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Abstract: We focus on the very important problem of managing IoT data. We consider the data gathering process that 
yields big data intended for CDN/cloud storage. We aim to reduce big data into small data to efficiently exploit 
available storage without compromising their usability and interpretation. This reduction process is to be 
performed at the edge of the infrastructure (IoT edge devices, CDN edge servers) in a computationally 
acceptable way. Therefore, we employ reservoir sampling, a method that stochastically samples data and 
derives synopses that are finally pushed and maintained in the available storage capability. We implemented 
the discussed architecture using reverse proxy technologies and in particular the Varnish open source server. 
We provide details of our implementation and discuss critical parameters like the frequency of synopsis 
generation and CDN/cloud storage. 

1 INTRODUCTION 

In contemporary Internet, Content Delivery Networks 
(CDN) are the infrastructures intended for optimally 
delivering content to users, providing high 
performance and availability services. The 
architecture of such networks has been adapted to the 
geographical distribution of servers around the globe. 
Caching-Replication technology is used to expedite 
content delivery. Nevertheless, the challenges on the 
World Wide Web (WWW) have become even greater 
and the content more complex. Nowadays, CDNs 
need to cope with multimedia streaming, on-demand 
video, etc. 

Moreover, we live in the age of the Internet of 
Things (IoT). The IoT has been promoted as a new 
technology that connects objects, such as sensors, 
mobile phones, etc., over the Internet. Smart city, 
healthcare and transportation are some of the standard 
services supported by IoT technology. Such multiple 
data sources produce data with great heterogeneity 
variable speed and quality from different types of data 
stream, that constitute big data’s properties of variety 
and variability. Obviously, a huge amount of data, 
described by the “volume” of big data, is generated 
for delivery, processing, and storage in the context of 
IoT infrastructures. Furthermore, the velocity 
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property of big data is defined by the entry frequency 
of data streams in big data systems. The usefulness of 
big data determines its value, as long as its veracity is 
assured by reliable sources and big data systems. 

Such data need to travel through a CDN (or a 
cloud facility), in order to be processed and stored, 
leading to the required evolution of CDN (further to 
the multimedia, dynamic service provision cases). 
Therefore, new (CDN) features are required to meet 
these challenges. Requirements should be high 
scalability, efficient storage and delivery, and 
caching. In the field of scalability demands, which 
refer to IoT technology, integrated architectures 
should be developed. 

To cope with these challenges we investigate an 
architecture that turns big data into small data at the 
edge of the CDN (infrastructure). Our work is based 
on solid stochastic sampling techniques like the 
reservoir sampling. We study the operation of the 
algorithm in relation to infinite IoT streams seen / 
ingested at the CDN. We finally present our 
implementation efforts that port the considered 
architecture (and associated operational parameters) 
into the Varnish CDN support server (DYI – do it 
yourself CDN). 

The paper is structured as follows: In section 2 we 
refer to the prior work referring to the relative subject. 
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The edge computing paradigm is analyzed in section 
3, where we explain the use of reservoir sampling 
(algorithm R) in the proposed scheme and we try to 
quantify the era duration of an event. In section 4 we 
describe a few implementation issues such as the use 
of Varnish Cache. Section 5 describes the metrics and 
results of our simulation. Finally, the paper is 
concluded in section 6. 

2 RELATED WORK 

Related work primarily refers to the problem of 
turning Big data into small data to meet scalability 
requirements in different infrastructure types. 

Di Martino, Aversa, Cretella, Esposito & 
Kolodziej (2014) survey the developments on Cloud 
Computing concerning the big data issue with a 
critical analysis and show the further direction to the 
new generation multi-datacenter cloud architectures 
for storage and management. It presents several cloud 
platforms offering big data-oriented services, like 
PiCloud, Google BigQuery, Amazon Elastic 
MapReduce, etc. Furthermore, it makes an attempt to 
classify the services related to big data management, 
like data collection, curation, integration and 
aggregation, storage, and analysis and interpretation, 
among the different cloud providers. It concludes that 
distributed data applications across geographically 
distributed data centers appear as a good solution for 
the efficient management of big data in the clouds. 

The researchers, Tao, Jin, Tang, Ji & Zhang 
(2020), try to solve the problem of network resource 
redundancy and overload in the IoT architecture. 
They propose a model of cloud edge collaborative 
architecture that combines cloud and edge computing, 
centralized and decentralized, respectively, trying to 
fulfill the requirements of computing power and real-
time analysis of big local data. Moreover, they 
combine the complex network and data access with 
the management requirements of the IoT. The Power 
IoT architecture uses four layers: the perception layer, 
the network layer, the platform layer, and the 
application layer. Nevertheless, there is a 
management collaboration and coordination of 
computing tasks problem between the platform layer, 
application layer and the edge computing network, 
not to mention the increasing cost of construction, 
operation, and maintenance of the system. 

The authors Zhou, Liu & Li (2013) examine the 
net effect of using deduplication for big data 
workloads, considering the increasing complexity of 
the data handling process, and elaborate on the 
advantages and disadvantages of different 

deduplication layers (local and global). The term 
‘local deduplication layer’ refers to the fact that 
deduplication is only used within a single VM, and 
the relevant mechanism can detect replicas within a 
single node. The term ‘global deduplication layer’ 
means that the deduplication technique is applied 
across different VMs. In the first case, different VMs 
are assigned to different ZFS (deduplication tool) 
pools, and in the second case, all VMs are assigned to 
the same ZFS pool. Local deduplication cannot fully 
remove all the replicas. This fact leads to a negative 
performance with the increase of active datasets. The 
performance becomes slightly better when more 
nodes are deployed because local deduplication can 
leverage the parallelism for hash computation and 
indexing. It also maintains data availability. On the 
contrary, global deduplication has the opposite results 
and presents a positive performance. 

Xia et al. (2011) present a near-exact 
deduplication system, named SiLo, which, under 
various workload conditions, exploits similarity and 
locality in order to achieve high throughput and 
duplicate elimination and, at the same time, low RAM 
usage. SiLo is trying to exploit similarity by grouping 
correlated small files and segmenting large files. In 
addition, it tries to exploit locality in the backup 
stream by grouping contiguous segments into blocks 
in order to capture duplicate or similar data that is 
missing during similarity detection. 

Hillman, Ahmad, Whitehorn, & Cobley (2014) 
elaborate on a near real-time processing solution in 
the sector of big data preprocessing with the use of 
Hadoop and Map Reduce. The basic idea is to use 
parallel compute clusters and programming methods 
in order to deal with large data volumes and 
complexity in a reasonable time frame. The paradigm 
uses the vast volume of data that is generated in the 
field of genes and their product proteins, which must 
be preprocessed. Hadoop is used for handling the raw 
data while Java code and MapReduce are used for 
data preprocessing in order to identify 2D and 3D 
peaks in Gaussian curves produced by the data of a 
mass spectrometer. As a result, the datasets are 
greatly reduced by a Map task and the completion 
times are greatly reduced compared to a conventional 
PC-based process. 

Using preprocessing tools and a cloud 
environment, the authors Sugumaran, Burnett & 
Blinkmann (2012) were able to develop and 
implement a web-based LiDAR (Light Detection and 
Ranging) data processing system. The 
implementation of this system, called CLiPS (Cloud 
Computing-based LiDAR Processing System), 
showed that the processing time for three types of 
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LiDAR data decreases as the computer power 
increases, while the cloud computing cost is 
affordable for any of the users. The CLiPS uses 
ESRI’s ArcGIS server, Amazon Elastic Compute 
Cloud (Amazon EC2), and other open source spatial 
tools. The specified approach showed the advantages 
of cloud computing concerning performance and 
time. Also, storing all the LiDAR data on the cloud is 
not cost-effective in comparison to the processing 
needed. 

3 PROPOSED SOLUTION 

Our solution for IoT data ingestion leverages the edge 
computing paradigm. In particular, we assume that 
edge computing units implement a systematic and 
efficient reduction process that turns the huge volume 
or harvested data (sampling and aggregation by IoT 
islands) into a manageable subset of representative 
synopses. Therefore, we consider two important 
aspects for the implementation of the respective 
scheme (a) the algorithmic framework that can 
support the needed reduction and the associated 
operational parameters and (b) the specific 
implementation technologies that will support the 
said functionality in the context of existing systems 
like CDNs. 

3.1 Reservoir Sampling 

Data fed into the CDN (univariate IoT measurements) 
undergo stochastic sampling at the edge of the 
infrastructure. Specifically we employ the simple R 
Algorithm (Vitter, 1985) to demonstrate the 
feasibility of the solution while assessing its technical 
and performance merits. R is a reservoir sampling 
algorithm that relies heavily on a properly 
dimensioned buffer (array of IoT data of fixed size k) 
maintained at the edge server. Inbound data, treated 
sequentially, may be dropped (and not further 
advanced through the infrastructure) or substitute 
(update) the contents of the buffer according to a 
random experiment. 

The length of the incoming data stream is 
considered infinite. The size of the reservoir (buffer) 
is r and should be selected so as to serve problem-
specific requirements (e.g., minimize the probability 
of omitting important changes – change detection - in 
the inbound series). 

 
 
 
 

 
Figure 1: System Architecture. 

The first phase of the algorithm involves placing 
the first r stream items into the reservoir. The 
remaining items are processed sequentially. When 
one of the remaining stream items is chosen for the 
reservoir, it replaces randomly one of the elements in 
the reservoir. The (j+1)th measurement, for j ≥ r, has 
a  ௥௝ାଵ probability of being a buffer input candidate. 
Such candidate replaces one of the r buffer contents 
chosen at random. At that time, the sample of r items 
is a random sample of the first j+1 stream items 
(measurements). At the end of the sequential pass 
through the entire stream, we find a truly random 
sample of the stream in the buffer. 

To cope with the infinite length of the feed we opt 
to segment the feed into eras (epochs). Eras are shown 
in Figure 2. The start of an era coincides with the first 
phase of the R algorithm. The existence of eras allows 
us to adopt a specific period of reporting to the CDN, 
i.e., how often the accumulated buffer (reservoir) is 
posted to the back-end storage facilities for retention 
and subsequent processing. One alternative to this 
approach (i.e., posting the accumulated reservoir to 
the back-end at the end of an era, purging the buffer 
and starting over) is to estimate an aggregate (e.g., 
Average, Max) for the reservoir and adopt that as a 
single value for further ingestion to the CDN. The 
process would be identical to the one described 
previously but the edge output would be different, 
less accurate yet much more compact. The selection 
of a particular aggregate may depend upon 
application needs (e.g., Max or Min capture extremes 
and should be used when extremes are important 
while Average is more appropriate in general stream 
observation processes). 

The operational parameters of the discussed setup 
are: 
• The size of the reservoir 
• The era duration (or equivalently the period of 

back-end reporting) 
• The content (and size) of the back-end reports 

(entire reservoir or aggregate) 
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Figure 2: IoT sampling timeline. 

3.2 Era Duration Quantification 

Our prime concern in the design of the IoT-aware 
solution is to discover changes in the input stream 
(original feed) and minimize the probability of 
concealing their existence due to the stochastic 
sampling nature of the system. In particular we would 
like the back-end processing to ensue to implement 
change detection algorithms like CUSUM 
(cumulative sum control chart) (Page, 1954). We then 
consider a reservoir size of r and a frequency of input 
f. The phenomenon to be captured (detected) is 
assumed to have duration of d (d˖f equals to the 
number of samples received at the edge as the 
phenomenon evolves). We consider a simple 
phenomenon that involves IoT samples increasing 
from a standard (no-event) level to an “event” level. 
Our objective is to determine the duration of the era(s) 
discussed previously as a way to segment time. 

To derive this period of back-end reporting we 
require the number (W) of samples seen/stored at the 
reservoir to be greater than or equal to 1 (W ≥ 1). The 
probability of this particular event should be greater 
than or equal to ½.  

 𝑝(𝑊 ≥ 1) ≥ 12 
 

The R algorithm stipulates that all elements in the 
input stream are equally probable to be inserted into 
the reservoir. This allows us to determine era duration 
(number of samples received at f frequency) as: 

 𝑛 ≤ 𝑟1 − 𝑒ି୪୬ ଶௗ∙௙  

4 IMPLEMENTATION ISSUES 

For the implementation of our architecture (Figure 1), 
we use Varnish Cache (Feryn, 2017), which is a 
reverse caching proxy that can “cache” our IoT traffic 
and take most of the load off the backend server. Our 
goal is to minimize the workload seen at the backend 
which in the case of IoT would be quite significant 
yet redundant. For that purpose, we set up Varnish on 
the edge server (between the data sources, the islands 

and the storage facility), on a separate node, in order 
to sustain performance as load increases. For control 
of the cache, Varnish uses the Varnish Configuration 
Language (VCL). Through the VCL we may establish 
the rules to be followed for the data ingestion and also 
exploit C-developed modules (Varnish Modules, 
VMOD) for elaborate processing (while data are on 
transit through the edge/Varnish server). Through 
these Varnish implementation options we manage to 
implement the reservoir logic described previously, 
maintain state/memory during system operation and 
pushing information to the back-end as the presented 
scheme dictates. 

5 RESULTS 

We implemented the discussed architecture adopting 
the R algorithm for different sizes of the reservoir and 
duration of eras. The options that we implemented are 
shown in Table 1. 

Table 1: Implementation Operational Parameters. 

Era duration (e) Reservoir size (r)
5, 10, 15 5, 10, 20, 30 

 
We have addressed to the infrastructure an 

extensive dataset of engineering data obtained from 
sensors mounted onboard commercial vessels (e.g., 
engine related information, fuel and exhaust 
substances, environmental/weather data). We have 
experimented with aggregates (Average, Max) for 
capturing the current contents of the reservoir and the 
establishment of back-end reports. Our findings, for 
the particular trace and e and r configurations, clearly 
indicate that the performance of the Max aggregate is 
significantly better than that of Average.  

To quantify this advantage, we introduced a 
metric (ρ) that compares the magnitude of the original 
stream (seen as a vector of very high dimension) to 
the magnitude of the R-sampled, dimension-aligned 
stream. A value of ρ=1 indicates full accuracy in the 
proposed data reduction process. To be able to 
compare streams of equal dimensions the R-sampled 
stream underwent a time-based linear interpolation 
process (see Figure 3). 

Our findings for the metric ρ are shown in Figure 
4. We can observe that the better performance is 
attained for e=15 and r=20. This scenario with the era 
duration value being less than the reservoir size 
implies the accumulation of a very representative 
subset of the original stream in the reservoir. 
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Figure 3: Stream/Vector forms. 

 
Figure 4: Values of the ρ metric for different configurations. 

6 CONCLUSIONS 

We have augmented the basic CDN architecture for 
managing big data in the form of IoT streams. Since 
the storage requirements are quite significant, we opt 
to reduce the volume of such streams to smaller 
sets/synopses which can be easily dealt with (stored 
and processed). This strategy is implemented at the 
edge of the infrastructure by leveraging two important 
aspects. The algorithmic framework that realizes the 
pursued data reduction is reservoir sampling and, in 
particular, the R algorithm. The considered algorithm 
is tuned to cope with phenomena of limited duration 
that need to be captured in subsequent processing 
through e.g., event detectors (CUSUM). We not only 
investigate the algorithmic framework but also the 
implementation options through contemporary CDN 
software. Specifically, we manage to exploit the 
programming (expansion) capabilities of the varnish 
servers. Our findings indicate that the requirements 
originally set for the CDN expansion towards IoT/big 
data handling are met quite efficiently. We finally 
report on the implementation of the algorithm itself 
and discuss how the intended functionality of data 
reduction can benefit from specific combinations of 
operational parameters. 
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