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Abstract: The development of autonomous vehicles and their introduction in urban traffic offer many opportunities for 
traffic improvements. In this paper, an approach for a future traffic control system for mixed autonomy traffic 
environments is presented. Furthermore, a simulation framework based on the city of Paderborn is introduced 
to enable the development and examination of such a system. This encompasses multiple elements including 
the road network itself, traffic lights, sensors as well as methods to analyse the topology of the network. 
Furthermore, a procedure for traffic demand generation and routing is presented based on statistical data of 
the city and traffic data obtained by measurements. The resulting model can receive and apply the generated 
control inputs and in turn generates simulated sensor data for the control system based on the current system 
state.  

1 INTRODUCTION 

Traffic control is a vital part of road mobility, 
especially in urban areas. It is required for an efficient 
use of the given road network and often has a direct 
impact on the traffic situation. Current means of 
traffic control e. g., traffic light systems (TLS) or 
dynamic speed limitations on selected roads are key 
to improve the traffic flow and are therefore currently 
subject to optimisation. However, a major drawback 
of those systems is their cost and the need for 
additional infrastructure, like traffic detectors, to 
acquire an accurate picture of the traffic state. TLS, 
for example, can achieve significantly better 
performance if the traffic situation in their vicinity 
can be observed and used to determine the most 
suitable control input to handle the current situation 
(Malena et al., 2022). 

The current developments in autonomous and 
connected vehicles offer a great potential to remedy 
these limitations and to integrate these vehicles as 
agents in traffic control systems themselves. Modern 
vehicles monitor their own position and speed 
continuously and could share this information using 
Car2X technology. Moreover, autonomous vehicles 
are dependent on the constant observation of their 

environment in real-time to be able to drive without 
assistance of a person. For a central traffic control 
system this data can give valuable insights in the local 
traffic situation close to the respective vehicles. 
Additionally, the current road infrastructure already 
integrates detectors, like induction loops or radar 
detectors, which can provide traffic data on stationary 
locations of varying quality. The incorporation of all 
these local data sources into a central control system 
can be used to obtain a comprehensive and up-to-date 
picture of the traffic network’s state, even if only a 
small share of the road users is able or willing to 
participate in data-sharing. 

Our goal, based on these considerations, is to 
develop such a traffic control system for future traffic 
scenarios and to utilizes the capabilities these systems 
would enable. A real-time picture of the traffic state 
can further improve TLS performance and enable 
route optimisation or rerouting suggestions for 
vehicles on the road. Furthermore, cooperative 
autonomous vehicles could be used to adapt the 
traffic flow speed in order to reduce congestions or 
stop-and-go traffic on road sections ahead. The 
framework development requires a suitable 
simulation environment since the traffic composition, 
as described above, and the means for data-sharing 
currently do not exist to the required extent. 
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In this paper, we present a simulation environment 
and its components that is the foundation of such a 
system. In section 2, a literature overview is given to 
set a baseline for the presented research. An overview 
over the system and its structure is presented in 
section 3. Section 4 comprises the modelling of the 
road infrastructure as well as the traffic demand. 
Finally, in section 5 the conclusions are drawn, and 
the next steps are formulated. 

2 LITERATURE OVERVIEW 

Modelling a traffic environment and the associated 
control system are comprehensive tasks that include 
several aspects. In this section, a selective overview 
is presented due to the limited scope of this 
publication. There are many approaches and tools 
resulting from previous research. In (Lopez et al., 
2018), the microscopic traffic simulation tool SUMO 
and its framework is presented which is used in this 
research. By employing the open-source software it is 
possible to model and simulate traffic scenarios in a 
realistic way. However, to reproduce the behaviour of 
a real traffic system, the mobility demand must be 
approximated realistically. An overview over 
methods for activity-based demand generation is 
given in (Schweizer et al., 2018). Depending on the 
available data, the desired output and the scope of the 
simulation, different methods can be pursued. 
Usually, the approaches derive the traffic demand 
from data about the population and its behaviour in 
the regarded area. Other structural information, e. g., 
the location and size of schools can also impact the 
simulated traffic situation, as investigated in (Ma et 
al., 2020). In that research, SUMO was used in 
combination with the tool Activitygen to simulate a 
realistic traffic environment and the results were 
compared to real traffic data. An alternative approach 
is used in (Maiorov et al., 2019) by splitting a large 
traffic region in multiple sections. Applying a 
gravitational model and incorporating structural data 
of the region, origin-destination (OD) matrices 
describing the traffic flows between the sections are 
created and used for route generation. In (Lobo et al., 
2020), a method is presented to create a traffic model 
of an urban area using SUMO, Activitygen and an 
iterative routing approach. This is based on real traffic 
measurements and includes realistic programs for 
some TLS. 

To obtain the road network, data from 
OpenStreetMap (OpenStreetMap contributors, 2022) 
can be imported and converted to the SUMO 
standards. A topological analysis of such a road 

network based on graph theory was performed by 
(Henning et al., 2017). Using several metrices, e. g., 
Betweenness Centrality and Closeness Centrality, a 
topology-based method was applied to identify 
important roads of the network. The results of such an 
analysis can be used by control systems or traffic 
planers to improve the traffic situation. A similar 
graph-based approach was taken by (Ahmadzai et al., 
2019) to rate a city’s road network. 

The components of the planned control system are 
also based on prior research analysing different 
aspects. In (Farrag et al., 2020), information about the 
simulated traffic obtained via Car2X technology is 
used to identify and react to local traffic incidents 
(e. g., blocked lanes). Using this information 
subsequent vehicles can reduce their velocities which 
leads to a reduction in time loss. This demonstrates 
both, the potential of sharing traffic information and 
the capabilities of velocity control. This assessment is 
supported by the results of (Guo et al., 2020) who 
consider a mixed autonomy traffic situation. They 
show that through speed harmonization on roads 
leading to known bottlenecks, a better traffic flow can 
be achieved, provided there is sufficient sensor 
coverage in these areas. In (Malena et al., 2021a) and 
(Malena et al., 2021b), we present a validated method 
to obtain the traffic state of a real-world traffic area in 
real-time using stationary detectors. Using this 
approach, we were able to control multiple TLS in the 
regarded area and to integrate a more suitable target 
phase selection for the current traffic situation 
(Malena et al., 2022). However, this approach was 
limited to a city district of Paderborn and required the 
integration of additional sensor systems. 

Finally, the subject of vehicle routing is important 
for the planned system since it is a key part of the 
desired real-time control system, and it is required for 
the initial route allocation as well. In (Lazar et al., 
2021), a deep reinforcement learning algorithm is 
used for cooperative routing of the autonomous 
vehicles in a mixed autonomy environment while 
human-driven vehicles rely on selfish route choice. 
The research shows that a cooperative approach can 
lead to a reduction of travel times even if it is only 
applied to a fraction of the vehicles. Similar results 
were achieved by (Krichene et al., 2016) indicating 
that even a small share of controllable vehicles can be 
used to achieve significant improvements. 
Furthermore, other possible solutions to remedy the 
inefficiency of selfish, non-cooperative routing are 
summarised, like pricing congestion or the allocation 
of road capacities. 

The traffic control system and the simulation 
environment presented below are based on the 
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research presented here, combining and extending it. 
The SUMO-based simulation is complemented by 
new models of sensor systems and TLS. Also, a 
routing system was developed including results from 
topological analysis and real traffic data. 

3 SYSTEM OVERVIEW 

In order to describe the simulation model, it is 
necessary to understand how it is embedded in the 
control loop and to formulate the requirements it has 
to meet. 

 
Figure 1: System overview. 

The structure of the system which is being 
developed is depicted in figure 1 and consists of three 
major components: A simulation model, a traffic 
observer, and a control system. The latter two serve 
as the information processing unit which receives 
simulated sensor data from the model and in turn 
provides appropriate control inputs. In contrast to 
that, the simulation model is a substitute for a real 
traffic environment and is used to test the control 
system. Therefore, it has to encompass all relevant 
components which have a meaningful influence on 
the system’s behaviour. It must be able to receive and 
apply the given control inputs and generate the 
required sensor data based on the system’s state. The 
controller provides three means to interact with the 
traffic system: 

A routing system utilizes the knowledge of the 
system state to dynamically find optimised paths to 
the given destinations. Such a system must weigh 

between multiple criteria, such as route length, 
expected travel time, traffic density etc. and suggest a 
route-change for compatible vehicles. It is assumed 
that autonomous vehicles follow these suggestions 
while the drivers of other Car2X-equipped vehicles 
can reject them which can be modelled using a 
probability-based approach. Other vehicles cannot be 
controlled by this system directly, however by easing 
traffic demand on critical road sections they are also 
expected to experience an indirect positive effect. 

The second mean of control is also aimed at 
Car2X-equipped vehicles and utilizes the ability to 
send them respective target velocities for the road 
sections they are located on. If the estimated target 
velocity is below the current traffic flow speed it can 
be enforced by autonomous vehicles and cooperating 
human-driven vehicles. Using consensus algorithms 
for a purely autonomous traffic showed that it is 
possible to achieve a more homogenous traffic flow 
and to reduce undesirable effects like stop-and-go 
traffic if the target velocities are chosen appropriately 
(Mertin et al., 2020). 

Since TLS have a great influence on the traffic 
flows, the final control structure is a system to 
optimise their performance. Based on the estimated 
traffic state on the roads in the vicinity of each TLS, 
the waiting times of the affected vehicles and their 
vehicle types (if known), a target phase and the 
desired switching time is to be calculated and applied 
to the traffic system. In our prior research, we have 
developed an approach based on Model Predictive 
Control (MPC), which is able to improve the 
performance of TLS significantly compared to 
control systems currently in use (Malena et al., 2022). 
An integration of this control approach is therefore 
planned for this system as well. 

All those presented control systems prerequisite a 
comprehensive and up-to-date knowledge of the 
current system state in order to provide effective 
control inputs. To achieve this, an observer is 
currently under development, which processes and 
utilizes the data obtained by various sources in the 
simulation model. A probability-based traffic 
simulation is used to extrapolate the estimated system 
state and is continuously updated and corrected by the 
incoming sensor data. The accuracy of the estimated 
system state of certain areas of the road network 
therefore depends on the availability of recent sensor 
data. Further details about the observer are subject for 
a future publication as soon as implementation and 
further tests are completed. 

Based on these interactions with other system 
components, it is possible to formulate several 
requirements for the simulation model: The road 
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network has to be selected and provided to the various 
system components. The vehicle dynamics must be 
modelled containing relevant functions like car-
following-models or lane-change-models. Also, the 
behaviour of the different vehicle types has to be 
specified, especially the behaviour of autonomous 
vehicles. This includes means to set the desired target 
velocities and routes. TLS must be integrated in the 
road network and the respective controllers must 
ensure that the given target phases are applied in a 
realistic way. Additionally, the sensors have to be 
modelled to generate the required data for the traffic 
observer. To test the system under realistic conditions 
the traffic demand must be determined and used to 
generate appropriate trips which in turn are the basis 
to calculate realistic initial routes for the vehicles in 
the simulation. In the following section, the 
simulation model is described in detail. 

4 MODELLING PROCESS 

In this section, the simulation environment and its 
relevant components are addressed and discussed, 
beginning with the selection of the road network and 
the model basics. Subsequently, the modelling of the 
traffic infrastructure is presented and followed by the 
method used for traffic demand generation. The 
simulation environment is built on the traffic 
simulation software SUMO which is an open-source 
tool maintained mainly by the German Aerospace 
Center. It is based on a microscopic traffic model and 
includes several sub-models e. g., for lane-changing, 
car-following behaviour or the reaction of the drivers 
to TLS. Therefore, it provides a suitable and 
extendable base to meet the requirements listed 
above.  The system components rely on multiple  data  

 
Figure 2: Data processing for the simulation model. 

sets to perform their respective tasks. An overview 
over the processes needed to generate these data sets 
is depicted in figure 2 and will be referred to in the 
following sections. 

4.1 Traffic Infrastructure 

4.1.1 Road Network 

The simulation model is based on a real-world traffic 
environment to demonstrate the applicability of the 
control system to existing road networks. The city of 
Paderborn, Germany, and parts of the surrounding 
area (see figure 3) serve as a template for the model. 
It includes over 960 km of roads (counting both 
directions separately) and consists of a wide variety 
of road types, from an Autobahn (highway) to 
residential streets. Also, there are 137 TLS in the 
network which are also considered for the simulation. 
Some roads are exclusively for public transportation 
and authorities. 

The foundation of the road network was imported 
from OpenStreetMap (OSM) using the import tool 
Netconvert provided by the SUMO toolkit. Although 
it provides a useful basis for the model it is far from 
being directly deployable for simulation and requires 
extensive manual corrections to compensate for 
incorrect data. This especially applies to junctions 
and the correct definition of the lane connections 
indicating which target lanes can be reached from 
which origin lanes. 

 
Figure 3: Extract of the selected road network of the city of 
Paderborn over the corresponding OSM-map layer 
(OpenStreetMap contributors, 2022). 
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In order to provide topological network 
information to the components of the system (i. e., the 
observer and the controller), a tool was developed to 
analyse the resulting SUMO road network file and to 
create a corresponding graph-representation. This 
includes the identification of areas of influence (e. g., 
for TLS based on the distance to them) as well as the 
identification of parallel and counter-directional 
roads since these are relevant for the control system 
design. Another field of application for topological 
network information is to integrate the TLS, which is 
described below. 

4.1.2 Road Priority Assessment 

The road network encompassed by the simulation 
model has an extensive expanse, however many roads 
lead through residential areas, the town centre, 
industrial areas, or other regions which are not 
intended to be a central vein of transportation. 
Especially for the routing-based control system it is 
important to consider this since extensive routing 
through these areas might cause problems or 
discontent among the residents. The importance of a 
road is represented by OSM in a priority class which 
is based on its role (e. g., highway, federal road), the 
number of lanes, etc. 

On the other hand, it is important to identify 
which roads are most valuable for the traffic system 
due to the location or connections to other roads. A 
mean to incorporate this is to introduce a numerical 
priority rating for each road section as a combination 
of several criteria. An established method to rate the 
importance of a node in a graph is the Betweenness-
Centrality. It is an indicator of how often a given node 
is part of the least costly connection between any two 
nodes in the graphs. To apply this to the road network, 
it is converted to a line graph that allocates a node to 
each road. The connecting edges are created based on 
the reachable follow-up roads at each junction. The 
cost associated with each edge is set using two 
different attributes of the roads. This leads to two 
independent graphs: One weighed with the length of 
the respective roads and the other with the free travel 
time on them (i. e., the length divided by the speed 
limit). These attributes were selected because both 
play an important role for drivers’ route decisions and 
should therefore both be regarded. Consequently, the 
Betweenness Centrality is calculated for both cases. 

To combine the priority rating 𝑟௣௥௜௢,ఛ  for road 𝜏 
from OSM with the values obtained by the graph 
analysis using Betweenness Centralities based on 
distance and travel time (𝑟஻஽,ఛ, 𝑟஻்,ఛ), an optimisation 
problem is formulated. The goal is to find the 

weighting 𝑤 ∈ ℝଷ for the different rating approaches 
that minimizes the quadratic deviation between a 
linear combination of the ratings and actual traffic 
data 𝑣ఛ  for 𝑛  measurement locations available in 
Paderborn with 

𝑤 = argmin௪∈ℝయ ∑ ቌ𝑣ఛ − ൥ 𝑟஻஽,ఛ𝑟஻்,ఛ𝑟௣௥௜௢,ఛ൩் ⋅ 𝑤ቍଶ௡ఛୀଵ . (1)

In Paderborn, these measurements were acquired by 
a traffic count from 2018 and include the vehicles 
detected per day at about 300 locations within the 
network. The resulting weighting 𝑤  is used to 
calculate a single value in the range 0 to 1. 

4.1.3 Traffic Light Systems 

As stated above, TLS are a key part of urban traffic 
environments since they exert an immediate influence 
on the traffic flows. SUMO supports the integration 
of TLS and the simulated traffic participants abide to 
the signal lights. However, it is up to the user to 
ensure that the TLS behave as expected. This is not 
limited to the selection of the TLS-phases (which is 
the responsibility of the control system) but also to 
the way they are implemented, e. g., regard the 
minimum green durations and transition times and 
avoid incompatible signal combinations. Depending 
on the junction’s geometry and the desired phase 
transitions these details can have a significant impact 
on the transition times and therefore should not be 
neglected. To ensure that TLS in the simulation 
comply with, the official guidelines for TLS in 
Germany, RiLSA (RiLSA, 2015), a controller was 
developed that commands the signal lights based on 
the current TLS state and the desired target phase. It 
ensures the adherence to the yellow signal change 
time, the minimum green time and red clearance for 
conflicting signals. The basics of the underlying 
controller logic applied to each signal of a TLS are 
depicted in figure 4. 

Each TLS-signal may control multiple lanes, but 
a lane is not limited to a single signal. E. g., a right-
turning lane can be released by the ‘main’ green light 
or by a right-arrow green signal provided it has no 
dedicated red light. Depending on the current state of 
each signal and the selected target phase, a series of 
checks is performed to decide whether a state 
transition is permitted or must be postponed. This 
might even result in an active signal to be turned to 
red temporarily in order to allow a dependent signal 
to switch to green. The mutual relationships and 
dependencies of the signals depend on the geometry 
and conflict areas of the intersection. Lanes with no 
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conflicting points and active signals can be controlled 
independently. They impose no restrictions for the 
controlling signals while lanes from a crossing street 
must not receive green if there are any conflicting 
areas. 

 
Figure 4: TLS controller logic (Malena et al., 2022). 

An automated analyses is performed for each 
junction comprising TLS which generates plausible 
datasets to setup the simulation and the controller 
based on geometrical features. Depending on the 
incoming and outgoing lanes and the connections 
between them, a TLS setup is selected, and matching 
signals and phases are generated. Also, restrictions 
like minimum green times and transition times are set 
based on that. For TLS with unusual setups or to 
incorporate actual phase plans the configuration 
datasets can be adjusted manually to ensure a realistic 
behaviour. 

4.1.4 Traffic Sensors 

In a real-world scenario, the sensors are a vital part of 
the traffic control system since they are the only 
source of information about the current traffic state. 
To test the developed system under realistic 
conditions, it is therefore required that suitable data 
packages are generated by ‘virtual’ sensors based on 
the known system state of the simulation model. In 
this research, there are five different sources of 
information modelled. They vary in terms of the 
provided data as well as the time at which the data is 
shared. The sensor types with the corresponding 
information they provide are listed in table 1. 

Table 1: Simulated sensors and their provided information. 

Data Source Transmitted Information 
Car2X-equipped 
vehicles 

- Own position 
- Own velocity 
- Own route (if available) 
- Own vehicle type 

Autonomous 
vehicles 

- All Car2X-vehicles’ data above 
- Nearby vehicles’ positions 
- Nearby vehicles’ velocities 
- Nearby vehicles’ types 

Induction Loops - Time of detections 
- Current occupation status 

Radar Detectors - Time of detections 
- Detected vehicles’ velocities 
- Detected vehicles’ types 

Aggregated data 
sources 

- Average traffic density over a 
given time span (delayed) 

Induction loops are placed at the stopping lines of 
each incoming lane at a TLS. Furthermore, for TLS 
containing multiple lanes per direction, additional 
induction loops are set up to 40 meters ahead of the 
junction, as this is a common setup in Paderborn. 
Induction loops are prone to errors especially if 
crossed by small vehicles which do not inflict a huge 
impact on the inductivity of the sensor. To model this, 
a vehicle type-dependant probability is defined to 
determine if the crossing of a road user is actually 
registered by the sensor. Radar detectors are also 
stationary and placed manually on the road network. 
They are intended to augment the data collection 
efforts on road sections which do not feature 
induction loops but exhibit a sufficiently high traffic 
volume that would justify an installation of such a 
device. Radar detectors provide more reliable 
measurements than induction loops. Also, they are 
able to gather additional information like the crossing 
vehicles’ velocities and vehicle types (which is also 
affected by a type-dependent misclassification 
probability). To generate the sensor data packages, 
the set 𝐿௭,௞ containing all vehicles 𝑖 on lane 𝑧 at the 
current time step 𝑘  is considered. For each vehicle 
being on the lane for one of consecutive time steps, 
i. e., 𝑖 ∈ 𝐿௭,௞ ∪ 𝐿௭,௞ିଵ,  the following cases are 
checked using the vehicles’ positions 𝑥௜,௞  on their 
respective lane and the positions 𝑝௭  of the lanes’ 
respective sensors: ൫𝑖 ∈ 𝐿௭,௞൯ ∧ ൫𝑥௜,௞ ≥ 𝑝௭൯ ∧ ൫𝑖 ∉ 𝐿௭,௞ିଵ൯ ൫𝑖 ∈ 𝐿௭,௞൯ ∧ ൫𝑥௜,௞ ≥ 𝑝௭൯ ∧ ൫𝑥௜,௞ିଵ < 𝑝௭൯ (2)൫𝑖 ∈ 𝐿௭,௞ିଵ൯ ∧ ൫𝑥௜,௞ିଵ < 𝑝௭൯ ∧ ൫𝑖 ∉ 𝐿௭,௞൯. 
If any of the three conditions apply, a sensor crossing 
was determined. Consequently, the corresponding 
data is read from the known true simulation state and 

Min.
green time
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 No conflicting phase active?
 Red clearance time for all conflicting phases reached?
 Are above conditions also met for all dependent signals?*
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modified based on the misdetection and 
misclassification probabilities according to the type 
of sensor. The data package is provided to the traffic 
control system without additional delay since the 
transmission time is neglectable compared to the 
simulation step size (Δ𝑡 = 1 𝑠) when using a suitable 
transmission protocol. 

Due to the usage of Car2X communication 
technology by some traffic participants, these can be 
utilized as moving data sources. It is assumed that 
they share their current position, velocity, and the 
route they are on, if set. Additionally, autonomous 
vehicles provide information which they gather from 
their environment. Thus, the position, velocity and 
type of nearby vehicles are transmitted as well. 
Especially at junctions this can concern vehicles on 
multiple lanes, therefore a comparison of the state of 
the current lane is not sufficient. To preselect the 
vehicles which might be in range of autonomous cars, 
the road network is divided into a grid with several 
100m-by-100m fields. Each vehicle is allocated to the 
corresponding field using its coordinates once per 
time step. Thus, to determine the nearby vehicles it is 
sufficient to check the distance to the vehicles in the 
current grid-field and all neighbouring fields. This 
reduces the number of checks to be performed 
significantly. Similar to the stationary sensors it is 
assumed that the data packages from Car2X-equipped 
vehicles are gathered each time step with no 
additional delay. 

The final method to get information about the 
traffic are sources that aggregate data using different 
sensors before sharing it. These do not provide data 
of individual vehicles but instead estimate the traffic 
density on road segments of the network. Data like 
this can be gathered by using cell phone information 
e. g., via navigation apps or detecting and counting 
nearby Bluetooth devices. The aggregated data is not 
available in real-time but can still be important for a 
traffic control system, especially for routing purposes 
and areas of the network without a great sensor 
coverage. While the collection methods are not 
modelled in detail, the aggregated traffic density over 
a certain time period is modelled using a moving 
average of the vehicle count for each lane and 
delaying it further. 

4.2 Traffic Demand 

The fixed road infrastructure and the sensor systems 
are the base of the simulation model. However, to 
perform simulations the traffic itself has to be 
modelled as well. This includes the definition of the 
vehicle types and their respective behaviour as well 

as the generation of the traffic demand to fill the road 
network in a plausible way. 

In the SUMO traffic simulation eight different 
vehicle types are used, e. g. passenger-cars or busses. 
Additionally, there are autonomous variants of most 
of the types. For human-driven vehicle types the 
parameters are configured to randomly deviate from 
an ‘ideal’ driving behaviour. This may result in 
divergences from the speed limits, not keeping a 
sufficient distance to the preceding vehicle, or an 
impatient behaviour at junctions regarding the right-
of-way. For autonomous vehicles these deviations are 
disabled since a computer-driven car would not 
deliberately violate the traffic rules and cannot be 
distracted. Moreover, autonomous vehicles can be 
controlled by the traffic control system to some 
degree. 

4.2.1 Trip Generation 

The goal of the traffic generation is not to recreate the 
exact traffic which is present in Paderborn on a given 
day (this would require to monitor each traffic 
participant individually), but to create a plausible 
traffic situation that resembles the real traffic. The 
first step is to generate the trips that are to be carried 
out during the simulation. A trip defines the origin 
and the destination a vehicles’ route has to connect as 
well as the departure time. Therefore, the entirety of 
all trips represents the demand for mobility in the 
network without prescribing how it is realized. The 
(initial) routes the vehicles should take are 
determined in a subsequent step (see section 4.2.3). 
SUMO already includes the application Activitygen to 
generate trips based on a given road network and 
additional information about the environment which 
must be provided externally. These include statistical 
data about the population in Paderborn, like 
population count, demographics, employment rate, 
car ownership rate, etc. Also, information about the 
number of incoming and outgoing commuters as well 
as an approximate distribution of the usual working 
hours are given. This information was mainly 
obtained by publicly available data published by the 
City of Paderborn. 

Furthermore, information directly related to the 
road network was provided that includes the position 
and size of schools in the regarded area, since they are 
a common destination for many trips at certain times 
of the day. Also, the main roads leading in and out of 
the road network were specified including the number 
of vehicles traveling on them each day. For most of 
the relevant roads this information could be obtained 
from the traffic count mentioned above. The traffic 
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which is generated from and to a certain road is 
dependent on the number of residents that live there, 
and the number of workplaces located nearby. This is 
not uniform for all roads and can vary significantly 
depending on the location. As there are more than 
40,000 road sections in the road network, a manual 
setting is not practical, and an alternative method was 
used. 

To more efficiently allocate numerical values to 
the different road edges an image-based method was 
developed. It uses the RGB colour channels of a new 
layer which is added to the map displayed in figure 3 
to encode the required information. Consequently, 
areas on the map can be marked according to their 
position and function with different colour intensities. 
A transformation function is used to map each 
network coordinate to the corresponding pixel of the 
image. Thus, for each road edge a central coordinate 
is determined, the corresponding pixel is selected, and 
the respective value is read based on the red 
component of its RGB value using a conversion 
factor. Note that this is a relative value and the total 
number of workers and inhabitants to be allocated is 
calculated based on the statistical data mentioned 
above. Since there is no data available for Paderborn 
that shows the population density or the density of 
workplaces in the level of geographical detail 
required, the areas on the map are marked based on 
their urban development and function. Residential 
areas receive a higher-than-average rating for the 
number of inhabitants while exhibiting only a limited 
number of workplaces. For industrial areas on the 
other hand an inverse structure is defined, and the city 
centre exhibits high values in both regards. Using this 
input data Activitygen creates a set of trips which is 
subsequently used as basis for the routing algorithm 
presented in the next section to generate the actual 
initial traffic. 

4.2.2 Routing 

The routing process determines how the OD pairs 
defined in the trips are connected. Note that this initial 
routing is performed for all generated trips, however 
the planned control system can allocate new routes 
for autonomous vehicles and cooperating Car2X-
equiped vehicles online once it is integrated. The 
routing can be done by representing the road network 
as a graph and applying a pathfinding algorithm. 
Unlike the line graph used in the road priority 
analysis, here the junctions are represented by the 
nodes and the roads are modelled by the edges. This 
enables a direct connection between the cost and the 
associated attributes of the roads. However, a simple 

distance or time-based allocation would be unsuitable 
here, because in a road network the shortest way 
might lead through the city core or residential areas 
which is not desirable. Also, such a method would not 
consider the actions of other road users and could lead 
to smaller roads experiencing more demand than they 
could handle while better developed roads might not 
use their full capacity during critical traffic situations. 
In addition, a traffic scenario shall be simulated that 
resembles the real traffic situation in Paderborn, 
which therefore must be taken into account during the 
routing process. Based on these considerations, the 
usage costs for each edge 𝑖  comprise of three cost 
components and are recalculated for each trip: 

1. Expected travel time (𝐽்்,௜ሺ𝑛ሻ) 
2. Road priority assessment (𝐽௣௥௜,௜) 
3. Real traffic data (𝐽௠,௜ሺ𝑛ሻ) 
The vector 𝑛 contains the number of routes that 

includes the respective edge 𝑖  and the vector 𝑟 
represents the weighting factors for the cost 
components. The resulting costs for crossing edge 𝑖 
are therefore: 𝐽௜ሺ𝑛ሻ = ሾ𝐽்்,௜ሺ𝑛ሻ 𝐽௣௥௜,௜ 𝐽௠,௜ሺ𝑛ሻሿ ⋅ 𝑟. (3)

The expected travel time is a major influencing 
factor for drivers’ routing decisions and must be 
considered. It can be estimated using the length 𝑙௜ of 
the considered road section and the expected travel 
speed on it. Under ideal circumstances (no other 
traffic present) this is equal to the speed limit 𝑣௠௔௫,௜ 
on this road. With increasing traffic demand 𝑛௜  on 
this road the expected speed decreases which is 
modelled by the monotonously falling function 𝑓ሺ𝑛௜ሻ ∈ ሺ0,1ሿ and leads to 𝐽்்,௜ሺ𝑛ሻ = 𝑙௜ ⋅ ቀ𝑣௠௔௫,௜ ⋅ 𝑓ሺ𝑛௜ሻቁିଵ

. (4)

The second cost factor 𝐽௣௥௜,௜ is based on the results 
of the road priority assessment and depends on the 
importance of the road for the network. More 
important roads are associated with lower costs while 
lower rated roads result in higher costs. In this case, a 
linear relation to the priority value was selected. 

In order to match the recreated traffic according 
to the real traffic measurements, a third cost factor 𝐽௠,௜ሺ𝑛ሻ  is introduced for roads with available 
measurement data. This factor adds additional costs 
to these roads if the current number of routes 
containing this road 𝑛௜  exceeds the number of 
vehicles 𝑛௠,௜  recorded by the measurements. Since 
the latter value refers to a whole day of 
measurements, it is corrected by the share of all 
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allocated routes related to the number of all recorded 
vehicle crossings on all observed roads resulting in 𝐽௠,௜ሺ𝑛ሻ = max ൬0, 𝑛௜ − 𝑛௠,௜ ∑ ௡ೕೕ∑ ௡೘,ೕೕ ൰. (5)

The total costs for a route are calculated by adding 
up the costs 𝐽௜ሺ𝑛ሻ  of all contained edges 𝑖 . To 
estimate the best route between the given origin and 
destination of a trip Dijkstra’s algorithm is applied to 
the graph which is guaranteed to find the connection 
with the lowest associated costs. As the initial routing 
is performed prior to the actual traffic simulation 
there is no need to use a faster but less reliable 
algorithm. Also, the order in which the trips are 
processed is selected randomly and not 
chronologically by their departure time which is 
intended to further diversify the routes connecting 
different parts of the road network. This way 
alternative route options for similar connections are 
possible from early on and not after a certain 
simulation time to reach the threshold to switch to 
another route option (e. g., when the estimated 
traveling time-related cost increases for a road section 
due to the increased number of routes). 

In figure 5, the number of allocated routes for 
each road section is depicted on the left side. To better 
illustrate the differences on lower frequented roads a 
logarithmic colour coding was used. Generally, it can 
be seen that Paderborn’s main roads have a greater 
number of routes allocated to them while roads in 

residential areas or the city centre exhibit much less 
demand, which is realistic. To compare the 
accordance of the generated routes to the 
measurement data, at each available measurement 
location the share of realized detections it calculated 
(𝑛௜/𝑛௠,௜). The average share for all sensor locations 
equals to 100,3% with a variance of 7,3%. An 
overview over the deviations of the number of routed 
vehicles from the measured data is depicted on the 
right side of figure 5. The number of detected and 
routed vehicles at the sensor positions are generally 
similar although locally the number can deviate 
slightly in both directions. A reason for that might be 
that not all features of the road network could be 
modelled for the Activitygen application, e. g., 
companies with many employees outside dedicated 
industrial areas or shopping centres which would 
have exceeded the limits of this research. 

To show the temporal distribution of the traffic 
demand, figure 6 includes the cumulated detection 
rates at multiple sensor locations. This is compared to 
the cumulated crossing rates resulting from the 
generated routes at these positions. There is a good 
accordance between both datasets. Both, the morning 
and afternoon rush hours are clearly visible and the 
values generally match. Slight deviations e. g. at 3:00 
and 17:00 are most likely caused by the probability-
based approach for trip generation. Note, that all 
crossings registered for a route are allocated to its 
departure time on the horizontal axis which explains 
the small offset e. g. at 7:00. 

 

Figure 5: Left: Number of routes for each road section (logarithmic) / Right: Deviation routes count from measurements. 
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Figure 6: Comparison of the measured detection rates and 
the generated routes for a whole day at 54 locations. 

5 CONCLUSION 

In this paper, the modelling of a simulation 
environment based on the city of Paderborn for a 
future traffic scenario was presented. The simulation 
model is built on the software SUMO which handles 
the basic vehicle dynamics and is extended by 
multiple components. The road network was 
imported from OSM, revised manually, analysed, and 
converted to a graph representation. Based on that, a 
road priority analysis is preformed using different 
metrics as well as real traffic data in order to rate the 
different road sections’ importance for the whole 
system. The results are used in the routing process 
and are also useful for the traffic control system 
currently in development. To accurately reproduce 
the influence of TLS and ensure that they obey the 
guidelines and restrictions of the RiLSA, a controller 
was designed to implement a given target phase 
selected by the control system. Using geometrical 
features of the road network, signals, phases, and 
additional configuration data were generated 
automatically for the TLS. Also, different sensor 
types were modelled which support both, stationary 
and mobile data collection in order to provide realistic 
information to a traffic observer system. To populate 
the simulated roads, multiple vehicle types were 
created for human-driven and autonomous vehicles. 
Based on the road network, statistical and structural 
data of Paderborn, trips were generated containing the 
desired origin and destination as well as the departure 
times of vehicles in the system. Finally, to create 
realistic routes, a pathfinding method utilizing a 
dynamic cost estimation method was applied. 

The next step is the integration of the mentioned 
traffic observer to reconstruct a picture of the current 
traffic state based on the gathered sensor data. An 
observer is currently under development and relies on 

a probability-based approach to describe the vehicles’ 
positions. Key of such a system is the handling of 
uncertainty due to incomplete sensor coverage and a 
realistic extrapolation of the vehicles’ behaviour. An 
in-detail description and evaluation of this system 
will be subject for a future publication. Also, the 
development and integration of the traffic control 
system is due for the future. 
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