
Using Bigrams to Detect Leaked Secrets in Source Code

Anton V. Konygin1,2 a, Andrey V. Kopnin1, Ilya P. Mezentsev1 and Alexandr A. Pankratov1

1SKB Kontur, Russia
2N.N. Krasovskii Institute of Mathematics and Mechanics, Russia

Keywords: Leaked Secrets, Source Code, Machine Learning, Security.

Abstract: Leaked secrets in source code lead to information security problems. It is important to find sensitive infor-
mation in the repository as early as possible and neutralize it. By now, there are many different approaches
to leaked secret detection without human intervention. Often, these are heuristic algorithms using regular
expressions. Recently, more and more approaches based on machine learning have appeared. Nevertheless,
the problem of detecting secrets in the code remains relevant since the available approaches often give a large
number of false positives. In this paper, we propose an approach to leaked secret detection in source code
based on machine learning using bigrams. This approach significantly reduces the number of false positives.
The model showed a false positive rate of 2.4% and false negative rate of 1.9% on test dataset.

1 INTRODUCTION

A secret in source code is any sensitive information,
such as passwords, API keys, certificate files, and
configuration files. However, the term “secret” is of-
ten used in a narrower sense, excluding configuration
or certification files (see, e.g. (Sinha et al., 2015),
(Lounici et al., 2021), (Ding et al., 2020)). In this
work, we follow this rule, and only passwords and
API keys are called secrets.

The security of software systems relies heavily on
the use of secrets. This is especially true for code
hosted in public repositories, e.g., on GitHub1. In
2014, an Uber employee accidentally uploaded his
credentials to GitHub, which resulted in the Uber
database hack of 50,000 Uber drivers (Collins, 2016).
Similarly, Amazon found 10,000 AWS keys acciden-
tally left in the source code by Amazon developers
and uploaded to GitHub (Knight, 2016). In 2016, re-
searchers found over 1,500 Slack API tokens in pub-
lic GitHub repositories belonging to major compa-
nies (Marlow, 2019). These tokens might provide ac-
cess to exfiltrate internal communications or mine for
other shared credentials, such as server or database
access. Leaks such as these can have widespread
effects beyond the individual service to which the
leaked credential applied.

a https://orcid.org/0000-0002-0037-2352
1https://www.github.com

In (Meli et al., 2019) a large-scale analysis of se-
cret leakage on GitHub is carried out. The authors
examine billions of files collected using two com-
plementary approaches: a nearly six-month scan of
real-time public GitHub commits and a public snap-
shot covering 13% of open-source repositories. The
research focuses on private key files and 11 high-
impact platforms with distinctive API key formats.
This focus allows to develop conservative detection
techniques that the authors manually and automati-
cally evaluate to ensure accurate results. They found
that secret leakage not only affects more than 100,000
repositories, but also that thousands of new unique se-
crets are being leaked every day. The work shows
that the leakage of secret data on public repository
platforms is widespread and far from being solved,
exposing developers and services to constant risk of
compromise and abuse.

At the end of 2022, GitHub made it possible2 to
automatically detect leaked tokens (more than 200
patterns). Password detection remains a more diffi-
cult task due to the greater password variability.

One way to minimize the risks is to detect the se-
cret as quickly as possible and start a procedure of
neutralizing it. Thus, we get the task of detecting
leaked secrets: by having code fragments as input, it
is necessary to detect secrets if they are present.

The classic approach to solving this problem is to

2https://github.blog/2022-12-15-leaked-a-secret-check-
your-github-alerts-for-free/

Konygin, A., Kopnin, A., Mezentsev, I. and Pankratov, A.
Using Bigrams to Detect Leaked Secrets in Source Code.
DOI: 10.5220/0011983600003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 589-596
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

589



use regular expressions. This approach works well
with API keys, especially when their format is known,
but gives a lot of false positives for passwords. In gen-
eral, this is to be expected, especially when the pass-
word can be arbitrary. Also, entropy analysis is often
used to detect secrets. This method is based on the
hypothesis that secrets have a higher degree of uncer-
tainty than the rest of the code. The method performs
better when secrets consist of random sequences of
characters.

One of the approaches to improving the quality of
secret detection is the use of machine learning (Saha
et al., 2020). This approach allows you to customize
the detector for a specific situation (domain-specific)
without the need to write an explicit detection algo-
rithm. Along with all of the advantages, machine
learning methods have well-known drawbacks.

Since the data is sensitive (it contains passwords
and API keys), the collected training datasets cannot
be too large. At the moment there are approaches to
solving this problem, e.g., using federated learning
(Kall and Trabelsi, 2021), which is a machine learn-
ing paradigm allowing models to be trained on local
data without the need for its owners to share it.

The problem with data is not the only issue. The
main problem at the moment is a large number of false
positives (see (Rahman et al., 2022)). This applies to
both approaches based on machine learning and ap-
proaches which use classical methods. Despite the
relevance of the task of detecting secrets in the code
and the efforts made, a significant false positive rate
hinders the implementation of effective open-source
solutions (Lounici et al., 2021).

Thus, any new advances in solving the problem
are welcomed, as they can lead to a reduction in the
amount of sensitive information in the code and an
increase in the security level of software engineering.

In this paper, we propose a bigram-based ap-
proach that allows us to detect secrets with low false
positive and false negative rates. With the help of bi-
grams, we transform the string into a vector. Next, we
use the CatBoost algorithm (Dorogush et al., 2018) to
build a binary classifier. One of the features of our
approach is that we use data from different distribu-
tions for training and testing. For training, we build
a dataset based on public and automatically gener-
ated data. For testing, we use a private local dataset
of passwords and API keys (it contains sensitive in-
formation and we cannot make it public). Thus, the
model is tested in more complex conditions — the
domain area is changed. However, the low percent-
age of errors during testing suggests that the solution
obtained is stable and reliable. In the paper, we de-
scribe in detail the procedure for collecting a dataset

for training.
The main contributions of this paper can be sum-

marized as follows.

• We present an approach to detecting leaked se-
crets in the code. The approach is based on bi-
grams and gradient boosting on decision trees.

• The proposed approach significantly reduces the
number of false positives (false positive rate of
2.4% and false negative rate of 1.9% on test
dataset) and does not require additional manual
data labeling (public and automatically generated
data are used).

The rest of this paper is structured as follows. Sec-
tion 2 presents some related work. Section 3 describes
the proposed approach. Section 4 presents the evalu-
ation of the model. Finally, we make conclusions in
Section 5.

2 RELATED WORK

Secret detection approaches can be divided into two
types: based on classical approaches (e.g., regular
expressions, entropy analysis) and based on machine
learning.

The most straightforward approach is
to use regular expressions. Such tools as
trufflehog3, repo-supervisor4, git-secrets5,
repo-secutiry-scanner6 use regular expression
search, entropy checks or a combination of both to
identify potential secrets. Recent studies (Lounici
et al., 2021) show that the classic regular expression
approaches generate a high false positive rate of about
82%. A different approach is used in (Sinha et al.,
2015). It discusses the advantages and disadvantages
of the following methods for detecting leaks of API
keys: sample selection by using keyword search,
pattern-based search, heuristics-driven filtering, and
source-based program slicing. In addition, a possible
solution that combines these techniques is proposed.
To reduce false positives a standard password strength
estimator zxcvbn7 is used. The estimator penalizes
strings with repeating characters or those that contain
dictionary words while accepting strings that have a
high amount of apparent randomness (entropy). The
false positives that remained were auto-generated
key-like strings that were used for different purposes,

3https://github.com/trufflesecurity/trufflehog
4https://github.com/auth0/repo-supervisor
5https://github.com/awslabs/git-secrets
6https://github.com/UKHomeOffice/repo-security-

scanner
7https://github.com/dropbox/zxcvbn

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

590



such as identifiers of serialized objects. Both pattern
based (Roesch, 1999) and data-flow based (Klieber
et al., 2014), (Zhou et al., 2011) techniques have
been applied for detecting deliberate leakage of user
credentials by malicious software. Similar techniques
(Viennot et al., 2014) have also been applied for de-
tecting accidental leakage of credentials in innocuous
client-side software.

In (Meli et al., 2019) the authors use regular ex-
pressions and a system of filters (entropy filter, words
filter, pattern filter) to detect API keys. They write
that they did not attempt to examine passwords as
they can be virtually any string in any given file type,
meaning they do not conform to distinct structures
and making them very hard to detect with high ac-
curacy. According to the article (Saha et al., 2020)
most of existing works either target a specific type
of secret or generate a large number of false posi-
tives. This makes it possible to achieve high accuracy
in detecting secret keys in public repositories. How-
ever, these works are specifically aimed towards pri-
vate keys (e.g., an RSA private key) and API keys,
and none of these include generic passwords in their
scan. Another serious limitation of the existing tools
is that they generate a high number of false positives
because loose regular expressions, used in the tools,
match invalid entries (Meli et al., 2019). These false
positives reduce the reliance on the existing tools re-
sulting in extensive manual, time-consuming, effort to
actually identify the false positives. Therefore, there
is a strong need for developing generic approaches
to include all types of secrets and not just private or
API keys, and that significantly reduce the false pos-
itives in identification of the secrets. To tackle the
issue in (Saha et al., 2020) a voting classifier (combi-
nation of logistic regression, naive bayes and SVM)
is used with an extensive regular expression list. Au-
thors test the voting classifier on a test dataset con-
sisting of 2,180 examples and achieve a precision of
84%.

Similar approach is proposed in (Lounici et al.,
2021). The paper presents an approach to detecting
data leaks in open-source projects with a low false
positive rate. In addition to commonly used regu-
lar expression scanners, authors propose several ma-
chine learning models (LCBOW model, Q-learning)
targeting the false positives. The approach, while pro-
ducing a negligible false negative rate, decreases the
false positive rate to, at most, 6% of the output data.
However, this approach assumes that in addition to
the secret itself, its context is available. This addi-
tional requirement is not always met. In addition,
this requirement significantly limits the portability of
the approach to other programming languages. Also,

this requirement limits the possibility of data aug-
mentation when building datasets. Almost all public
datasets with secrets that can be used for training do
not contain the context of secrets. In particular, it be-
comes difficult to repeat the results, since our datasets
do not contain contexts: only a string literal and a la-
bel. Our approach is char-based (Bag-of-Words in the
case of a classifier of (Lounici et al., 2021)) and does
not use a secret context.

It should be noted that, along with the described
approaches, approaches based on knowledge of all the
secrets can be useful in some cases. In (Ding et al.,
2020) authors propose to use known production se-
crets as a source of ground truth for sniffing secret
leaks in codebases.

3 PROPOSED APPROACH

Regular expressions are often used to find secrets in
code. In this case, we must explicitly formulate the
search rules. The effectiveness of this approach es-
sentially depends on the ability to describe all of the
secrets. For example, if the secrets are API keys in
a known format (e.g., UUID), then such a solution
may well provide the required quality. The quality
will be low if we try to look for passwords (in the
code) for which the format is not fixed. Even if it is
known that the password meets certain requirements
(e.g., the length and symbols used), then there will be
many false positives. However, it may be inefficient
to completely abandon regular expressions since they
are effective and allow you to verify requirements for
secrets.

The approach described in this paper consists of
two stages (see Fig. 1). The first stage uses regular
expressions. Having information about the format of
the API keys and the requirements for the complex-
ity of the password, regular expressions allow us to
find strings that look like secrets (candidate strings).
Since there are many non-secrets among such strings,
additional filtering is required. Depending on the sce-
nario, up to 82% (Lounici et al., 2021) of the strings
are false positives (in our case we observed up to 70%
false positives).

Thus, a second stage is required at which addi-
tional filtration takes place. In our case filtering was
done manually. Despite the labor costs, secrets must
be detected. Therefore, to automate the process of de-
tecting secrets completely, a solution with a low false
positives rate is needed. Currently, manual verifica-
tion has been replaced by automatic — the proposed
method is used that allows you to detect secrets with
high quality. Since the classifier is not based on the

Using Bigrams to Detect Leaked Secrets in Source Code

591



Figure 1: Overview of the proposed approach. In general,
the approach consists of two stages. At the first stage, can-
didate strings are extracted from the code fragment. It is
important to pay attention to the speed and scalability of
the methods used at this stage since the codebases may be
huge. Extraction can be done with regular expressions or
code splitting based on whitespaces. At the second (main)
stage, a decision is made as to which of the classes each
candidate string belongs to. Here we can use a large class
of methods because amount of candidates is small in com-
parison to the entire codebase. In our case, the decision is
made with the use of machine learning.

heuristics used at the first stage, the classifier is of in-
dependent interest, and this work is devoted to its de-
scription. It is important to note that in this work the
model does not use the context of the string being ver-
ified (tokens before and tokens after). In our opinion
the use of such information can improve the quality
of the model. Building a context model for detecting
leaked secrets in the code is a promising direction for
future work.

Since the approach uses machine learning, and
machine learning, in turn, is working with data, first
we will talk about the data, and then about the model
(secret classifier).

3.1 Data

To train a machine learning model we need a dataset.
We have labeled data from the target distribution. For
each string from the data there is a label, whether it is
a secret or not. However, these data have a number of
specialities. First, data contains 7,382 samples. That
is not a lot and it imposes restrictions on the choice of
method. Especially considering that some of the data
needs to be held out for evaluation. Also, if we eval-
uate a model using a small number of samples, the
results become statistically unreliable. Besides, the
distribution of the labeled data is significantly differ-
ent since both classes (secrets and non-secrets) went
through the initial regular expression filtering. Con-
sidering all this, all 7,382 samples were left for eval-
uation. To train the model we collected a separate
dataset based on public and automatically generated
data.

Figure 2: The training dataset consists of two classes: se-
crets that must be protected and cannot be stored in a code-
base and non-secrets (regular code snippets). The data con-
sists of three parts: passwords from public repositories, au-
tomatically generated API keys, and code strings from a
public dataset containing code snippets. The first two parts
(passwords and API keys) form the first class — secrets,
and the third part (code strings) — the second class, non-
secrets.

Building a new dataset has obvious advantages
(you can build a large dataset), but it also has some
drawbacks. A priori, it is possible that the model will
show high quality on the train dataset, but low on
the test one (since they are from different domains).
However, in our case everything went smoothly. The
model showed the ability to cross-domain transfer.
Also, note that since no sensitive data is used for train-
ing the model, such a model can be safely made pub-
lic.

In order to collect a large and diverse dataset, we
use various sources (Fig. 2). In general, we need to
collect three sets of data: passwords, API keys, and
non-secrets.

3.1.1 Passwords

Currently, there are many different datasets avail-
able containing leaked user passwords. To build
the dataset with passwords we use three sources:
the rock you8 dataset and two datasets from the
SecLists9 repository. These datasets are filtered (too
simple passwords are skipped) and deduplicated.

Authorization systems often do not allow you to
specify an arbitrary sequence of characters as a pass-
word — the password must provide minimal com-
plexity. The complexity of the password is regulated
by its length, the use of numbers, special characters.
Therefore, when collecting passwords for our dataset,
we use filtering so that the most “simple” passwords
do not get into the dataset. Note that often public
datasets with passwords contain additional informa-
tion (password popularity or complexity) that can be
used to judge its complexity. However, we do not use

8https://www.tensorflow.org/datasets/catalog/rock you
9https://github.com/danielmiessler/SecLists

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

592



this information due to the fact that different datasets
use different approaches to determine the complexity.
Our dataset did not include passwords that consisted
only of numbers. In addition, a password was not
included in our dataset if it consisted of only lower-
case or only uppercase letters. Additionally, we used
one more technical limitation: we skipped passwords
longer than 128 characters (note that there were very
few such long passwords, no more than ten items for
the entire dataset). Filtering simple passwords is op-
tional and not a mandatory step. Note that the ex-
clusion of simple passwords from the training sample
does not mean that they will automatically cease to be
determined as passwords (in our approach, the deci-
sion is made on the basis of bigrams).

As a result of such filtering, the number of pass-
words decreased from 14,344,391 to 249,447 for the
rock you source. The million most popular pass-
words list (Miessler, 2021b) from the SecList repos-
itory reduced to 481,621 items. Before filtering
000webhost list (Miessler, 2021a) contained 720,302
passwords, and after filtering — 718,568 passwords.
After filtering we deduplicated the data since some
passwords were present in several sources at the
same time. For example, the size of the intersec-
tion of rock you and 000webhost list was equal to
34,642. As a result, we received a dataset containing
1,337,342 passwords.

Note that it was possible not to perform the fil-
tering and data deduplication procedures. Then we
would have received a lower quality dataset, since
it contained duplicates and more simple passwords.
Nevertheless, by performing filtering and deduplica-
tion, we significantly reduced the size of the dataset.

3.1.2 API Keys

To obtain API keys we use the keygen utility, which
allows you to generate keys in a given format. We
found it convenient to use the appropriate Python
package10. The following arguments were used for
generation:

• keygen -s h -l 8

• keygen -s h -l 16

• keygen -s uldp -l 8

• keygen -s uldp -l 16

• keygen -e uuid

As a result, we received 1,337,340 keys (approx-
imately equal to the number of passwords in our
dataset).

10https://pypi.org/project/keygen/

3.1.3 Non-Secrets

Passwords and API keys make up the class of se-
crets in the training dataset (see Fig. 2). In addi-
tion, we need a non-secret class. To do this we take a
part of the dataset GitHub Code Snippets11 with code
snippets in different languages. This dataset contains
4,850,000 code snippets. Each snippet is a piece of
code. Thus, the number of string literals that are not
secrets is even greater. To ensure the class balance
for the downstream binary classification task we ex-
tracted only 2,674,682 string literals from the snippets
(according to the size of the secret class consisting of
passwords and API keys). The code from the snip-
pets has been split into string literals based on whites-
paces. If the string literal was longer than 128 charac-
ters, then it was skipped.

Note that in this case again we have a big differ-
ence in domains. This complicates the original task,
but in the case of success, a more reliable solution can
be obtained. For example, we got another distribution
of programming languages. In the dataset, the most
popular languages are: C, JavaScript, Go, Java, and
C++, while the main target language for the evalua-
tion is C#.

Thus, the dataset for training the model contains
about 5 million strings. Each string is labeled as secret
or non-secret. The number of secrets is roughly equal
to the number of non-secrets. Half of the secrets are
passwords and the other half are API-keys.

3.2 Models

The aim of this research is to obtain a secret detector
with a small number of false positives. In general, we
follow the following plan (Fig. 3):

1. transform the string into a vector;

2. classify the vector (secret, non-secret).

This data transformation is standard for machine
learning based approaches. First, we vectorize an ob-
ject: the values of explicit or implicit features are
calculated. Then it becomes possible to classify ob-
jects using machine learning methods. At the output
we have the probability that object belongs to certain
class.

The choice of features at the stage of vectoriza-
tion is very important. Obviously, if the features do
not contain information useful for separating classes,
then it will not work well to classify objects. Here we
use two approaches. First, we follow the assumption

11https://www.kaggle.com/datasets/simiotic/github-
code-snippets

Using Bigrams to Detect Leaked Secrets in Source Code

593



Figure 3: Data pipeline. At the input we have a candidate
string, at the output — the probability that object belongs to
certain class. First, the input string is vectorized. For exam-
ple, using bigrams each string is transformed into a vector
from R1024 via count vectorizer with the dictionary of size
1024. Next, the vector is sent to the classifier (CatBoost,
LogReg or feedforward neural network) to determine if it is
secret or not using confidence threshold.

that the code (and hence its fragments, string literals)
has much in common with the natural language (Ray
et al., 2016). This means that the methods that have
proven themselves in NLP are of interest. Secondly,
we don’t use hand-crafted features, but use bigrams
(Manning et al., 2008) and pretrained code models. A
bigram is a sequence of two adjacent elements from a
string of tokens, which are typically letters, syllables,
or words. In our case bigram is two consecutive char-
acters. As usual with this approach, a vocabulary of
bigrams is built on the basis of the training dataset.

We assume that the entropy of non-secrets is lower
than that of secrets (some approaches for detecting se-
crets are based on this (Meli et al., 2019)). Thereofore
we use only non-secrets (approximately 2.5 million)
to build a vocabulary of bigrams. Using secret we
will get a huge vocabulary in which any arbitrary bi-
gram can be found with approximately the same prob-
ability. If we use only strings from non-secret class,
which are mostly code fragments, then the distribu-
tion of bigrams is very different from uniform. More-
over, due to the large number of bigrams, it is not ad-
visable to use all of them as features: firstly, the vec-
tors will have large dimension, and, secondly, they
will be very sparse. If the bigram is uncommon, then
the corresponding feature will almost always be zero.
(For this reason, we did not use bigrams from secret
class. If you use some of them, then in most cases
they will not be found among non-secrets or other se-
crets. If you use all, then there will be too many of
them.) Thus, to calculate the features, we used only a
limited number of the most frequent bigrams. In our
case the dimension of the vectors was 1024. In the
general case, the choice of the number of features de-
pends on the computing resources and the ability of
downstream classifiers to work with sparse vectors.

In this bigram-based approach, the coordinates of

the vectors (features) express the statistical properties
of n-grams. In other words, the resulting vectors con-
tain the syntactic features of the strings. This means
that, e.g., the vectors corresponding to the strings
“password” and “secret” are very different. Despite
the close semantics, regarding bigrams these strings
are completely diverse. This is not a problem when
the training dataset contains all possible variations,
but can lead to a significant reduction in quality oth-
erwise. One way to mitigate this issue is to use se-
mantic features. Hence we have another approach,
that uses pretrained model as a universal feature ex-
tractor for getting semantic embeddings. The pro-
posed approach uses GraphCodeBERT (Guo et al.,
2021) representation for a string candidate. It is a
pretrained model for a programming language that
considers the inherent structure of code. GraphCode-
BERT is semantic contextual multilingual represen-
tation based on the multi-layer bidirectional Trans-
former (Vaswani et al., 2017). The model follows
BERT (Devlin et al., 2019) and RoBERTa (Liu et al.,
2019). The resulting 768-dimensional vector repre-
sents a string.

After the string is transformed into a vector (of
length 1024 or 768, depending on the selected repre-
sentation) the classification is started. As classifica-
tion algorithms we used two well-known standard al-
gorithms: LogReg(McCullagh and Nelder, 1989) and
CatBoost(Dorogush et al., 2018).

4 RESULTS

At the moment, there are a large number of different
methods for solving the problem of binary classifica-
tion. In this study, we used two: logistic regression
(one of the simples algorithms) and CatBoost (an al-
gorithm that has proven itself well for many classifi-
cation tasks).

LogReg (logistic regression) is a statistical model
that models the probability of one event (out of two
alternatives) taking place by having the log-odds (the
logarithm of the odds) for the event be a linear com-
bination of one or more independent variables (“pre-
dictors”). Here we uses sklearn12 implementation
of the algorithm.

CatBoost is an algorithm for gradient boosting on
decision trees. CatBoost builds symmetric (balanced)
trees, unlike XGBoost and LightGBM. In every step,
leaves from the previous tree are split using the same
condition. The feature-split pair that accounts for the
lowest loss is selected and used for all the level’s

12https://scikit-learn.org

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

594



Table 1: GPU usage.

CPU GPU
representation: bigrams ✓
representation: pretrained ✓
classification: LogReg ✓
classification: CatBoost ✓

nodes. This balanced tree architecture aids in effi-
cient CPU implementation, decreases prediction time,
makes swift model appliers, and controls overfitting
as the structure serves as regularization.

Depending on string literal representation and
which algorithm is used for the classification task, we
have the following approaches.

1. bigrams+LogReg (bigrams and logistic regres-
sion),

2. bigrams+CatBoost (bigrams and CatBoost),

3. pretrained+CatBoost (GraphCodeBERT and Cat-
Boost).

We did not explore the pretrained+LogReg ap-
proach because by this point we already had the re-
sults of the pretrained+CatBoost approach. Based on
the results of pretrained+CatBoost, it became clear
that you should not count on fewer errors in pre-
trained+LogReg than it was in bigrams+CatBoost.

4.1 Training

For training the dataset described above was used,
consisting of public and automatically generated data.
The GPU was used to speed up the calculations dur-
ing model training (see Table 1).

As follows from Table 1 we used a GPU to train
the CatBoost classifier. Due to the large size of the
dataset and the large dimensionality of the vectors,
the algorithm builds a large tree. This requires com-
putational resources and a large number of iterations.

We used the implementation of the CatBoost13 al-
gorithm for the Python language. Iteration limit is
50,000; coefficient at the L2 regularization term of the
cost function is 2; loss function is logloss; learn-
ing rate is 0.05; bagging temperature is 1; random
strength is 1; leaf estimation method is Newton; early
stopping rounds parameter is 100. Model training
took less than an hour on a GeForce GTX 1080 Ti
graphic card.

To build semantic embeddings we used a pre-
trained GraphCodeBERT14 model. This model was
used for vectorization without additional fine-tuning
(see (Abnar et al., 2021)).

13https://catboost.ai
14https://huggingface.co/microsoft/graphcodebert-base

Table 2: The results of the three experiments. For each ex-
periment, FPR, FNR, and F1 score are given.

FPR,
%

FNR,
%

F1

bigrams+LogReg 5.92 16.67 0.78
bigrams+CatBoost 2.4 1.87 0.96
pretrained+CatBoost 7.94 7.52 0.79

Table 3: The confusion matrix for bigrams+CatBoost
model.

predicted se-
cret

predicted non-
secret

secret 1946 37
non-secret 130 5269

4.2 Evaluation

Models were evaluated on a separate private dataset.
This dataset is the most consistent with the target do-
main. It contains 7,382 samples. All these samples
correspond to the real situation and have been manu-
ally labeled into two classes: secrets and non-secrets.
As final metrics, we used the FPR (false positive rate)
and FNR (false negative rate) since such metrics most
accurately reflect the functionality of the models.

In Table 2 we present the test results. It is expected
that the model based on LogReg showed the worst
result. The best result was shown by a model based
on bigrams and CatBoost. The confusion matrix for
this experiment can be found in Table 3.

The model based on the pretrained model showed
an average result, lower than expected. However, we
believe that this result can be better if string context
is used, that is, characters before and characters af-
ter are taken into account. In such case, contextual
embeddings may contain information useful for clas-
sification.

5 CONCLUSION

In this research we investigate the problem of detect-
ing leaked secrets in the code. As a result, we propose
an approach to leaked secret detection in source code
based on machine learning using bigrams. This ap-
proach significantly reduces the number of false posi-
tives. It showed a false positive rate of 2.4% and false
negative rate of 1.9%. The model was trained on pub-
lic and automatically generated data, and the evalua-
tion took place on target domain, which allows us to
conclude that the resulting solution is stable and reli-
able.

Using Bigrams to Detect Leaked Secrets in Source Code

595



We believe that a promising direction for future
research is the use of pretrained code models. Appar-
ently, the application of such models to build seman-
tic embeddings using the context of the secret (previ-
ous and subsequent tokens) will give better quality,
although it will require more computing resources.
The pretrained code models contain the programming
language model (MLM, masked-language modeling
task). This makes it possible to understand, based on
the context, what is happening in a given fragment
of code. Whether it’s sensitive information or not. A
similar situation occurs in the code completion task or
in the variable name prediction task, where pretrained
code models are great (Guo et al., 2022).

REFERENCES

Abnar, S., Dehghani, M., Neyshabur, B., and Sedghi, H.
(2021). Exploring the Limits of Large Scale Pre-
training. ArXiv, abs/2110.02095.

Collins, K. (2016). Developers keep leaving secret keys
to corporate data out in the open for anyone to take.
https://qz.com/674520.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 4171–4186, Minneapolis, Minnesota.

Ding, Z. Y., Khakshoor, B., Paglierani, J., and Rajpal,
M. (2020). Sniffing for Codebase Secret Leaks
with Known Production Secrets in Industry. CoRR,
abs/2008.05997.

Dorogush, A. V., Ershov, V., and Gulin, A. (2018). Cat-
boost: gradient boosting with categorical features sup-
port. ArXiv, abs/1810.11363.

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S.,
Zhou, L., Duan, N., Svyatkovskiy, A., Fu, S., Tu-
fano, M., Deng, S. K., Clement, C. B., Drain, D., Sun-
daresan, N., Yin, J., Jiang, D., and Zhou, M. (2021).
GraphCodeBERT: Pre-training code representations
with data flow. In ICLR 2021.

Guo, D., Svyatkovskiy, A., Yin, J., Duan, N.,
Brockschmidt, M., and Allamanis, M. (2022).
Learning to Complete Code with Sketches. ArXiv,
abs/2106.10158.

Kall, S. and Trabelsi, S. (2021). An Asynchronous Feder-
ated Learning Approach for a Security Source Code
Scanner. In ICISSP, pages 572–579.

Klieber, W., Flynn, L., Bhosale, A., Jia, L., and Bauer, L.
(2014). Android taint flow analysis for app sets. In
SOAP.

Knight, S. (2016). 10,000 AWS secret access keys care-
lessly left in code uploaded to GitHub. https://www.
techspot.com/news.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen,
D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoy-

anov, V. (2019). RoBERTa: A robustly optimized
bert pretraining approach. arXiv e-prints, page
arXiv:1907.11692.

Lounici, S., Rosa, M., Negri, C. M., Trabelsi, S., and Önen,
M. (2021). Optimizing Leak Detection in Open-
source Platforms with Machine Learning Techniques.
In ICISSP, pages 145–159.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). In-
troduction to Information Retrieval. Cambridge Uni-
versity Press, USA.

Marlow, P. (2019). Finding Secrets in Source Code the De-
vOps Way. In SANS Institute.

McCullagh, P. and Nelder, J. A. (1989). Generalized linear
model. In CRC press, volume 37.

Meli, M., McNiece, M. R., and Reaves, B. (2019). How Bad
Can It Git? Characterizing Secret Leakage in Public
GitHub Repositories. Proceedings 2019 Network and
Distributed System Security Symposium.

Miessler, D. (2021a). 000webhost. https://github.com/
danielmiessler/SecLists/blob/master/Passwords/
Leaked-Databases/000webhost.txt.

Miessler, D. (2021b). 10 million password list top
1000000. https://github.com/danielmiessler/SecLists/
blob/master/Passwords/Common-Credentials/
10-million-password-list-top-1000000.txt.

Rahman, M. R., Imtiaz, N., Storey, M.-A., and Williams,
L. (2022). Why secret detection tools are not enough:
It’s not just about false positives — An industrial case
study. Empirical Software Engineering, 27(3):1–29.

Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli,
A., and Devanbu, P. (2016). On the ”naturalness” of
buggy code. ICSE ’16, pages 428–439.

Roesch, M. (1999). Snort — Lightweight Intrusion Detec-
tion for Networks. In LISA.

Saha, A., Denning, T., Srikumar, V., and Kasera, S. K.
(2020). Secrets in Source Code: Reducing False Pos-
itives using Machine Learning. In 2020 International
Conference on COMmunication Systems NETworkS
(COMSNETS), pages 168–175.

Sinha, V. S., Saha, D., Dhoolia, P., Padhye, R., and Mani, S.
(2015). Detecting and Mitigating Secret-Key Leaks
in Source Code Repositories. In Proceedings of the
12th Working Conference on Mining Software Repos-
itories, MSR ’15, pages 396–400. IEEE Press.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. NIPS’17, pages
6000–6010.

Viennot, N., Garcia, E., and Nieh, J. (2014). A measure-
ment study of Google Play. In The 2014 ACM Inter-
national Conference on Measurement and Modeling
of Computer Systems, ser. SIGMETRICS, pages 221–
233.

Zhou, Y., Zhang, X., Jiang, X., and Freeh, V. W. (2011).
Taming informationstealing smartphone applications
(on android). In TRUST.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

596


