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Abstract: Design patterns codify standard solutions to common problems in software design and architecture. Given
their importance in improving software quality and facilitating code reuse, many types of research are proposed
on their automatic detection. In this paper, we focus on singleton pattern recovery by proposing a method that
can identify orthodox implementations and non-standard variants. The recovery process is based on specific
data created using a set of relevant features. These features are specific information defining each variant
which is extracted from the Java program by syntactical and semantic analysis. We are based on the singleton
analysis and different proposed features in ou previous work (Nacef et al., 2022) to create structured data. This
data contains a combination of feature values defining each singleton variant to train a supervised Machine
Learning (ML) algorithm. The goal is not limited to detecting the singleton pattern but also the specification
of the implemented variant as so as the incoherent structure that inhib the pattern intent. We use different
ML algorithms to create the Singleton Detector (SD) and compare their performance. The empirical results
demonstrate that our method based on features and supervised ML, can identify any singleton implementation
with the specific variant’s name achieving 99% of precision, and recall. We have compared the proposed
approach to similar studies namely DPDf and GEML. The results show that the SD outperforms the state-
of-the-art approaches by more than 20% on evaluated data constructed from different repositories; PMART,
DPB and DPDf corpus in terms of precision.

1 INTRODUCTION

Design patterns (Gamma et al., 1994) have an impor-
tant role in the software development process. The
term has become commonplace among software de-
signers, requirements engineers, and software pro-
grammers alike. The language of design patterns is
now necessary to understand and work with software
because it helps to understand the design intent of
pre-developed software. Hence, software reverse en-
gineering and redesign. His recovery can make the
maintenance of source code, more easy and enhance
her existing analysis tools by bringing program under-
standing to the design level. Regarding its important
role in improving program comprehension and re-
engineering, design pattern detection became a more
and more active research field and has observed in re-
cent years, a continual improvement in the field of
automatic detection. However, there are many diffi-
culties in detecting practical design patterns that arise

from the following:
• The non-formalization of the pattern, the variety

in implementations of source codes, and the in-
creasing complexity of software projects

• The design structure does not match the intent:
Even though the identified pattern instances cor-
respond to their structure, the design intent can be
broken. Which can be considered as the main rea-
son behind the increase in the false positive rate.

Most existing methods convert source code and de-
sign patterns into intermediate representations, such
as rules, models, graphs, products, and languages.
Using these intermediate representations makes it
easier to extract structural elements such as classes,
properties, methods, etc. from the source code. How-
ever, they show poor performance compared to meth-
ods based on extracted features. At the same time,
structural analysis cannot recover the pattern intent of
its different representations, so it is necessary to per-
form semantic analysis on the source code to improve
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the accuracy of the recovered model. On the other
hand, extracting semantic information from source
code is still a difficult task due to the complexity
and diverse representation of the code. Therefore,
to solve this problem, we are based on our previous
work (Nacef et al., 2022) to define singleton variants
rules and create specific data to recover each variant
from the source code. We have proposed a set of fea-
tures for identifying singleton patterns based on a de-
tailed analysis of the variant’s structure and behaviors.
For analyzing the Java program, we apply syntactical
and semantic analysis by the use of LSTM model to
extract semantic information (features). The LSTM
model is trained by specifically structured data corre-
sponding to each feature for a classification task.

The main goal of our work is the detection of
the singleton design pattern. The SD role has not
been limited only to the recovery of singleton vari-
ants (including non-standard variants and their com-
binations), but also incoherent implementations with
the singleton intent in order to verify that the single-
ton pattern has been implemented correctly. While
designers understand patterns well, developers may
not have as much experience. This can lead to incor-
rect implementation of the pattern or the possibility
of later introducing coding errors that break the pat-
tern stage. The recovery of incorrect implementation
makes possible the refactoring task. If a singleton pat-
tern is detected, the SD can specify the type of the
implemented variant.

In this paper, we propose a Feature-Based Single-
ton Design Pattern Detection approach that uses a set
of features extracted from both syntactical and seman-
tic analyses. We create specific structured data based
on the feature’s combination values corresponding to
each singleton variant to train a supervised ML model
named SD. Trying to construct data containing vari-
ous implementations, we ameliorate the learning pro-
cess of the SD to recover any implementation of the
singleton pattern. The proposed approach is based on
the detailed analysis of the pattern previously realized
and selected features in (Nacef et al., 2022) to extract
rules for pattern identification in the goal to create
the data. This dataset serves as training data to make
learning the SD model. Then we evaluate the pro-
posed approach with a labeled dataset collected from
PMART (Guéhéneuc, 2007), (Guéhéneuc, 2007),
DPB (Fontana et al., 2012), DPDf-corpus (Nazar
et al., 2022) and 94 Java files extracted from a pub-
licly available GitHub Java Corpus. The detector
makes a very good result, with higher accuracy com-
pared to the state-of-the-art approaches.

The Contribution of the paper can be summarized
as follows:

• We introduce a novel approach called “Singleton
Design Pattern Variant Detection using features
and Supervised Machine Learning” (SD) that use
33 features to recover Singleton pattern variants.

• We create a structured data named DTSD for
training the SD classifier. the DTSD contains
7000 samples (combination of features values).

• We build two labeled data for evaluating the SD;
the first is extracted from DPDf-Corpus (we take
only files with singleton implementation) named
DPDf 2 and we insert the missing variants. The
second is building from the singleton pattern file
existing in P-MART, DPB and DPDf Corpus.

• We proved that our approach outperforms similar
existing approaches with a substantial margin in
terms of standard measures.

The rest of the paper is organized as follows; we
present the related work and the contribution made to
them in Section2. We indicate the reported singleton
variants and the highlighted features in Section3. In
section 4, we discuss the relevant background of the
related technologies and we present the proposed ap-
proach. Section 5 presents obtained results. An eval-
uation of different ML algorithms and a comparison
between our study and the state-of-the-art are realized
and discussed. Finally, in Section 6 a conclusion and
future work is presented.

2 RELATED WORK

In recent years, design pattern detection became a
more and more active research domain. The problem
of recovering design patterns from the source code
has been faced and discussed in several works. Many
strategies and many techniques are used.

The majority of design patterns mining ap-
proaches transform the source code and design pat-
terns into some intermediate representations such as
an abstract semantic graph, abstract syntax tree, rules,
grammar, etc. . . . The searching methods diversify
also from one to another, and can be classified as met-
rics, constraint resolver, database queries, eXtended
Positional Grammar (XPG), etc. . . .

Several approaches (Wegrzynowicz and Stencel,
2013),(Combemale et al., 2021), (Ahram, 2021) use
database queries as a technique for extracting pat-
terns. They use Structured Query Language (SQL)
queries to extract pattern-related information, and
produce an intermediate representation of the source
code. In this case, the performances depend enor-
mously on the underlying database and can be scaled
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very well. However, queries are limited to the avail-
able information existing in the intermediate repre-
sentations.

Techniques proposed by (von Detten and Becker,
2011), (Kim and Boldyreff, 2000) use program-
related metrics (e.g., aggregations, generalizations,
associations, and interface hierarchies) from differ-
ent source code representations. The detection of DP
is based on comparing DP and code source metrics
values. This method is computationally efficient be-
cause it reduces the search space through filtration
(Guéhéneuc et al., 2010). An advanced step proposed
by (Satoru Uchiyama, ) combine software metrics and
machine learning to identify candidates for the roles
that compose.

Other techniques are based on graph representa-
tion. The detection approach proposed by (Balanyi
and Ferenc, 2003) combines graph and software met-
rics to perform the recognition process. First, a set
of candidate classes for each DP role are identified
based on software metrics. These metrics were cho-
sen based on the theoretical description of the DP,
and they were used to establish clear logical rules
that could lead to many false positives. In the second
stage, all candidate class combinations are analyzed
in detail to find DP matches. To improve the accuracy
of results, ML methods (decision trees and artificial
neural networks) are used to filter as many as possible
false and distinguish similar patterns (Ferenc et al.,
2005). Other work proposed by (Zanoni et al., 2015)
develop a MARPLE tool (Fontana and Zanoni, 2011)
which exploited a combination of graph matching and
ML techniques.

Influenced by the work given by (Tsantalis et al.,
2006), (Thaller et al., 2019) propose a feature Maps
for pattern instances based neural networks. (Chihada
et al., 2015) propose a design pattern detector that
learns based on the information extracted from each
pattern instance. They treat the design pattern recog-
nition problem as a learning problem. However, re-
cent work proposed by (Hussain et al., 2018) treats the
problem as text categorization, in which they leverage
deep learning algorithms for organizing and selecting
DPs. Recently, (Nazar et al., 2022) selected 15 feature
codes and use machine learning classifiers to auto-
matically train a design pattern detector. Another re-
cent work proposed in (Barbudo et al., 2021) present
a novel machine learning-based approach for DPD
named GEML. Like other work, the used method ex-
plores the ML capacity, but (Barbudo et al., 2021) ad-
dressed their limitations by using G3P as a basis of
the proposed approach.

Though we base on ML to extract information
from source code and to detect singleton variant, our

approach differs from the other mentioned approaches
in many ways. The difference that can exist is sum-
marized as under.

• (Stencel and Wegrzynowicz, ) and other work, de-
tect many variants of singleton pattern. However,
we are the first to detect non-only the different
variants, but its possible combination and incoher-
ent implementations that inhibit the pattern intent,
with their corresponding names.

• Our approach use ML like many other ap-
proaches, but it is the first to create singleton spe-
cific dataset for training the model (whether at the
level of code analysis or pattern extraction), which
performs the model to better training, i.e. better
results, and make easy to filter false positive.

• As (Hussain et al., 2018), we use deep learning
algorithms for text categorization, but extracting
a pattern from direct source code is a very hard
task and needs an enormous number of data be-
cause there are many non-standard implementa-
tions. In our work, we consider text categorization
as the first step in which we extract needed infor-
mation from the source code. This information
represents features that describe the pattern struc-
ture and behavior. The use of features reduces
the search space, and the size of training data in-
creases the prediction rate and decreases the false
positive number.

• (Nazar et al., 2022) use 15 source code features to
identify 12 Design Patterns, (Fontana and Zanoni,
2011) utilize code metrics and (Thaller et al.,
2019) use feature maps. However, we employ 33
features, especially for the singleton pattern. The
use of specific features gives a detailed definition
of the pattern and allows the identification of non-
standard implementations.

• The data dedicated to the SD has a size of 7000.
However, P-MART corpus includes 1039 files,
and DPDf uses a corpus with 1300 files for train-
ing the classifier to recover many design patterns
with imbalanced nature. The Corpus Used in
both is used for training and evaluating the model.
The number of singleton patterns existing in P-
MART and DPDf corpus is respectively 12, and
100 which is not entirely satisfactory to recover
all implementations.

• Our SD based on extracted features from struc-
tural and semantic analysis of source code and
ML techniques achieved approximately 98% of
precision and recall and prove its capability to
recover any non-standard variant and filter false
positives. However, DPDf and GEML did not
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exceed 80% in terms of precision, recall and F1
Score.

3 REPORTED VARIANTS AND
PROPOSED FEATURES

The singleton design pattern is used to ensure that a
class has only one instance. That means restricting
class instantiation to a single object (or even to a few
objects only) in a system and providing a global ac-
cess point to it. The recognition of instances of sin-
gleton patterns in source code is difficult, caused by
the different implementations, which are also not for-
mally defined. So that we depart from the singleton
pattern analysis and their variants presented in (Nacef
et al., 2022).

3.1 Reported Variants

Based on the proposed singleton variants defined in
(Gamma et al., 1994), (Stencel and Wegrzynowicz, ),
our approach can effectively recognize the different
variants represented in table 1 and their combinations
form.

Table 1: Reported Singleton variants.

Singleton variants
Eager Instantiation Lazy Instantiation
Placeholder Replaceable Instance
Subclassed Singleton Delegated Construction
Different Access Point Limiton
Social Singleton Generic Singleton

3.2 Selected Features

For the singleton pattern detection, we have to use the
33 features proposed by (Nacef et al., 2022) resulting
from the singleton variants analysis.
This specific analysis allowed the extraction of the es-
sential information for each variant signature. These
features are presented in table 2.

If we just look at its canonical implementation
(which is quite simple), the intent of the singleton
pattern seems simple. However, careful analysis of
the structure may lead to further constraints being de-
fined. These characteristics reflect information that
has forty effects on preserving the singleton intent.
The only way to keep a singleton instance for future
reuse is to store it as a global static variable. With
this, we should check the correctness of the different
variants and count the number of class attributes and
method-generating instances. If the number exceeds

Table 2: Used Features.

Abb. Feature
IRE Inheritance relationship (extends)
IRI Inheritance relationship (implements)

CA Class accessibility (public, abstract, fi-
nal)

GOD Global class attribute declaration
AA Class attribute accessibility
SR Static class attribute
ON Have only one class attribute
COA Constructor accessibility
HC Hidden Constructor
ILC Instantiate when loading class
GAM Global accessor method
PSI Public Static accessor method
GSM Global setter method
PST Public static setter method
INC Use of inner class
EC Use External Class
RINIC Returning instance by the inner class
RINEC Returning instance by the External class
CS Control instantiation
HGM Have one method to generate instance
DC Double check locking

RR Return reference of the Singleton in-
stance

CNI Variable to count the number of in-
stances

CII Create internal static read-only instance
DM Use delegated method
GMS Global accessor synchronized method
IGO Initializing global class attribute
LNI Limit the number of instances
SCI Use string to create instance
SB Static Block
AFL Allowed Friend List
CAFB Control access to friend behavior

UR Using Singleton class as a type for
generic instantiation

one, then the structure is incorrect and the intention is
inhibited (case of listing 1 and 2.

The common conditions that must be verified in
most singleton variants are:

• The global access point to get the instance.
• The Constructor modifier to restrict its accessibil-

ity.
• The Control of instantiation; verifying the exis-

tence of conditions that limit the number of cre-
ated instances.

• The verification of the number of declared class
attributes and the number of method-creating in-
stances to only one.
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Second, specific information for each variant should
be verified. In table 3, we categorize features with
corresponding variants. Relevant information needed
for the identification of each variant is regrouped.
This grouping strongly helps SD data creation.

Table 3: Features corresponding to each variant.

Singleton Variants Features
Eager Implementation ILC, SB

Lazy Instantiation GAM, PSI, CS, HC, DC,
GMS

Different Placeholder INC, RINIC
Replaceable Instance PST, GSM
Subclassed Singleton CA, IRE
Different Access Point EC, RINEC
Delegated Construction DM
Limiton LNI
Social Singleton IRI, AFL, CAFB
Generic Singleton TUR

4 PROPOSED APPROACH

In this section, we will represent the used techniques
and discuss the singleton detection process. Finally,
we are gone to give details about the created data used
for the training phase.

4.1 ML Used Techniques

ML is a subset of artificial intelligence (AI) that fo-
cuses on creating systems that can learn from data,
identify patterns and make decisions with minimal
human intervention. The power of ML is its capa-
bility to automatically improve performance through
experience. ML have penetrated every aspect of our
lives, and made the hard task easier to resolve, with
higher accuracy.

Algorithms are the engines of ML. In general, two
main types of ML algorithms are used today: super-
vised learning and unsupervised learning. The differ-
ence between the two is defined by the method used
to process the data to make results, the type of input
and output data, and the task that they intend to solve.

In our work, we use the supervised learning type;
which is supplied with information about several en-
tities whose class membership is known and which
produce from this a characterization of each class. In
supervised learning, there are two major types, named
regression and classification. In our work, tasks real-
ized have a classification type. The first step realized
(Nacef et al., 2022) consist of analyzing Java program
by the use of (RNN-LSTM) (Sherstinsky, 2018) to
extract the value of features with binary or multi-class

classification. In the second phase, we use the pre-
vious analysis of the singleton pattern and feature’s
value to create labeled structured data for training the
SD classifier. The SD carries out a multi-class classi-
fication task; each class represents a singleton variant
(if a singleton pattern is implemented) or none other-
wise. For the SD, we built various ML classifiers such
as Random Forest (RF) (Elmahdy et al., 2021), Gra-
dient Boosted Tree (GBT) (Murphy, 2012), SVM
(M.Schnyer, 2020), KNN (Peterson, 2009), and Neu-
ral Network (NN) (Doya and Wang, 2022) intending
to compare their results.

Figure 1 illustrates the proposed approach pro-
cess. In the following subsections, we will discuss
these phases one by one.

4.2 First Phase

The detailed analyses of singleton variants make eas-
ier the defining of efficient information and the con-
struction of the training dataset. In (Nacef et al.,
2022) a detailed analysis of the singleton pattern is
realized, a set of variants are identified, and a 33 rele-
vant features are selected. For extracting feature val-
ues from the Java program, a syntactical and seman-
tic analysis is applied by the use of LSTM.Based on
the analysis and the feature’s value extracted from the
Java program, we define rules for every singleton vari-
ant, and then we construct the dataset for training the
SD.

4.3 Second Phase

The analysis already done was very useful in terms
of defining the rules for each implementation variant,
which will be the key behind the construction of the
training data DTSD. The strength of our approach is
that we use specific features, as well as the use of our
own created data.

• Dataset Creation Process. As we know, the data
is the essence of ML, then the more large and
more diverse the dataset is, the better results will
be obtained. If the classifier is trained by com-
pleted and diversified examples, it will be more
able to predict correct instances, and achieve a
higher accuracy result. Based on the important
role of the data in building a performed model,
we gave importance to the creation of the training
dataset. Contrarily to other approaches, we don’t
limit ourselves to the existing implementation ex-
tracted from the considerate benchmark corpus,
because many implementations can be missed,
or we can have an imbalance in their numbers
(dominance of some implementations over others)
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Figure 1: Flowchart of the proposed approach.

which causes an unfair training process and can
lead to the incapability of the model to recover
all existing implementations. So for training the
model, we create a dataset DTSD based on rules
extracted from singleton variants analyses, and for
evaluating the model, we use other created data
based on DPDf singleton corpus.

• Defining Rules. We have identified 27 instances
according to different singleton variants. The
class candidates are represented in table 4. Based
on specific information about each one, we illus-
trate rules to define them. The rules represent a
combination of values of features. The SD will
be made by learning from information extracted
from the DTSD data. Table 5 shows an exam-
ple of important feature values that made each
candidate instance true. Noting that, based on
these most important features, we can create sev-
eral implementations by playing on the other fea-
tures values (we must respect the identity of each
variant).
To achieve high recall (which will be explained
in the next section), we need to reduce the num-
ber of false-negative predictions. For a singleton
design pattern detection, this leads to creating a
dataset that comports numerous implementation
variants that preserve the meaning of the pattern,
and those that can destroy the intent. As an ex-
ample, the only way to keep a singleton instance
for future reuse is to store it as a global static vari-
able, so that we should verify that there is only
one declared class attribute in different variants
(ON). In the case of different placeholder and dif-
ferent access point variants, the instance is held
as a static attribute of an inner class or external
class, so we should verify the existence of a static
class attribute inside both. Another example, as

the intent of a singleton pattern is to limit the
number of objects to only one (exception Limi-
ton variant), we must verify that there is only one
block for creating an Instance (HGM). The fact
that one of the two features (ON/HGM) is false,
the implementation will be considered an incor-
rect singleton structure (as shown in table 11).
This error inhibits the singleton intent and can
provoke false-negative predictions. This type of
error can be caused by a developer’s unconscious-
ness during the implementation, so we decided to
consider it, and detect similar implementations if
they exist. Listing 1 and 2 represents an exam-
ple of incorrect lazy and eager implementation,
which inhibits the singleton pattern intent. Ta-
ble 5,6,7,8,9,10 present example of rules defining
some singleton variants and table 11 represents an
example of a combination of feature values mak-
ing the implementation error.

Listing 1: Example 1: Singleton Error Implementations.
P u b l i c c l a s s C1 {

P r i v a t e s t a t i c C1 i n s t a n c e = new C1
( ) ;

C1 ( ) {}
p u b l i c s t a t i c C1 g e t I n s t a n c e ( ) {

Re tu rn ( new C1 ( ) ) ;}
}

Listing 2: Example 2: Singleton Error Implementations.
P u b l i c c l a s s C2 {

P r i v a t e s t a t i c C2 i n s t a n c e ;
P r i v a t e C2 ( ) {}
P u b l i c s t a t i c C2 g e t I n s t a n c e 1 ( ) {

i f ( i n s t a n c e = = n u l l ) i n s t a n c e =
new C2 ;

}
P u b l i c s t a t i c C2 g e t I n s t a n c e 2 ( )

{ re turn new C2 ;}
}
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Table 4: SD Classifier classes.

Singleton Variants Classes NO.

Eager Implementation

Simple Implementation 1
Implementation With static Block 2
Simple Implementation-Invalid Implementation 3
Implementation With static Block-Invalid Implementation 4

Lazy Instantiation

Singleton naif 5
Non-thread safe 6
Thread safe with synchronized method 7
Lazy instantiation double lock mechanism 8
Singleton naif-Invalid Implementation 9
Non thread safe-Invalid Implementation 10
Thread safe with synchronized method-Invalid Implementation 11
Lazy instantiation double lock mechanism-Invalid Implementation 12

Different Placeholder Different Placeholder 13
Different Placeholder-Invalid Implementation 14

Replaceable Instance Replaceable Instance 15
Replaceable Instance-Invalid Implementation 16

Subclassed Singleton Subclassed Singleton 17
Subclassed Singleton-Invalid Implementation 18

Different Access Point Different Access Point 19
Different Access Point -Invalid Implementation 20

Delegated Construction Delegated Construction 21
Delegated Construction -Invalid Implementation 22

Limiton Limiton 23
Limiton-Invalid Implementation 24

Social Singleton Social Singleton 25
Generic Singleton Generic Singleton 26
No Singleton No Singleton 27

Table 5: Data extract: Example of features combination for Eager Singleton variant.

Class Combination Values
CA GOD AA SR COA ILC GAM PSI RR SB ON HGM

1 public True Private True private True True True True False True True
2 Public True Private True private True True True True True True True

Table 6: Data extract: Example of features combination for Lazy Instantiation Singleton variant.

Class Combination Values
CA GOD AA SR COA ILC GAM PSI RR CS DC GMS ON HGM

6 Public True Private True private False True True True True False False True True
7 Public True Private True Private False True True True True False True True True

Table 7: Data extract: Example of features combination for Different Placeholder Singleton variant.

Class Combination Values
CA COA ILC GAM PSI RR INC RINIC ON HGM

13 public Private False True True True True True True True

Table 8: Data extract: Example of features combination for Replaceable Instance Singleton variant.

Class Combination Values
CA GAD AA SR COA GAM PSI RR GSM PSS ON HGM

15 public True Private True Private True True True True True True True
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Table 9: Data extract: Example of features combination for Delegated Construction Singleton variant.

Class Combination Values
CA GOD AA COA CS GAM PSI RR DM ON HGM

21 public True Private Private True True True True True True True

Table 10: Data extract: Example of features combination for Social Singleton variant.

Class Combination Values
CA COA IRI AFL CAFB

25 Public Private True True True

Table 11: Data extract: Example of features combination for Eager Invalid Implementation Singleton variant.

Class Combination Values
CA GOD AA SR COA ILC GAM PSI RR SB ON HGM

3 public True private True private True True True True False False False
4 public True private True private True True True True True False False

• Building Singleton Variants Classifier. The use
of an ML algorithm depends on the type of data
to treat and generate, and the type of realized task.
A singleton design pattern detection is a classifi-
cation problem, with structured labeled data. To
deal with this typical problem, we can use dif-
ferent algorithms. In this case, the better model
to use is the one that gives a better result. We
choose to use five different algorithms the most
already used in classification tasks; RF, GBT,
SVM, KNN, and NN.

5 EVALUATION SETUP

This section presents the criteria used to evaluate our
SD and the different results made by it. We compared
results generated from each model, and interpret and
compared them with state-of-the-art approaches.

5.1 Evaluation Protocol

The standard measures to statistically evaluate the ef-
ficacy of classifiers are Precision, Recall, and the F1-
Score. Prediction: The prediction rate indicates the
fraction of positive prediction which was actually cor-
rect. It is defined in 1:

Precision =
T P

T P+FP
(1)

Recall: The recall indicates the fraction of actual pos-
itives which were identified correctly. It is defined in
2:

Recall =
T P

T P+FN
(2)

The F1 score is a way to combine both precision and
recall into a single number. It represents a harmonic

mean of both scores, which is given by this simple
formula 3:

F1Score =
2∗ (precision∗ recall)
(precision+ recall)

(3)

5.2 Performed Results

We have created a classifier based on different ML
models. After training the model we have tested it
with the 200 GitHub Java classes referred by DPDf
Corpus proposed by (Nazar et al., 2022) 100 files
contain singleton implementation and 100 files do not
contain any type of design patterns i.e. none.

Unfortunately, the corpora used do not contain all
singleton variants, which makes the evaluation of the
SD not completed. To ensure the performance of the
detector in recognizing each variant; we collect other
GitHub Java classes with missing variants. Next, we
took these collected classes and injected blocs that in-
hibit the pattern intention, in order to verify the ability
of the SD classifier to recognize also the incorrect im-
plementations.

After collecting the evaluation set, we labeled
them with the corresponding singleton variant name.
In the first step, we analyze the existing java class with
the LSTM classifier to determine every feature’s val-
ues. In the second step, we evaluate the SD classifier
by the use of the resulting dataset containing the fea-
ture’s values. The corresponding results of the SD
classifier are illustrated in table 12.

All used ML algorithms make very good results
thanks to the use of specific training datasets. Com-
paring the results of each ML algorithm used in the
SD classifier, we can see that all used algorithms are
performed and make closed results. SVM model has
performed excellent results in terms of precision, re-
call, and F1-score, and can correctly identify any Sin-
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Table 12: SD Classifier results.

SD Classifiers Measures (%)
Precision Rappel F1

RF 96.24 96.47 95.81
GBT 98.85 98.65 98.64
KNN 92.3 87.05 86.55
SVM 99.49 99.42 99.41
NN 98.3 98.7 98.49

Figure 2: KNN precision results.

gleton candidate with 100% of precision as shown in
figure 3 (except one candidate 87%). However, the
KNN algorithm is the classifier that makes fewer re-
sults. Contrary to SVM, KNN fails to detect correctly
some Variant like Lazy instantiation with double lock
mechanism and Replaceable Instance with less than
70% of precision like showing in figure 2.

5.3 Comparison with Similar Existing
Approaches

In this work, we propose a machine learning-based
method to recover the singleton pattern. To posi-
tion our work against state-of-the-art studies, we se-
lect two recent relevant approaches working also with
Machine Learning. The first is proposed by (Barbudo
et al., 2021) named GEML and the second is pro-
posed by (Nazar et al., 2022) named DPDf.

Figure 3: SVM precision results.

5.3.1 The Benchmark DP Detection Approaches

• GEML Approach
GEML is a novel DPD approach based on
ML and grammar-guided genetic programming
(G3P). By the use of software properties, GEML
extracts DP characteristics formulated in terms of
human-readable rules. Then a machine learning
classifier is built based on the established rules to
recover 5 DP roles.
In (Barbudo et al., 2021) a comparison between
GEML and other DPD methods, including both
ML and non-ML are realized. GEML outper-
form MARPLE techniques (Zanoni et al., 2015)
with highly values in terms of accuracy and f1
score. It’s also more competitive than two other
reference DPD tools which are frequently used
for comparative purposes (MLDA, SparT and De-
PATOS).
The experimentation in GEML covers 15 roles of
DP and uses implementations from two reposi-
tories to compare obtained results against other
works. The singleton repository details are:

– DPB: created by the authors of (Fontana et al.,
2012) and used to compare the results with
MARPLE.

– JHotDraw from PMART (Guéhéneuc, 2007)
used to compare with non ML-based methods
like DePATOS (Yu et al., 2018), MLDA (Al-
Obeidallah et al., 2018) and SparT (Xiong and
Li, 2019).

Table 13 illustrate the comparison results of
GEML against other DPD studies. The compar-
ison is conducted based on common ground truth.
Four methods are under study. The use of the
”-” symbol, is to indicate that the particular DP
is not supported by the corresponding approach.
The first comparison is based on the DPB corpus.
Both GEML and MARPLE perform good results
in singleton detection, but GEML outperforms
MARPLE by more than 7% and 3% of improves
in terms of accuracy and F1 score. The second
comparison is based on the JHotDraw project.
GEML, MLDA, and SparT can recover all single-
ton instances. Their great performance is related
to the reduced number of true Singleton instances
in the test data.

• DPDf Approach
The approach proposed in (Nazar et al., 2022) is
the first to employ lexical-based code features and
ML to recover a wide range of design patterns
with higher accuracy compared to the state-of-the-
art. Our approach also combines semantic anal-
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Table 13: Comparing GEML with the state-of-the-art results.

ML techniques
Singleton corpus

DPB-Corpus JHotDraw
Accuracy (%) F1-score (%) Precision (%) Recall (%) F1-score (%)

MARPLE 88 91 - - -
GEML 95.61 94.11 100 100 100
DePATOS - - - - -
MLDA - - 100 100 100
SparT - - 100 100 100

ysis, features, and ML algorithms as techniques,
but we have focused only on Singleton Variants
recovering. Based on the relevancy measure, we
chose to compare our study with the study pro-
posed in (Nazar et al., 2022).
DPDf. Developed in (Nazar et al., 2022) gener-
ates a Software Syntactic and Lexical Represen-
tation (SSLR) by building a call graph and ex-
tracting 15 source code features. The SSLR is
used as an input to build a word-space geometri-
cal model by applying the Word2Vec algorithm.
Then, a DPDf ML classifier is created and trained
by a labeled dataset and geometrical model.
DPDf Reported Results. Nazar et al. has com-
pared his study with two approaches based on
code features and ML, which are developed by
(Thaller et al., 2019) and (Fontana and Zanoni,
2011). For comparing the results, they uses two
benchmark Corpus:

– P-MART Corpus; containing only 12 Single-
ton implemented classes.

– DPDf Corpus; Contain 100 singleton imple-
mented class.

The compared results, reported by (Nazar et al.,
2022) in the detection of the singleton design pat-
tern, are illustrated in table 14. DPDf has im-
proved more performance in recovering singleton
candidates from the DPDf-corpus but has fairly
recovered it from the P-MART Corpus. These
unbalanced results are caused by the number of
instances of singleton existing in each corpus,
which have a great impact on the learning of the
classifier.

5.3.2 Comparison Against GEML and DPDf
Methods

• Comparison Strategy

Results made by (Nazar et al., 2022) and (Barbudo
et al., 2021) do not refer exactly to the performance of
both approaches to recover singleton pattern instance
because other patterns are included. Therefore, we

have tested the DPDf and GEML with singleton spe-
cific data. The P-MART Corpus contains a few in-
stances of singleton pattern, contrarily to DPDf and
DPB corpus. Otherwise, they represent a none com-
plete data; some variants are absent. Consequently,
we construct new data for the evaluation; we bring
together all singleton instances existing in PMART,
DPB and DPDf repositories, and complete the data
with missing variants. We also construct an inco-
herent structure by injecting, to correct instances, a
structure that inhibits the singleton intent. We try to
evaluate with complete data containing a variety of
implementations. Details of constructed data are pre-
sented in table 15, with the according to the number
of correct, incorrect, and incoherent samples in each
repository.

• Comparison Results
We reproduce the public works of (Nazar et al., 2022)
and (Barbudo et al., 2021) with only singleton pattern.
Then, we evaluate them by the newly created data.
The experiment results are conducted by the use of
a RF classifier in the evaluation process. Table 16
illustrate obtained results from the experiments.

• Discussion
The comparative results illustrated in table 16 show
the performance of the SD to recover any variant of
the singleton pattern, whatever the implementation is.
The SD reaches the best result (98% of F1 Score),
and outperforms GEML and DPDf by respectively
21% and 24% improvements in terms of F1 Score.
Both GEML and DPDf use approximately a small
sample for training the model, which is not enough
for the best training. The classifier in this case is not
able to recover all singleton implementations. His ca-
pacity enormously depends on the variants existing in
the training data, new variants which not fully trained
cannot be detected. However, by the use of complete
data that is well created as in the case of SD (7000
samples), the classifier will be better trained, and al-
ways gives a great performance in the detection pro-
cess. Our SD has the ability not only to recognize the
existence of singleton patterns, but also the type of
implementation. It has also the capacity of recovering
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Table 14: Comparing DPDf results with MARPLE and Feature Maps.

ML techniques
Singleton Corpus

DPDF Corpus Labelled P-MART
Precision (%) Recall (%) F1-score (%) Precision (%) Recall (%) F1-score (%)

Feature Maps 65 67 65.98 63 59 60.93
MARPLE 74.24 69.23 71 74.23 70.18 72.15
DPDf 81.6 68.22 74.31 43.33 40 41.6

Table 15: Evaluating Data Composition.

Singleton Corpus
PMART DPB DPDf Others

Correct 12 58 100 53
Incorrect - 96 100 -
Incoherent - - - 41
Total size 460

Table 16: Comparing SD with DPDf and GEML

Approaches Measures (%)
Precision Recall F1

DPDf 78.5 70.23 74.13
GEML 81.6 73.4 77.28
SD 98.96 97.63 98.29

incoherent implementations with the singleton intent.
The imbalanced results obtained from the differ-

ent DPD methods are explained by the number and
the variety of implementations existing in the training
data. There is another factor that strongly affects the
results, which is the characteristics of the source code
which are highlighted. DPDf approach uses only 15
features to define 12 design patterns, GEML propose
23 Grammar operators to describe a variety of design
pattern implementations. However, in our work, we
use 33 features for defining only the singleton pattern.
These enormous numbers of features make a detailed
description of the pattern and provide all information
needed to identify any variant.

6 CONCLUSION AND FUTURE
WORK

We propose in this paper a new singleton design
pattern approach based on features and ML tech-
niques. We are based on previous work (Nacef
et al., 2022), and different proposed features to cre-
ate DTSD dataset. DTSD is used to train the SD
classifier, in which we try to make rules defining a
various number of singleton implementations. In the
dataset, we give a combination of feature values to
categorize each variant. We have tried to be sure that
the data contain the most number of implementations
to perfectly train the model. Next, we build a Single-

ton Detector based on different ML classifiers. We
trained the supervised classifier by the labeled dataset
DTSD, and we evaluate its performance with other
data collected from the GitHub Java corpus, and sin-
gleton variants existing in DPDf, DPB and P-MART
corpus.

We apply three standard statistical measures
namely precision, recall, and F1-Score to evaluate the
performance of the created classifiers. A comparison
between different used ML algorithms to create the
SD is realized. The different results show that the
use of the created dataset makes any classifier eas-
ily able to recover any variants of the singleton pat-
tern although there is a slight difference in perfor-
mance. The Empirical result shows that our proposed
approach can recover any non-standard singleton vari-
ant, even incorrect implementation destroyed the sin-
gleton intent with approximately 99% on both preci-
sion and recall. Our approach outperforms recent rel-
evance approaches by more than 20% improvements
in terms of standard measures.

While our classifier’s performance is promising,
as furfur work we gonna applies it to recover a wide
range of software design patterns. The choice of
source code as refactoring support is very important
and interesting, but we should not limit ourselves only
to this support, we try to switch to the model as refac-
toring support.
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