
Ontology-Driven IoT System for Monitoring Hypertension 

Pedro Lopes de Souza1,2 a, Wanderley Lopes de Souza1,2 b, Luís Ferreira Pires1 c,  
João Luiz Rebelo Moreira1 d, Ronitti Juner da Silva Rodrigues2 e and Ricardo Rodrigues Ciferri2 f 

1Semantics, Cybersecurity & Services Group, Faculty of Electrical Engineering, Mathematics and Computer Science, 
University of Twente, P.O. Box 217, Enschede, The Netherlands 

2Ubiquitous Computing Group, Graduate Program in Computer Science, Computing Department,  
Federal University of São Carlos, P.O. Box 676, São Carlos, Brazil 

ronittirodrigues@estudante.ufscar.br, RRC@ufscar.br 

Keywords: Internet of Things, Ubiquitous Computing, Cloud Computing, Interoperability, Ontology, Healthcare.  

Abstract: Hypertension is a noncommunicable disease (NCD) that causes global concern, high costs and a high number 
of deaths. Internet of Things, Ubiquitous Computing, and Cloud Computing enable the development of 
systems for remote and real-time monitoring of patients affected with NCDs like hypertension. This paper 
reports on a system for monitoring hypertension patients that was built by employing these techniques. This 
system allows the vital signs of a patient (blood pressure, heart rate, body temperature) to be captured via 
sensors built in a wearable device similar to a wristwatch. These signals are transmitted to the patient's mobile 
device for processing, and the generated clinical data are sent to the cloud to be properly presented and 
analysed by the health professionals responsible for the patient. To deal with semantic interoperability issues 
that arise when multiple different devices and system components must interoperate, a semantic model was 
conceived for this system in terms of ontologies for diseases and devices. This paper also presents the semantic 
module that we developed and implemented in the cloud to perform reasoning based on this model, 
demonstrating the potential benefits of incorporating semantic technologies in our system. 

1 INTRODUCTION 

Hypertension is a cardiovascular disease that affects 
22% of the world's adult population over 18 years of 
age, being the cause of death for approximately 9.4 
million people yearly. Diagnosis and monitoring of 
hypertension patients are necessary to maintain blood 
pressure within levels considered normal, typically 
120 mmHg for systolic pressure and 80 mmHg for 
diastolic pressure in adults (WHO, 2013). However, 
this task is not always trivial, as for more assertive 
diagnosis and treatment, it is necessary to consider 
risk factors and correlate them with the disease 
progression data. In addition, blood pressure 
measurements are usually performed by health 
professionals during consultation and these data are 
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often stored in an unstructured way and are not 
always available when needed (Sandi, Nugraha and 
Supangkat, 2013).  

This paper presents the System Based on Internet 
of Things for Monitoring Patients with Hypertension 
(SBIoT-MPH) (Rodrigues, 2022), which is a 
distributed system that allows timely and efficient 
monitoring of vital signs. SBIoT-MPH has been 
realised using IoT, Ubiquitous Computing and Cloud 
Computing technologies to automatically acquire and 
process clinical data from hypertension patients and 
make them available to health professionals. SBIoT-
MPH allows patient vital signs to be captured and 
transmitted from the patient's mobile device to the 
cloud. This allows early warnings to be sent to the 
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patient, health professionals and other caretakers 
when critical situations are detected. 

One requirement to be addressed by SBIoT-MPH 
is to transparently support a multitude of different 
devices. In addition, it should be extensible to cope 
with other diseases, which means that it should be 
able to handle heterogeneous data. Furthermore, once 
we decide to integrate our system with other systems 
(e.g., IoT platforms), the interoperability issues will 
get even more stringent. To represent these issues, we 
developed a semantic model based on ontologies for 
diseases and devices. This paper then also reports on 
the semantic module that we developed based on this 
semantic model and implemented in the cloud to 
support reasoning based on the collected data. 

The objectives of this paper are twofold: (i) 
demonstrate how a system (hardware and software) 
can be developed to monitor vital signs and make 
clinical data available in the cloud for analysis and 
visualisation and (ii) demonstrate how to extend this 
system with other devices and applications with 
support of semantic technologies to cope with 
semantic interoperability issues. 

The remaining of this paper has been structured as 
follows: Section 2 gives the background to this work; 
Section 3 introduces the SBIoT-MPH architecture in 
terms of its layers; Section 4 presents the SBIoT-
MPH semantic model and describes the architecture 
and design of the semantic module; Section 5 
discusses our results; Section 6 discusses related 
work; and Section 7 presents our conclusions and 
suggestions for future work. 

2 BACKGROUND 

Hypertension is a prevalent cardiovascular disease 
and is a strong risk factor for other diseases acquired 
during life, such as coronary heart disease, left 
ventricular hypertrophy, cardiac arrhythmias 
including atrial fibrillation, stroke and renal failure 
(Kjeldsen, 2018). Hypertension is characterised by 
sustained levels of systolic blood pressure greater 
than or equal to 140 mmHg, and diastolic blood 
pressure greater than or equal to 90 mmHg, is 
considered a silent killer, with symptoms not visible 
for many years, and is usually discovered when a 
complication occurs, or a vital organ is compromised 
(WHO, 2013). 

For a more effective treatment of hypertension, 
periodic monitoring of the health conditions the 
patient is necessary. Continuous monitoring enables 
patients and their health professionals to actively 
exert disease control. This requires vital signals to be 

periodically collected, via equipment or sensors, and 
the corresponding clinical data to be stored, treated, 
and made available for analysis. 

Internet of Things (IoT), Ubiquitous Computing, 
and Cloud Computing can be effectively used in 
combination to build telemedicine systems aiming at 
providing pervasive healthcare (Husain et al, 2022). 
Wireless sensor networks and mobile devices have 
been used to develop mobile applications and smart 
environments. In this way, it is possible to increase 
the quality of health services and keep costs down, 
allowing for less direct but more effective interaction 
between patient and health professionals, and 
providing ubiquitous access to health services. 
Furthermore, data provided by different sensors can 
be combined to produce more complete reports, 
allowing more accurate medical diagnoses, and more 
effective treatments. 

IoT technologies are heterogeneous in terms of 
hardware and software at different levels, with 
different data formats and semantics, different 
devices from different manufacturers, different wired 
and wireless networking technologies, and different 
communication protocols. Usually, IoT devices 
produce large amounts of data, which can be first sent 
to a gateway to be pre-processed, for example, in 
mobile devices, and then forwarded to the cloud for 
further processing (Gawanmeh, and Al-Karaki 2021). 

IoT heterogeneity can lead to incorrect or 
inefficient use, in addition to making it difficult for 
users to access the offered services. To cope with 
these different levels of heterogeneity, one should 
strive for semantic interoperability, which aims at 
providing a common data representation for the 
meaningful data exchange between different 
applications and services. This encompasses the 
meaning of the data and their relationship, and 
requires common vocabularies to describe the data 
and ensure that data are unambiguously understood 
by the devices (Noura, Atiquzzaman and Gaedke 
2018). Many semantic models and approaches were 
proposed recently for IoT semantic interoperability, 
most of them employing ontologies, middleware, 
semantic web, and knowledge management systems 
(Souza, Souza and Ciferri 2022). 

3 SBIoT-MPH 

Figure 1 presents an overview of SBIoT-MPH and its 
components, which have been structured according to 
their locations and functionality in three layers 
(Zhang and Zhang, 2012): Sensor Layer, Fog Layer 
and Cloud Layer. 
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Figure 1: SBIoT-MPH overview. 

The Sensor Layer encompasses wearable devices 
attached to the patient's body, which have different 
sensors responsible for capturing the patient's vital 
signs and making them available digitally. In its 
current implementation, this layer collects these vital 
signs and automatically transmits clinical data related 
to these signals to the Fog Layer via the Bluetooth 
Low Energy (BLE) standard. The Fog Layer contains 
the Mobile App application, which processes the 
received clinical data and forwards it to the Cloud 
Layer via WiFi or 3G/4G networks. The Cloud Layer 
contains the API Server and Web App applications. 
The API Server allows other applications to query 
and store system data, while the Web App provides a 
User Interface (UI) for health professionals to view 
and analyse patient clinical data and for system 
management. 

In its current implementation, the Sensor Platform 
collects, analyses and stores blood pressure, heart rate 
and body temperature. However, the modular 
architecture of this system allows other vital signs to 
be captured, simply by adding new sensors. 

3.1 Sensor Layer 

The Sensor Layer contains a Sensor Platform, which 
consists of a Wireless Body Sensor Network (WBSN) 
built in a bracelet that the patient can wear on her 
wrist like a watch and captures the patient's vital 
signs. Clinical data obtained from these signals are 
transmitted via Bluetooth Low Energy (BLE) to an 
application that runs on the patient's mobile device 
(smartphone, or tablet). Figure 2 shows the main 
hardware modules of this platform. 
 

 
Figure 2: Hardware architecture of the Sensor Platform. 

The MKB0805 module is a heart rate and blood 
pressure sensor that employs the 
Photoplethysmography (PPG) method to detect 
changes in blood volume in the microvascular tissue 
bed. This non-invasive and low-cost method applies 
a light source to the surface of the skin and measures 
the variations in light intensity caused by the 
absorption and reflection of this light by the skin 
tissue through a photodetector (Castaneda et al., 
2018). Since these variations depend on the amount 
of blood present in the optical path, this sensor reads 
the signals and estimates systolic and diastolic 
pressures and heart rate, making these clinical data 
available to the main module. 

The MPU6050 module is a sensor that measures 
the acceleration of an object according to three 
coordinate axes (X, Y, Z), and is employed to detect 
the patient movements necessary to enable the 
MKB0805 module to read clinical data. The 
DS18B20 module is a digital temperature sensor that 
measures temperatures between -55°C and 150°C 
with an accuracy of ±0.5°C and is used to measure the 
patient's body temperature. 

The signals and data obtained by the sensors are 
processed by the TTGO T7 V1.3 MINI 32 module, a 
hardware board often used in the development of IoT 
systems. This board is equipped with a low cost and 
low energy ESP32 microcontroller from Espressif 
Systems and offers WiFi 802.11b and Bluetooth v4.2 
connectivity. The platform has also the Vibration 
Motor module, which consists of a small motor 
capable of generating vibrations to alert the patient 
when critical situations are detected. 

Figure 3 shows two photos of the Sensor Platform 
prototype: (a) the components of this prototype, 
which are fixed to a base structure to be inserted into 
the bracelet; and (b) the bracelet already fully 
assembled. The plastic frame was produced with a 3D 
printer from the 3D models that were designed using 
the FreeCad software. 
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           (a)       (b) 

Figure 3: Sensor Platform prototype. (a) Prototype 
components; (b) Assembled prototype. 

3.2 Fog Layer 

Mobile App is an application we developed for 
Android devices that runs on the patient's smartphone 
or tablet and acts mainly as a gateway, receiving data 
from the Sensor Platform and forwarding it to the 
cloud. Two components interact with the Mobile 
App, namely the Patient Service and the Background 
Service. The Patient Service represents the 
hypertension patient and supports the following 
functionality: 
a) Authentication: the patient provides the 

previously registered username and password and 
once authorised, she can manage the sensors, and 
view her clinical data, messages, and risk alerts. 

b) Sensors Management: the patient registers the 
sensor platform and can check the connection 
status and battery level of the platform. 

c) Data Visualisation: the patient consults the data 
records of the last 24 hours, which are stored in a 
database on the patient's mobile device. 
The Background Service runs in the background 

in the Android device, and provides the following 
functionality: 
a) Physiological Data Collection: once sensors are 

registered by the patient, the connection and 
authentication process of Mobile App with the 
Sensor Platform is triggered. After this connection 
is established, clinical data are collected, 
processed, and sent to the cloud, where they are 
stored and made available to health professionals. 

b) Patient Data Analysis: the received data are 
analysed and classified according to the 
recommendations of the American Heart 
Association shown in Table 11 into four health risk 
levels: NORISK; LOW, indicating that hyperten-
sion can be controlled with lifestyle changes, such 
as more physical activities and healthier eating 
habits; MODERATE, indicating hypertension 
needs to be controlled by medication, in addition to 
lifestyle changes; and HIGH, indicating a critical 

 
1 https://www.heart.org/en/health-topics/high-blood-pressu  

re/understanding-blood-pressure-readings 

situation so that the patient needs immediate 
intervention of a health professional; 

c) Alerts Management: alerts are generated 
according to the risk levels and sent to the cloud 
for analysis by a health professional, and the 
patient automatically receives notifications 
regarding these alerts on their mobile device and 
on the Sensor Platform. For MODERATE and 
HIGH risks, the health professional and an 
emergency contact immediately receive a text 
message with information related to the patient's 
health status; and 

d) Messages Management: messages recorded by the 
health professional on the Web App, such as 
recommendations for lifestyle changes, treatment 
adjustments involving changes in drug dosages, or 
the prescription of new drugs, are received and 
stored on the patient's mobile device, who in turn 
receives notifications related to these messages. 

Table 1: Blood Pressure Category. 
Category Systolic mmHg  Diastolic mmHg
Normal Lesss than 120 and Lesss than 80
Elevated 120-129 and Lesss than 80
Hypertension Stage 1 130-139 or 80-89 
Hypertension Stage 2 140 or Higher or 90 or Higher
Hypertension Crisis Higher than 180 and/or Higher than 120

Figure 4 shows two screenshots of the Mobile 
App User Interface (UI): (a) the interactive Data 
Collection screen, which allows the patient to view 
the sensors and update the data collected by each 
sensor, and allows the patient to access the screen for 
viewing the data history related to a sensor; (b) the 
Data History screen, which allows the patient to view 
the data history in a graph. 

   
          (a)       (b) 

Figure 4: Screenshots of the Mobile App UI. (a) Data 
Collection screen; (b) Data History screen. 
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Mobile App was implemented in Java using the 
API level 21 for Android 5.0 applications, compatible 
with around 94,1% of the Android-based devices. To 
safeguard the security of the data stored on the 
patient's mobile device, the SQLite library with the 
SQLChipher extension has been used, which provides 
a database with 256-bit AES encryption. The Apollo 
GraphQL library 2.4 was also used, which allows 
Java models for GraphQL queries to be generated 
(Jeon, Liuhaoyang and Hwang, 2019). 

3.3 Cloud Layer 

Web App and API Server were deployed in the Cloud 
Layer allowing cloud resources to be used on 
demand, as these applications perform tasks that 
require more computing resources. Cloud 
deployment also enables access to these applications 
via Internet. Web App is accessed via a Web browser, 
by health professionals to view and analyse their 
clinical data, and by an administrator to manage 
health professionals and patients. 

The following functionality concerns the 
administrator: 
a) Patients Management, to support the registration 

and maintenance of patient data, such as their 
personal data and the types of diseases to be 
monitored. 

b) Patient to Health Professional Assignment, to 
assign a patient to a health professional who will 
be responsible for monitoring the patient's clinical 
data. 

c) Health Professionals Management, to support the 
registration of health professionals. 

The following functionality concerns the health 
professional: 
a) Health Data Analysis, which allows the health 

professional to access their patients' clinical data, 
analyse these data and then make decisions 
regarding their treatment. 

b) Message Exchange, which allows messages to be 
sent to the patient's mobile device via the Mobile 
App, with recommendations regarding that 
treatment or lifestyle. These messages can be 
categorised by the health professional into 3 
priority levels for determining the order in which 
they are displayed to the patient. 

c) Alerts Monitoring, which allows alerts to be 
automatically shown on the Mobile App once they 
are forwarded to the API Server, allowing health 
professionals to analyse clinical data. 
Figure 5 shows a screenshot of the Web App UI, 

which allows the health professional to apply filters, 
such as the desired clinical data type and the analysis 

period. To help the health professional in this 
analysis, reference lines related to pre-established 
normal values for each clinical data type are plotted. 

 
Figure 5: Screenshot of the Web App. 

API Server operates as a server, providing a 
secure API so that Mobile App and Web App can 
store and retrieve system information. This API 
employs the GraphQL query and data manipulation 
language, which uses more parsimonious messages 
and therefore generates less network traffic than 
Representational State Transfer (REST). 

Web App was implemented in JavaScript, and the 
React and Material UI libraries were used since they 
facilitate UI development. Integration with the API 
Server was carried out via the Apollo Client library, 
as it supports queries to a GraphQL API, managing 
the cache and automatically updating the UI data. 

API Server was also implemented in JavaScript, 
and Node.js was used as a server-side runtime 
environment due to its improved performance when 
compared to others server technologies (Chitra and 
Satapathy, 2017). The Apollo Server open-source 
library version 2.16 was used since it supports 
GraphQL APIs compatible with any GraphQL client. 
API Server provides an authentication and 
authorization mechanism that uses JSON Web Token 
(JWT), supporting secure communication via the 
HTTPS protocol. 

4 SEMANTIC MODULE  

Figure 6 depicts the IoT semantic model that we 
developed based on a model that has been proposed 
in (Rahman and Hussain, 2020). In an IoT-based 
platform, components may not be able to properly 
exchange and understand the raw data generated by 
IoT devices (e.g., sensors, actuators, RFID devices) 
from different manufacturers due to the lack of 
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common semantics. To solve this problem, the first 
step can be to send the data to a gateway for pre-
processing and aggregation, aiming to increase their 
quality via an algorithm such as the one presented in 
(Rahman, Ahmed and Hussain, 2018). These 
aggregated data can be then stored in the cloud so that 
semantic operations can be performed on them. 

 
Figure 6: IoT semantic model (adapted from (Rahman and 
Hussain, 2020)). 

In this model, all processing to achieve semantic 
interoperability is performed in the cloud, which must 
comprise ontologies to provide semantic annotations 
to the aggregated data, adapters to convert aggregated 
data into semantic data, a conventional database, and 
a triplestore, which is a database in RDF format. The 
aggregated data are converted to the RDF triples 
format with the help of ontologies.  Some work has 
already been performed in this direction (Buneman 
and Staworko, 2016), but further investigation is still 
necessary. 

The semantic module improves SBIoT-MPH by 
addressing the following requirements of each layer: 
a) Sensor Layer, where the sensors have different 

data formats based on different data types with 
different semantics, and it is necessary to 
predefine data according to BluetoothGatt API. 

b) Fog Layer, where the interpretation of the data 
received from the Sensor Layer, with respect to 
the hypertension risk levels, is restricted to the 
Patient Data Analysis functionality; and 

c) Cloud Layer, where data exchange is not 
meaningful, and it is not possible to personalise 
the Patient Data Analysis functionality. 
Therefore, we adapted the semantic model shown 

in Figure 6 to deal with these problems. We worked 
mainly on the Cloud Layer, in order to add semantic 
annotations to the aggregated data received from the 
Fog Layer, as illustrated in Figure 7. 

 
Figure 7: SBIoT-MPH semantic model. 

When designing the SBIoT-MPH semantic 
model, we sought to keep as much as possible the 
original structure of the system. To this end, the 
semantic module was introduced in the cloud, 
communicating with the SBIoT-MPH applications, 
the RDF database and the ontologies, which are also 
implemented in the cloud. 

Figure 8 shows the components of the semantic 
model, which are discussed in the sequel. 

4.1 API Listener 

This component is responsible for capturing 
aggregated data from API Server, transforming them 
into RDF format and publishing the result of this 
transformation. Initially, a GraphQL API has been 
employed to send to the API Listener all data in JSON 
format received by the API Server from the Mobile 
App. API Listener uses the GraphQL subscription 
operation, which acts like a publisher/subscriber 
protocol. Whenever API Server receives data from 
Mobile App, API Listener is notified and receives a 
copy of those data. 

The next step has been to semantically enrich  
the aggregated data with RDF annotations, where 
additional knowledge expressed in ontologies.  
The SBIoT-MPH Semantic Module uses the  
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Figure 8: SBIoT-MPH Semantic Module architecture. 

SAREF4EHAW 1  ontology 2  to represent devices, 
sensors, data, and actors. To incorporate concepts and 
properties related to hypertension, the Chronic 
disease class of SAREF4EHAW was extended with a 
subset of the NCDs-related SNOMED CT ontology3. 

A conversion algorithm transforms the aggregated 
data into a set of RDF triplets with the help of the 
ontology and a mapping file that employs a 
lightweight JSON-based mapping language. The 
relationship between the schema and the ontology is 
stored in this mapping file, which describes how to 
extract any information from the ontology (Rahman 
and Hussain, 2020). An MQTT client function 
connected to the broker publishes the semantically 
structured data produced by the conversion algorithm 
as a JSON-RD format to the FogHeathData topic. 
Figure 9 shows the main activities of API Listener. 

4.2 Inference Engine 

This component is responsible for real-time 
processing of the patient data published by API 
Listener, and for detecting possible deviations from 
normal values based on a pre-defined classification of 
health data, such as the risk levels of Patient Data 
Analysis. Furthermore, it is responsible for triggering 
the Alert Handler component by publishing in the 
broker topics related to each detected deviation type. 

 
1 

2 https://saref.etsi.org/saref4ehaw/v1.1.1/ 
3 https://bioportal.bioontology.org/ontologies/SNOMEDCT 

 
Figure 9: API Listener main activities. 

Health data are classified based on acquired 
knowledge, being used in real health data to assess 
and predict situations. The Inference Engine deals 
with two types of knowledge: objective and 
subjective. Objective knowledge is present in general 
medical standards, well known by health 
professionals, easily found in the literature, and 
widely disseminated by large health organizations 
such as the WHO. Subjective knowledge is related to 
the patient’s profile and context, such as medical 
history, genetic diseases, and personal lifestyle. 
Objective knowledge can be described in the 
ontology and, therefore, accessed by the Inference 
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Engine. Subjective knowledge can be manually 
described by the user, usually the health professional 
responsible for the patient, and stored in the 
subjective rules database. 

When a FogHealthData topic is received, the 
Inference Engine identifies the data type and the 
patient associated with these data, and the following 
steps are applied involving subjective rules: 
a) The Inference Engine verifies if there is any rule 

in the subjective rules database for this patient 
regarding this data type. 

b) For each rule found, it checks whether the data fit 
the rule. 

c) If a deviation from normal values is detected, a 
specific topic describing this deviation is 
published, which triggers an alert. 
Afterwards, the same steps are applied involving 

objective rules. The only difference is in the first step, 
where the Inference Engine verifies in the ontology 
for these rules regarding this data type. 

Objective rules can be skipped if a subjective rule 
is found that explicitly states that. Some health data 
have variations by default, which invalidates standard 
analysis. This may occur due to the patient’s profile 
and context, which must be informed by the health 
professional when storing a rule in the subjective rule 
database. Figure 10 illustrates these steps. 

 
Figure 10: Steps of the Inference Engine. 

Rules are described as Semantic Web Rule 
Language (SWRL) expressions of the form IF 
health-data-preconditions THEN 
variants-effects. SWRL expressions can be 
evaluated by description logic reasoners, such as 
Pellet, for the evaluation of health data, inferring at 
runtime new knowledge based on the ontology and 
rules database. For example, the SWRL rule below 
defines the Patient Data Analysis normal risk level: 
 

Blood_Pressure(?systolic_mmhg, 
?diastolic_mmhg), Patient(Pedro), 
hasMeasurement(Pedro,?systolic_mmhg), 
lessThen(?systolic_mmhg, 120) ^ 

hasMeasurement(Pedro,?diastolic_mmhg
), lessThen(?diastolic_mmhg, 80) -> 
hasHypertensionStage (Pedro, normal). 
 

Each classified deviation from normal heath data 
values triggers a topic-related alert message, which is 
published and consumed by Alert Handler. 

4.3 Alert Handler 

This component is responsible for processing real-
time alerts related to topics published by the Inference 
Engine, and for contacting the patient and their health 
professional. Three alerts related to the topics blood 
pressure, body temperature, and heart rate were 
respectively implemented in SBIoT-MPH. Alerts of 
these topics provide the following information: the 
user identifiers (patient and their health professional); 
the sort of data and their values, and the timestamp of 
the data and of their sort; and a set of actions to be 
executed. The actions include sending an email to 
notify the patient, their heath professional, or both. 

The user identifier is used so that a request to the 
Data Handler can be published for retrieving all 
required information to execute indicated actions 
(e.g., patient email address). Data are used to create a 
historic log of all patient alerts, which can be useful 
for improving pervasive healthcare by helping health 
professionals to define more accurate subjective rules 
for each patient. Historic data can be also explored by 
data mining and knowledge discovery algorithms. An 
alert log is published as HealthAlertLog, and stored 
in the RDF database by the Data Handler. 

4.4 Web Manager and Web Mapper 

These components interact with Web App by 
capturing and redirecting all requests and responses 
to Data Handler. Furthermore, they provide 
additional information not available in the relational 
database to Web App (e.g., alert log).  

Web Mapper uses an interface similar to the API 
Server for receiving a Web App request described in 
the Apollo Client definition language for GraphQL. 
Web Mapper converts the received request to a 
JSON-LD request and publishes it under the 
HTMLRequests topic. After receiving the converted 
request, Web Manager formulates the corresponding 
SPARQL queries, and publishes them for being 
processed by the Data Handler, which in turn returns 
a response with the processing result. After receiving 
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the response from the Data Handler, the Web 
Manager structures the received data for being 
published in the HTMLData topic. After receiving a 
response with these data, Web Mapper converts it into 
a GraphQL response for sending to the Web App.  

4.5 Data Handler 

This component processes any direct request to the 
RDF database that is made by other components. It is 
an endpoint channel that isolates the persisted data, 
and simplifies mutations and queries management, in 
accordance with the SOA architectural principles. 
SPARQL was adopted for requests and responses 
because it is a structural query language designed for 
querying RDF data. Since SPARQL queries can be 
represented as query graphs, they can be answered by 
performing graph pattern matching over RDF graphs. 

5 DISCUSSION 

Among the main lessons learned is the use of a holistic 
approach from the system developer perspective, who 
needs to be knowledgeable in many technologies that 
play different roles in the solution. For message 
exchange, JSON was chosen instead of XML due to 
the simplicity of its structure and its minimal syntax, 
which makes it lightweight, and easier to learn, use and 
read. For the query language and data manipulation, a 
benchmark was performed between GraphQL and 
REST using Apache JMeter, in which we concluded 
that GraphQL has a better performance in terms of 
response time and a lower average data size rate 
(bandwidth) than REST (Rodrigues, 2022). 

We conceived a semantic model to enable SBIoT-
MPH to handle heterogeneous devices, data and 
services. This has been realised in the Cloud Layer, 
involving ontologies, RDF database (triplestore) and a 
semantic module. This module was designed keeping 
as much as possible the original SBIoT-MPH structure 
and, for this purpose, it has an interface that translates 
all the messages received by the API Server from the 
Fog Layer and the Web Server. The SAREF4EHAW 
ontology, which stands out for representing several 
aspects of health sensors (Moreira, 2020), was 
extended to describe NCDs especially hypertension, 
with SNOMED-CT ontology concepts, which is 
another prominent ontology in the health domain.  

RDF was adopted for dataset representation to 
encode the data with semantic relationships to the 
ontology, and SPARQL was used to express queries 
on this data source, since it is capable of querying 
mandatory and optional graph patterns along with 

their conjunctions and disjunctions. The Patient Data 
Analysis functionality was incorporated to the 
ontology as a set of SWRL rules employed by the 
reasoner to determine the hypertension risk level of a 
patient, turning into an accessible resource to all 
services in the Cloud Layer.  

Furthermore, the proposed rule-based solution is 
dynamic and adjustable to meet possible changes 
related to the patient profiles. The semantic module 
allows the reuse of existing services, and facilitates 
debugging, update, and maintenance of this module. 
The messages were encoded in JSON-LD to link the 
properties of an object represented in a JSON 
document to concepts defined in the ontology, thus 
providing additional mappings from JSON to an RDF 
model. ActiveMQ is the MQTT Broker used to 
handle the message exchange between services as a 
publish-subscribe message broker. 

The original SBIoT-MPH design presents some 
problems related to interoperability that gives 
directions for future work. At the Sensor Layer, our 
sensor platform is the only IoT device able to 
communicate with the Mobile App in the Fog Layer 
at the moment. A solution to allow different IoT 
devices in the Sensor Layer to transmit their data to 
the Fog Layer is to develop a set of drivers describing 
multiple authentication protocols.  

In the Cloud Layer, the semantic model needs 
refinement to improve reusability, specialisation, and 
independence of its components. All services need 
the Data Handler to access information from the RDF 
database, which creates a communication bottleneck 
and deteriorates query performance as the database 
grows. A solution is to migrate from a single data 
storage that is shared by all services in the application 
to a microservices architecture, in which each 
microservice has its own database (Database-per-
service pattern). To achieve this, we still need to 
investigate how to decompose an RDF dataset 
without compromising its integrity. 

Recent studies have shown that IoT semantic 
interoperability can be improved if implemented not 
only in the Cloud Layer but also in the Fog Layer 
(Rahman and Hussain, 2019). Since this will require 
the redesign of the SBIoT-MPH architecture, a tool 
for modelling and simulating IoT computing 
environments, such as the one presented in (Mahmud 
et al., 2022), will be used to investigate this problem.  

6 RELATED WORK 

This section discusses some relevant developments 
that employ IoT, Ubiquitous Computing, and Cloud 
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Computing in different domains, while also dealing 
with semantic interoperability.  

An IoT-based large-scale SOA (IoT-LSS) 
ontology that extends the SSN ontology for 
addressing dynamic service creation, composition 
and adoption is presented in (Mishra and Sarkar, 
2022). The benefits of this ontology have been 
illustrated in the healthcare domain by mapping the 
elements of Clinical Decision Support System 
(CDSS) ontology with IoT-LSS, supporting 
interoperability, scalability, extendibility, flexibility, 
manageability and heterogeneity among different 
entities. Although this work is interesting from the 
point of view of developing ontologies aimed at IoT 
semantic interoperability, the application of the 
proposed ontology in a realistic system like SBIoT-
MPH was not reported. 

An Internet of Medical Things (IoMT) framework 
called Medical Data Interoperability through 
Collaboration (MeDIC) is presented in (Jaleel et al., 
2020). MeDIC provides services, such as registration, 
subscription, probing, translation, and publishing, 
and employs translation resources by means of 
probing and translating agents at the network edge, 
where medical data originate. MeDiC is distributed, 
scalable, and extendable to other IoMT dimensions, 
such as protocol interoperability, and to other IoT 
applications, and it will be extended to support 
protocol and semantics compatibility. Although this 
work enriches clinical data and translates them from 
one format to another, it does so by employing agents 
and not ontologies like in our solution. 

An IoT-based health system to monitor and report 
patients' health conditions at real-time is presented in 
(Bhuiyan, 2022). This system can transmit health 
information such as blood pressure, body 
temperature, heart rate and oxygen saturation, from 
anywhere, to medical centres and caregivers. It tracks 
the patient's location using different sensors, transmit 
data online and offline to mobile apps, and provides 
alert signals to caregivers once are identified critical 
health conditions. According to the authors, this 
system is potentially suitable for rural and urban areas 
in developing countries. Although this system has 
some similarities with SBIoT-MPH, it does not deal 
with semantic interoperability. 

A healthcare system based on ontological 
reasoning to monitor patients with chronic diseases 
called Do-Care is presented in (Elhadj, 2021). Do-
Care infers medical information and 
recommendations based on IoT data, subjective and 
objective knowledge, and a dynamic rule-based 
approach. This system employs a modular ontology 
that integrates three different ontologies: ICNP 

medicine ontology, SSN/SOAS sensor network 
ontology, and FOAF personal profile ontology. The 
efficiency of Do-Care was tested as well as its 
ontology, and they intend to integrate the Decision 
Tree Learner algorithm to this system to predict 
diseases and provide additional support to physicians 
in recommending preventive medications. Although 
this work is similar to ours, some differences are: the 
Fog Layer in Do-Care only performs data aggregation 
and transmission and, therefore, the patient can only 
visualise their data in the cloud; Do-Care employs an 
ontology built upon different ontologies than the ones 
we used; and Do-Care does not have a relational or a 
graphical database, requiring additional functionality 
when using the semantic module. 

7 CONCLUSIONS 

In this paper, we reported on SBIoT-MPH, a three-
layer IoT-based system to monitor hypertension 
patients. To enable semantic interoperability in this 
system, a semantic model was designed to 
incorporate reasoning by using disease and device 
ontologies. This semantic module was deployed in 
the Cloud layer, and communicates with the SBIoT-
MPH applications, the RDF database, and the 
ontologies, which are also deployed in the cloud. 

A possible drawback of our solution is that we 
replicated the original persisted data in an RDF 
triplestore. Although data duplication enforces 
resilience, it also requires mechanisms to guarantee 
data integrity. For the SBIoT-MPH, this mechanism 
may be rather complex since the databases of this 
system use different technologies. To investigate this 
problem, different scenarios will be simulated to 
check the trade-off of keeping two databases.  

As future work, we also intend to extend the 
sensor platform for collecting other types of clinical 
data, and to adapt/reuse the SBIoT-MPH applications 
for monitoring patients with other types of NCDs, 
such as Diabetes, Asthma and Obesity. In addition, 
WHO recommends the practice of physical activity 
for preventing NCDs, and since the scenarios for 
monitoring physical activity are similar to the ones 
for monitoring NCDs patients, we believe SBIoT-
MPH can be extended to be used for this purpose. 

In the literature, several fog-based approaches that 
provide solutions for heterogeneity problems have 
been reported, but semantic approaches are usually 
implemented in the cloud. Since the SBIoT-MPH fog 
layer is suitable for pre-processing of delay-sensitive 
data at the network edge, in future work we intend to 
investigate and propose a semantic approach in which 
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semantic support is partially deployed in the fog and 
partially in the cloud. 
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