main parts, the syn-
thetic dataset generation since there is a lack of
masked face datasets as of writing this. The CNN
model was built and trained with our synthetically
made dataset that we generated by using a pre-
existing expression dataset with no masks. Subse-
quently, generating and saving the trained model’s
weights and multipliers. Ultimately, to be used in a
video feed to offer real-time FER with face masks.

6 FUTURE WORK

We do believe that this work still has more space to
grow. More features could be added to improve al-
ready existing systems. One other system that would
be beneficial to add for example would be saturation
randomization for the face masks in the dataset gener-
ator. Since the dataset consists of only black or white
masks, the model might have a slight bias towards
those two colors. However with a saturation random-
ization system it would be equivalent to color ran-
domization since the images are processed in a single
gray-scale layer, a saturation change would be com-
parable to a hue change in a full-color image.

REFERENCES

Ari, N. and Ustazhanov, M. (2014). Matplotlib in python.
In 2014 11th International Conference on Electronics,
Computer and Computation (ICECCO). IEEE.

Bisong, E. (2019). Building machine learning and deep
learning models on Google cloud platform. Springer.

Brownlee, J. (2016). Deep learning with Python: develop
deep learning models on Theano and TensorFlow us-
ing Keras. Machine Learning Mastery.

Castellano, G., De Carolis, B., and Macchiarulo, N. (2022).
Automatic facial emotion recognition at the covid-19
pandemic time.

Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr, A. W.
(2018). Time series feature extraction on basis of scal-
able hypothesis tests (tsfresh–a python package). Neu-
rocomputing.

Clark, A. et al. (2015). Pillow (pil fork) documentation.
readthedocs.

Das, A., Wasif Ansari, M., and Basak, R. (2020). Covid-
19 face mask detection using tensorflow, keras and
opencv. In 2020 IEEE 17th India Council Interna-
tional Conference (INDICON).

DeTone, D., Malisiewicz, T., and Rabinovich, A.
(2016). Deep image homography estimation. CoRR,
abs/1606.03798.

Henke, L., Guseva, M., Wagemans, K., Pischedda, D.,
Haynes, J.-D., Jahn, G., and Anders, S. (2022). Sur-
gical face masks do not impair the decoding of facial
expressions of negative affect more severely in older
than in younger adults.

Howse, J. (2013). OpenCV computer vision with python.
Packt Publishing Birmingham.

King, D. E. (2009). Dlib-ml: A machine learning toolkit.
The Journal of Machine Learning Research.

Kobayashi, H. and Hara, F. (1992). Recognition of six basic
facial expression and their strength by neural network.
In [1992] Proceedings IEEE International Workshop
on Robot and Human Communication. IEEE.

Sharifara, A., Mohd Rahim, M. S., and Anisi, Y. (2014).
A general review of human face detection including a
study of neural networks and haar feature-based cas-
cade classifier in face detection. In 2014 International
Symposium on Biometrics and Security Technologies
(ISBAST).

Singhal, A. (2021). Facial Expression Dataset. Kaggle.
Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011).

The numpy array: a structure for efficient numerical
computation. Computing in science & engineering.

Viola, P. and Jones, M. J. (2004). Robust real-time face
detection. International Journal of Computer Vision.

Wu, B.-F., Chen, B.-R., and Hsu, C.-F. (2021). Design of
a facial landmark detection system using a dynamic
optical flow approach. IEEE Access.

Yang, B., Jianming, W., and Hattori, G. (2021). Face mask
aware robust facial expression recognition during the
covid-19 pandemic. In 2021 IEEE International Con-
ference on Image Processing (ICIP).

Yang, B., Wu, J., and Hattori, G. (2020). Facial expression
recognition with the advent of face masks. MUM ’20.

Facial Expression Recognition with Quarantine Face Masks Using a Synthetic Dataset Generator

205


