
A Multi-Perspective Framework for Smart Contract Search in
Decentralised Applications Design

Ada Bagozi a, Devis Bianchini b, Valeria De Antonellis c, Massimiliano Garda d

and Michele Melchiori e

Dept. of Information Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy

Keywords: Multi-Perspective Model, Blockchain, Decentralised Applications, Smart Contracts, Semantic.

Abstract: With the advent of blockchain technology, many interorganisational collaborative processes that demand trust
requirements (e.g., food supply chain, smart grid energy distribution and clinical trials) are being implemented
as decentralised applications (DApps). Indeed, blockchain technology provides decentralised control and
immutable transaction history, thereby improving security and accountability between parties. In this vision
paper, we consider cooperative processes where a subject, which acts as a regulator of the process, promotes
the use of blockchain for increasing transparency, while reducing the burden in controlling trustworthiness
among participants. To the scope, the regulator provides a registry of basic smart contracts, including both
actual deployed ones and code templates, that can be used and extended by the process stakeholders (e.g.,
retailers, energy providers, researchers) to build up DApps. The adoption of a blockchain and the definition
of the registry favour the compliance with best practices and obligations demanded by the regulator, as well
as that all relevant information and documents cannot be tampered. To support semantic-based smart contract
search in the registry, we propose a multi-perspective framework that, in addition to classification and technical
characteristics of smart contracts, takes into account the past experience of developers who have used smart
contracts of the registry to develop DApps.

1 INTRODUCTION

With the advent of blockchain technology, many in-
terorganisational collaborative processes demanding
trust requirements (e.g., food supply chain, smart
grid energy distribution and clinical trials) are be-
ing implemented as decentralised applications (D-
Apps) (Cai et al., 2018). DApps are conceived
as web applications that orchestrate smart contracts
(SCs) to implement the business logic of the applica-
tions and also provide a Graphical User Interface to
ease interactions among participants. Leveraging the
blockchain, a DApp provides decentralised control
and immutable transaction history, thereby improving
security and accountability between parties. Smart
contracts, along with distributed ledger technologies,
have the potential to enforce automated negotiations

a https://orcid.org/0000-0002-0193-6500
b https://orcid.org/0000-0002-7709-3706
c https://orcid.org/0000-0002-3634-0213
d https://orcid.org/0009-0006-5823-6595
e https://orcid.org/0000-0001-8649-4192

and agreements between parties without the direct in-
volvement and intermediation of central authorities,
by providing public and trusted functionalities exe-
cuted on top of the blockchain.

In this vision paper, we consider cooperative
processes occurring in domains, e.g., clinical trials,
where a subject, which acts as a regulator (i.e., that
carries out regulatory activities in a given domain)
of the process, promotes the use of blockchain for
increasing transparency, while improving the trust-
worthiness among participants. In these processes,
the regulator is in charge of overseeing the fulfil-
ment of the necessary requirements for safety, quality
and efficacy of the assets being supplied, providing
also rules, authorisations and, possibly, technological
frameworks to the involved parties.

To the purpose, the regulator subject may provide
a registry of basic SCs that can be used and extended
by stakeholders to set up DApps. Actually, in order to
develop real-world DApps, reuse of SCs published in
open access registries has become a common practice,
as investigated in recent efforts (Tran et al., 2019; He
et al., 2020).

Bagozi, A., Bianchini, D., De Antonellis, V., Garda, M. and Melchiori, M.
A Multi-Perspective Framework for Smart Contract Search in Decentralised Applications Design.
DOI: 10.5220/0011992000003467
In Proceedings of the 25th International Conference on Enterprise Information Systems (ICEIS 2023) - Volume 1, pages 229-236
ISBN: 978-989-758-648-4; ISSN: 2184-4992
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

229

In this setting, we propose a multi-perspective
framework to support search and reuse of SCs that,
in addition to classification and technical character-
istics of SCs, takes into account the past experience
of developers who have used SCs from the registry to
develop DApps. The framework supports semantic-
based search (Bianchini et al., 2009) and ranking of
SCs according to three search scenarios apt to support
development of DApps at different phases.

The paper is organised as follows. Section 2
presents a motivating scenario and Section 3 describes
the multi-perspective DApp model. SC search scenar-
ios and ranking are illustrated in Section 4. Section 5
emphasises the cutting-edge features of our approach,
with respect to the state of the art. Finally, Section 6
closes the paper, sketching future research directions.

2 MOTIVATING SCENARIO

In this paper, we consider a reference scenario from
the healthcare domain, regarding clinical trial pro-
cesses. A clinical trial is articulated over different
phases, aimed at introducting a New Chemical En-
tity (NCE) to the market, initially administered to a
limited number of volunteers. Participants in a clini-
cal study may incur in research-related injuries, which
should be minimised by researchers steering the trial.
In such cases, individuals would be compensated if
the injury descends from their participation in the
trial. As also discussed in recent research (Wong
et al., 2019) published on Nature Communications,
the use of blockchain in this scenario is relevant and
promising. It improves traceability and auditing of
data to the benefit of processes, like the compensa-
tion one, that may occur within a clinical trial (Omar
et al., 2021). In particular, we focus on the follow-
ing challenges that, without loss of generality, can be
extended to other application contexts.

Trustworthy inspection of exchanged data.
Normally, for compensation to be recognised,
data related to the clinical trial (e.g., protocol
setup and registration, individuals enrolment, data
collection methods) must ensure a transparent and
trustworthy inspection by: (i) the trial regulator
subject, which oversees and monitors whether the
steps are adhering to the demanded standards and
requirements; (ii) Health Insurance Organisations
(HIOs), which are involved in the clinical trial
as responsible for corresponding the refund to
individuals when the conditions specified in
the health contract subscribed by individuals
participating in the trial are met. Exploiting
notarisation on-chain of data exchanged by the

parties helps reducing verification time for those
events necessitating mandatory inspection by the
regulator (e.g., in the case of injuries regarding
adverse events).

Automated compliance to standards and rules.
In order to comply with rules and/or standards
established and promoted by the regulator, the
DApps used in the context of the process should
reuse, and possibly extend, SCs provided by the
regulator and made available by means of the
registry. For example, according to this approach,
the implementation of a compensation process as
a DApp would favour the automated compliance
to rules and standards promoted by the regulator.

Assisted DApp design. In order to reduce coding
time and effort, a developer should be supported
in: (a) specifying the features of the SCs to search
from the registry; (b) developing with a proac-
tive support, i.e., specifying the characteristics of
the DApp under development and then being sug-
gested with SCs from the registry that can be in-
cluded into the DApp. For example, through a
proactive support, the developer may be proposed
with the following two SCs, whose adoption per-
mits to comply with the best practices in the devel-
opment of a compensation DApp: a SC providing
a mechanism to temporarily disable compensation
(e.g., in the case the HIO has to modify the com-
pensation policies) and a SC to record data related
to the occurred injuries with the required level of
detail for later inspection (e.g., in the case of com-
plaints).

3 THE MULTI-PERSPECTIVE
DApp MODEL

In the following, we describe the multi-perspective
framework aimed at supporting SC search for DApps
development. As anticipated in the previous section,
SCs are described in a registry, containing both
SCs specific for the application domain and general
purpose SCs (e.g., from third party registries, such
as OpenZeppelin1). In the application context
considered in this paper, the registry is populated and
maintained over time by a group of expert developers
belonging to/affiliated with the regulator subject. SCs
are aimed at addressing common issues a developer
may encounter while creating a DApp compliant
with the standards and procedures envisaged by
the collaborative process. The model (Figure 1) is

1http : / / github.com / OpenZeppelin / openzeppelin -
contracts

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

230

Smart Contract
perspective

(SCs)

function call

T
extends

extends

T
extends

Legend

Application
perspective

(DApps)

Experience
perspective

(Developers)

Composed Of

Developed By

Has Rated

SCs
relationship

T

Deployed
SC

Library
SC

Template
SC

DAppDApp

Figure 1: Multi-perspective DApp model.

organised according to three perspectives, describing:
(i) smart contracts; (ii) DApps and (iii) developers.

Smart Contract Perspective. Let SC be the set of
SCs described in the registry. The types of SCs and
their features are represented considering the concep-
tual model in Figure 2, described in detail in the fol-
lowing, and which considers as reference the widely
adopted Ethereum blockchain.

Smart Contracts Model. In our model we use the
term SC in a general sense and hence a SC can be ei-
ther a TemplateContract or a DeployedContract.
A TemplateContract is conceived as a kind of SC
used as a base to build other SCs. In particular,
an AbstractSC is a TemplateContract represent-
ing a template code pattern (i.e., a partially imple-
mented SC or a SC containing at least one func-
tion without any implementation). A Template-
Contract is usually part of a registry publicly avail-
able on the Web (e.g., the OpenZeppelin registry for
the Ethereum blockchain) for which Documentation
is also provided. One or more TemplateContract
may be employed to build (expressed through the
extends relationship in the model) a Deployed-
Contract. As well, a TemplateContract can be
also extended from one or more TemplateContract.
As the name suggests, a DeployedContract re-
sides on the blockchain and, thus, it is endowed
with Endpoint deployment information (i.e, address,
chain ID, network ID for the contract, to locate it
on the blockchain) and with an ABI (Application Bi-
nary Interface), that is metadata describing the SC
interface. A DeployedContract can be either a
ConcreteSC or a LibraryContract, the latter con-
ceived as a SC containing only callable functions,
with no state variables. The functions contained in
a LibraryContract can be called by a ConcreteSC
(function call relationship). Oracle contracts (ei-

ther Abstract or Concrete) are used to access data
from the world outside the blockchain.

Semantic Tags. To provide a semantic characterisa-
tion for SCs, semantic tags are fostered to tackle both
polisemy and homonymy issues of traditional tagging
when searching SCs from the registry. Semantic
tagging is performed by those developers who add
the SC to the registry. During the assignment of tags,
sense disambiguation techniques based on WordNet2

lexical database are applied. In WordNet, terms
with the same meaning are grouped into synsets.
Amongst the others, WordNet contains hyponymy
and hypernymy relationships between synsets, used to
represent specialisation and generalisation between
two terms, respectively. A synset has a human
readable definition and a set of synonyms. When the
developer assigns a tag, all synsets containing that
term are retrieved from WordNet. Each semantic tag
is composed of: (i) the term extracted from WordNet;
(ii) the set of terms in the same synset; (iii) the human
readable description.

In our model, SCs are associated with a descriptor,
which contains information enabling each contract
to be searched by a developer, for subsequent em-
ployment within the DApp under construction. The
descriptor has classification features (the type of SC
and the semantic tags) and technical features (e.g.,
the coding language). Depending on the type of SC,
also contract-specific features may be available (the
attributes belonging to the sub-classes of Smart-
Contract of the conceptual model in Figure 2). The
SC descriptor is formalised as follows.

Smart Contract Descriptor. The descriptor of a SC

2https://wordnet.princeton.edu/

A Multi-Perspective Framework for Smart Contract Search in Decentralised Applications Design

231

Smart Contract

Concrete SC

variables[]

constructors[]

functions[]

events[]

balance

DApp

name

description

status

URL

tags[]

Endpoint

address

network_id

chain_id

1..* 1

deployed at1..*

1
1

1..*Usage Rating

rating score

Oracle Smart Contract

ABI

1

0..1

associated with

Smart Contract
Descriptor

name

author

description

language

tags[] 1

1

Library Contract

functions[]

Template Contract

variables[]

constructors[]

functions[]

events[]

0..*

Abstract SC

Deployed Contract

0..*0..*

function call

0..*

0..*
extends

Abstract Oracle SC

Developer

skills

1

*

Documentation

documentation URL

URL

repository name

extends

0..1

1

Figure 2: Smart contracts conceptual model for DApps development.

Ci ∈ SC is denoted by a tuple

dsCi = ⟨typeCi ,{t j
Ci
},nameCi , langCi

,descCi ,CFCi⟩

where: (i) typeCi is the type of the SC; (ii) {t j
Ci
} is a

set of semantic tags; (iii) nameCi is the name of the
SC; (iv) langCi

is the coding language and (v) descCi
is a textual description for the SC. Contract-specific
features, depending on typeCi , are included in the set
CFCi (if any) and represented as pairs { f eature j :
{valuek

j}}.

Example. Let us consider Alice, a developer in
charge of designing the compensation DApp intro-
duced in Section 2, on behalf of a HIO, to deploy
the compensation process on-chain. Specifically,
Alice decides to structure her DApp according to two
core SCs providing the functionalities to: (i) retain
information regarding the policy terms of health
contracts signed by individuals at the beginning
of the trial with the HIO; (ii) encapsulate all the
rules related to compensation logic. To develop
the two former SCs, Alice resorts to the registry
containing, amongst the others the following two
abstract SCs: (a) HealthPolicyContract (in brief,
HPC) which defines the minimum policy terms each
health contract must hold to be eligible within the
clinical trial, as demanded by the regulator subject;
(b) RecordInjuriesDetailsContract (in brief,
RID), providing the functions to record data related to
the occurred injuries on the blockchain. An excerpt
of the two descriptors for HPC and RID is reported in
the following:

dsHPC = ⟨typeHPC : AbstractSC;
t1
HPC : ⟨health,{},“the general condition of body and mind”⟩;

t2
HPC : ⟨policy,{insurance},“written contract or certificate⟩;

of insurance”;
descHPC : “The Health Policy SC specifies minimal data

which is mandatory to be recorded for health contracts”;
[. . .]
langHPC : Solidity;
CFHPC = {variables : {dateStart,dateEnd,

liabilityLimit}, . . .}⟩

dsRID = ⟨typeRID : AbstractSC;
t1
RID : ⟨health,{},“the general condition of body and . . . ”⟩;

t2
RID : ⟨injury,{hurt,harm,trauma},“any physical

damage to the body . . . ”⟩;
descRID : “The Record Injuries Details SC provides base

functions to record injuries-related data”;
[. . .]
langRID : Solidity;
CFRID = { f unctions : {storeInjuryDetails,

storeInjuryType}, . . .}⟩
In the example, contract-specific features for the two
former AbstractSC are enlisted (e.g., contract vari-
ables and functions).

Application Perspective. Let DA be the set of
DApps built using SCs from the set SC. In our model,
a DApp DAi ∈ DA: (i) contains the set of SCs from
the registry {CDAi} ⊂ SC used to build the DApp;
(ii) has a set {t j

DAi
} of semantic tags and (iii) is as-

sociated with several technical features like the de-
ployment status statusDAi (e.g., prototype, live), the
description descDAi and the URL URLDAi where the
DApp is published (if it is not a prototype).

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

232

Example. The DApp for the compensation process
from Section 2 is represented as:
DAComp = [
t1
Comp : ⟨insurance,{indemnity},“protection against

future loss”;⟩;
t2
Comp : ⟨payment,{},“a sum of money paid or a claim

discharged”;⟩;
t3
Comp : ⟨refund,{return,repay,give back},“pay back”⟩;
statusComp : prototype;
{CComp} : {IndividualsHCContract :
(HealthPolicyContract),
HIOCompensationContract :
(AccessControlContract,PausableContract,
RecordInjuriesDetailsContract)}]
SCs enclosed by round brackets are the ones coming
from the registry provided by the trial regulator
subject, used for creating the core ones, and consti-
tute the content of the set {CComp}. For instance,
PausableContract and AccessControlContract
are base SCs made available from the OpenZep-
pelin SCs web registry. SCs from the registry are
leveraged by Alice to create the core SCs of her
DApp: IndividualsHCContract retains informa-
tion regarding the policy terms of health contracts,
whereas HIOCompensationContract implements
the compensation logic.

Experience Perspective. Each developer di ∈ DC,
who uses the SCs from the registry to build her
DApps, is modelled through: (i) the skill σi for devel-
oping DApps; (ii) a set of usage ratings ⟨C j,DAk,µ jk⟩
expressing that the developer rated with a score µ jk
∈ [0,1] the SC C j when used within the DApp DAk,
to consider the fact that a SC could be suitable
to be used only in specific DApps. Developer’s
skill is asked during the registration to the system
according to a discrete set of values (one among
expert, high confidence, medium confidence,
low confidence, unexperienced corresponding to
a value of 1.0, 0.8, 0.5, 0.3, 0.0, respectively). The
score µ jk is selected according to a scoring sys-
tem with nine rating options3, to increase reliability
and consistency, ranging from poor (score = 0.2) to
exceptional (score = 1.0).

Example. The following example reports the rat-
ings assigned by the developer Alice from Example 3
to a subset of SCs from the registry, used in DAComp:

dAlice = ⟨0.8 (high confidence),{⟨HealthPolicyContract,
DAComp,0.8 (excellent)⟩,
⟨RecordInjuriesDetailsContract,
DAComp,0.7 (very good)⟩}.

3https://grants.nih.gov/grants/policy/review/rev prep/
scoring.htm

4 SMART CONTRACT SEARCH
AND RANKING

To develop a DApp with the support of our frame-
work, a developer performs three main steps: (i) as-
signment of a set of semantic tags to describe the
functionalities of the DApp; (ii) search of basic SCs
from the registry and composition of these SCs in the
DApp; (iii) assignment of a rating to the SCs from
the registry used for the DApp. Among the three
steps, the challenge we focus on regards the second
step, for which we conceive iterative and progressive
search scenarios for SCs, to support DApps develop-
ers, who start by selecting a single SC and proceeds
composing incrementally the DApp. Indeed, search
scenarios could be fostered either for finding already
deployed SCs (e.g., to perform a call to a function in a
deployed library) or for the reuse of template SCs. In
a search scenario, we distinguish between the target
and the modality, summarised in Table 1. In particu-
lar, the choice of invoking a search scenarios is tightly
coupled with the development phase of the DApp, as
explained in the following.

4.1 Search Scenarios

The target of the search task could be a single selec-
tion (e.g., when the developer starts the design of a
new DApp) or completion (e.g., looking for SCs to
complete the DApp). Instead, the modality qualifies
how the search is performed:

• simple Search: the developer looks for a SC by
specifying only a set of semantic tags and it is
meant for DApps in their early stage of develop-
ment;

• Advanced Search: it is a variant of the simple
search, fostered by a developer having in mind
also the DApp where the SC will be used, spec-
ified by a set of semantic tags and, possibly, with
the set of SCs already included in the DApp. Ad-
vanced search is suitable for DApps already gath-
ering more than one SC;

• Proactive Search: the developer specifies only the
semantic tags of a DApp and the set of SCs from
the registry included in the DApp, expecting the
system to provide suggestions about SCs to be
added to the DApp, given similar DApps devel-
oped in the past by other developers. Also proac-
tive search is suitable for DApps already gathering
more than one SC.

For advanced and proactive search, there is also the
possibility for a developer to specify the typer

C of
the desired SCs, thus resulting in a typified search

A Multi-Perspective Framework for Smart Contract Search in Decentralised Applications Design

233

Table 1: Specification of the request Cr depending on the search scenario.

 Target

Single Selection Completion

Simple 〈{𝑡𝒞
𝑟}〉 𝑛. 𝑎.

Search
Modality

Advanced
(Typified)

〈{𝑡𝒞
𝑟}, {𝑡𝐷𝐴

𝑟 }〉
(〈𝑡𝑦𝑝𝑒𝒞

𝑟, {𝑡𝒞
𝑟}, {𝑡𝐷𝐴

𝑟 }〉)
〈{𝑡𝒞

𝑟}, {𝑡𝐷𝐴
𝑟 }, {𝐶𝐷𝐴

𝑟 }〉
(〈𝑡𝑦𝑝𝑒𝒞

𝑟, {𝑡𝒞
𝑟}, {𝑡𝐷𝐴

𝑟 }, {𝐶𝐷𝐴
𝑟 }〉)

Proactive
(Typified)

𝑛. 𝑎.
〈{𝑡𝐷𝐴

𝑟 }, {𝐶𝐷𝐴
𝑟 }〉

(〈𝑡𝑦𝑝𝑒𝒞
𝑟, {𝑡𝐷𝐴

𝑟 }, {𝐶𝐷𝐴
𝑟 }〉)

(these variants are conceived for developers with
advanced skill, having a clear idea about the type of
SC needed). Search scenarios are guided through
a set of similarity metrics detailed in the next sections.

Smart Contract Search Request. The general struc-
ture of a search request for SC is defined as the fol-
lowing tuple:

Cr = ⟨typer
C,{tr

C},{tr
DA},{Cr

DA}⟩ (1)

where: (i) typer
C is the type of requested SC (only

for typified search variants); (ii) {tr
C} is the set of

semantic tags for the searched SC; (iii) {tr
DA} is the

set of semantic tags denoting the DApp DA and (iv)
{Cr

DA} is the set of SCs already part of the DApp DA
that is being developed, if any. Elements in Equa-
tion (1) are not all mandatory, as they depend on the
type of search scenario the developer will undertake
(Table 1).

Example. If Alice from Example 3 wants to find
a SC aimed at handling exchange rate issues when
corresponding the compensation amount for trial
individuals, she may issue a request compliant with
the completion target and advanced search: ⟨{tr

C} =
{⟨rate,{charge per unit},“amount of a charge [. . .]”,
{tDAComp},{CDAComp}⟩}.

4.2 Similarity Metrics

SC search leverages the combination of different
metrics, grounded on the elements of the request
Cr and the features retained in the SCs descriptors.
In particular, we consider two distinct metrics, the
semantic Tag Similarity and the DApp Composition
Similarity, which are in turn exploited to compute
the contract and DApp similarity, as explained in the
following.

Semantic Tag Similarity. The semantic similar-
ity between two tags t1 and t2 is assessed accord-
ing to WordNet, relying on hyponymy/hypernymy
relationships between synsets. In this respect, the
similarity between two tags t1 and t2, denoted with

Simt(t1, t2), is calculated according to the widely
adopted Wu-Palmer semantic similarity score, be-
longing to the range (0,1] and based on the Word-
Net taxonomies (the rationale behind the score cal-
culation and further details can be found in (Wu
and Palmer, 1994)). A value of Simt() close to 1
means high semantic relatedness between the two
tags. For instance, Simt(refund,payment) = 0.94
whereas Simt(rate,payment) = 0.46. Overall, the
similarity between two sets of tags T1 and T2, denoted
with Simtag(T1,T2)∈ (0,1], can be obtained by calcu-
lating the pairwise similarity between a tag belonging
to T1 and a tag belonging to T2, applying the formula:

Simtag(T1,T2) =
2 ·∑t1∈T1,t2∈T2 Simt(t1, t2)

|T1|+|T2|
(2)

Pairs of tags to be considered for Simtag are se-
lected in order to maximise the overall Simtag,
thus ensuring that each tag from the first set par-
ticipates in at most one pair with one of the tags
from the second set and vice versa (i.e., apply-
ing the Kuhn’s Hungarian algorithm). Hence, if
we have the two sets T1 = {refund,payment}
and T2 = {payment,charge} then
Simtag(T1,T2) = 2 · [max(Simt(t1

1 , t
1
2),Simt(t1

1 , t
2
2)) +

max(Simt(t2
1 , t

1
2),Simt(t2

1 , t
2
2))]/4 = 0.97.

DApp Composition Similarity. To evaluate the simi-
larity between the composition of two DApps, the re-
lated sets of SCs, drawn from the registry, are con-
sidered. In particular, the similarity between a DApp
composed of a set of SCs {Cr

DA} and another DApp
composed of a set {CDAk} considers the number of
common registry SCs between the two sets. The sim-
ilarity Simcomp() ∈ [0,1] is assessed with the Dice’s
coefficient over the sets of SCs of the two DApps.

Simcomp({Cr
DA},{CDAk}) =

2 · |{Cr
DA}∩{CDAk}|

|{Cr
DA}|+|{CDAk}|

(3)
Contract Similarity and DApp Similarity. Seman-
tic tags and DApp composition similarity are fos-
tered to compute two metrics: (i) ContractSim() ∈
(0,1] for evaluating the similarity between the re-
quest Cr and a SC from the set SC, according to

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

234

the Smart Contract perspective; (ii) DAppSim() ∈
(0,1] for evaluating the similarity between the re-
quest and a SC in the scope of DApps where
the SC has been used, according to the Appli-
cation perspective. ContractSim(Cr,C) considers
only SCs semantic tags, that is ContractSim() =
Simtag({tr

C},{tC}). Instead, the similarity between the
request and a SC in the scope of a DApp is denoted as
DAppSim(Cr,C,DA) and is obtained as follows:

w1 ·Simtag({tr
DA},{tDA})+w2 ·Simcomp({Cr

DA},{CDA})
(4)

where C ∈ {CDA} and the set {CDA} is the set of
SCs of the DApp DA. For the weights, it holds that
w1,2 ∈ [0,1], w1 +w2 = 1. In single selection target,
no information regarding the SCs used by the DApp
is provided, as a consequence w2 = 0. Otherwise, to
balance equally the two terms, w1 = w2 = 0.5.

The overall similarity measure between the request Cr

and each SC C (denoted with Sim(Cr,C) ∈ (0,1]) is
obtained as:
w3 ·ContractSim(Cr,C)

+
(1 − w3)

|DC|
·
|DC |

∑
i=1

(
∑

|DA|
k=1 (σi · DAppSim(Cr,C,DAk)

|DA|

)
(5)

where C ∈ DAk and the term multiplied by the fac-
tor (1−w3), with w3 ∈ [0,1], considers the fact that
the SC C has been adopted in different DApps by de-
velopers with different development skill σi, in or-
der to ensure that past experiences of more expert
developers have a higher impact on Sim() calcula-
tion. Intuitively, the closest the σi and DAppSim()
values to 1 (maximum value) for all the developers
di ∈ DC, the closest the second term in Equation (5)
to 1.0. The weight w3 in Equation (5) is set ac-
cording to the search modality; if a simple search is
performed w3 = 1 (no information regarding DApp)
while w3 = 0 for a proactive search (only informa-
tion regarding the target DApp is provided). For all
the other cases, to balance equally the two aspects,
w3 = 0.5.
Finally, to limit the number of SCs to be included in
the results, denoted as R(Cr), a developer may set a
threshold τ ∈ (0,1].

4.3 Smart Contract Ranking

The results R(Cr) of a SC search are ranked accord-
ing to a function ρ : R(Cr) → [0,1] which considers
both the scores given by developers who used the SCs
in their DApps and the technical features of SCs. The
ranking function is defined as follows:

ρ(R(Cr)) = α ·ρ1(R(Cr))+
3

∑
i=1

γi · ρ̂i(R(Cr)) (6)

where α ≥ 0, γ1,...,3 ≤ 1 and α+
3
∑

i=1
γi = 1 assume all

an equal weight in Equation (6). The computation of
ρ1 ∈ [0,1] adheres to the same rationale of the sec-
ond term of Equation (5), considering ratings as more
important if given by more expert developers:

(7)ρ1(R(Cr)) =

1
|DC|

·
|DC |

∑
i=1

(
∑
|DA|
k=1 (σi · µik · DAppSim(Cr,C′,DAk)

|DA|

)
Equation (7) considers the ratings µik of developers
di ∈ DC, who used the SC C′ in DApps from DA.
The DAppSim() similarity is included in the equation
only for completion search target whereas for a simple
search the value of DAppSim() cannot be calculated,
and thus it is replaced with 1. Concerning the calcu-
lation of ρ̂i(R(Cr)), a subset on technical features of
SCs and DApps are considered. In our approach, we
consider the following: (i) ρ̂1 is based on the popu-
larity of the coding language (i.e., the number of SCs
coded with such languages); (ii) ˆρ2,3 are based on the
reuse frequency (i.e., the number of DApps the SC is
included in) for live (ρ̂2) and prototype (ρ̂3) DApps.

5 RELATED WORK

In the literature, recent research efforts have proposed
frameworks for modelling SCs features and enabling
their subsequent search for DApps deployment. The
reuse of existing SCs code for the development of
real-world DApps has been investigated in (He et al.,
2020), where similarity techniques based on SCs code
comparison are set up to find clone SCs in a given
set. The approach in (Guida and Daniel, 2019) de-
vises a conceptual model to foster the reuse of SCs
in a model-driven development environment. With
the aim of understanding functionality and internal
mechanism of SCs, a Uniform Description Language
(named UDL-SC) is proposed in (Souei et al., 2021);
the underlying meta-model focuses on three perspec-
tives: (i) operational, for modelling operations and
events provided by a SC; (ii) technical, regarding
the information of the target blockchain; (iii) busi-
ness, including quality of service details and legal
information. To support collaborative development
in blockchain-oriented software engineering, He et
al. (He et al., 2018) present a specification language
for SCs based on a model taking into account parties,
terms (obligations/rights associated with a party) and

A Multi-Perspective Framework for Smart Contract Search in Decentralised Applications Design

235

properties (regarding the object of the contract). To
help users checking their SCs by referencing existing
SCs created and saved in a blockchain platform, the
search engine in (Tran et al., 2019) treats SCs as tex-
tual documents applying Information Retrieval tech-
niques on contracts code to compute a similarity score
between the SC being created and already deployed
SCs. Description and invocation of SCs, in a way that
is independent of the specific blockchain platform, is
discussed in (Falazi et al., 2020). This work defines
a protocol for the integration of heterogeneous smart
contracts into application. In their approach, SC de-
scriptions are provided by a dedicated registry.

From a general point of view, our approach shares
some issues with (Guida and Daniel, 2019; He et al.,
2020; Souei et al., 2021; Falazi et al., 2020). How-
ever, with respect to (Guida and Daniel, 2019; Falazi
et al., 2020; Souei et al., 2021), the multi-perspective
framework presented in this paper also includes a se-
mantic and social characterisation of SCs and DApps,
and it provides examples of possible applications in
real search contexts. Additionally, we conceive sev-
eral search scenarios with different types and modali-
ties of search, to cope with developers needs and sup-
porting them in finding candidate SCs to be used for
DApps development.

6 CONCLUDING REMARKS

In this paper, we proposed a framework to search
for smart contracts to develop distributed applications
(DApps). The considered context is the one of col-
laborative processes where a subject, like a regula-
tory subject, has an interest in stimulating the use
of blockchain to increase transparency and account-
ability among participants, while reducing the burden
of the regulator in controlling trustworthiness among
participants and the compliance with the process stan-
dards. To the scope, the regulator provides a reg-
istry of basic smart contracts that can be used and ex-
tended by stakeholders to set up DApps. The frame-
work, in addition to classification and technical char-
acteristics of smart contracts, takes into account the
experience of developers who have used smart con-
tracts to develop DApps. A preliminary implemen-
tation and evaluation of the proposed framework is
in progress. Future research efforts regard the en-
richment of the SCs model, including also additional
features and statistics related to DApps (for instance,
inclusion of KPIs suitable for evaluating the trans-
action volume about a specific DApp or other usage
statistics). Moreover, experiments will be conducted,
comparing the performance of different variants of

the searching procedure, including other sense disam-
biguation systems (for instance, DBPedia or Babelfy)
for tags.

REFERENCES
Bianchini, D., De Antonellis, V., and Melchiori, M. (2009).

Service-based semantic search in P2P systems. In
ECOWS’09 - 7th IEEE European Conference on Web
Services, pages 7–16.

Cai, W., Wang, Z., Ernst, J. B., Hong, Z., Feng, C., and Le-
ung, V. C. (2018). Decentralized Applications: The
Blockchain-Empowered Software System. IEEE Ac-
cess, 6:53019–53033.

Falazi, G., Breitenbücher, U., Daniel, F., Lamparelli, A.,
Leymann, F., and Yussupov, V. (2020). Smart contract
invocation protocol (scip): A protocol for the uniform
integration of heterogeneous blockchain smart con-
tracts. In Advanced Information Systems Engineering:
32nd International Conference, CAiSE 2020, Greno-
ble, France, June 8–12, 2020, Proceedings 32, pages
134–149. Springer.

Guida, L. and Daniel, F. (2019). Supporting reuse of smart
contracts through service orientation and assisted de-
velopment. In 2019 IEEE International Conference on
Decentralized Applications and Infrastructures (DAP-
PCON), pages 59–68.

He, N., Wu, L., Wang, H., Guo, Y., and Jiang, X. (2020).
Characterizing Code Clones in the Ethereum Smart
Contract Ecosystem. In International Conference
on Financial Cryptography and Data Security, pages
654–675.

He, X., Qin, B., Zhu, Y., Chen, X., and Liu, Y. (2018).
SPESC: A specification language for smart contracts.
In 2018 IEEE 42nd Annual computer software and ap-
plications conference (COMPSAC), volume 1, pages
132–137. IEEE.

Omar, I. A., Jayaraman, R., Salah, K., Yaqoob, I., and El-
lahham, S. (2021). Applications of Blockchain Tech-
nology in Clinical Trials: Review and Open Chal-
lenges. Arabian Journal for Science and Engineering,
46(4):3001–3015.

Souei, W. B. S., El Hog, C., Sliman, L., Djemaa, R. B., and
Amor, I. A. B. (2021). Towards a Uniform Description
Language for Smart Contract. In 2021 IEEE 30th In-
ternational Conference on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE),
pages 57–62.

Tran, H., Menouer, T., Darmon, P., Doucoure, A., and
Binder, F. (2019). Smart Contracts Search Engine in
Blockchain. In Proceedings of the 3rd International
Conference on Future Networks and Distributed Sys-
tems, pages 1–5.

Wong, D. R., Bhattacharya, S., and Butte, A. J. (2019). Pro-
totype of running clinical trials in an untrustworthy
environment using blockchain. Nature Communica-
tions, 10(1):1–8.

Wu, Z. and Palmer, M. S. (1994). Verb Semantics and
Lexical Selection. In Proceedings of the 32nd An-
nual meeting of the Associations for Computational
Linguistics (ACL), pages 133–138.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

236

