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Abstract: Requirements Engineering of IoT systems has the twin objectives of specifying functionality as well as 
communication objectives of the system. Existing goal-oriented and use case approaches were not developed 
to bring out communication objectives of systems. Consequently, when these techniques are applied then 
communication remains subordinate to functionality. We integrate both objectives in the notion of a GOT, 
GOal of Things. The GOT model represents the structure of GOTs and an instance of this model is the 
requirements specification of an IoT. The accompanying GOT Process provides three ways of GOT reduction. 
We illustrate its application to an Accident Reporting System. The GOT proposal is compared with a use-case 
oriented approach and a goal oriented approach. 

1 INTRODUCTION 

With the rapid growth of IoT applications like for 
homes and power grids (Stankovic, 2014), dynamic 
cargo monitoring (Focker, 2015), people with special 
needs (Ferati, 2016), connected cars (Mikusz, 2017) 
etc., it was found necessary to formulate ways of 
representing an IoT system. The term IoT system 
refers to (Costa, 2016) a ‘composition of Devices and 
Services interacting with other Devices, Physical 
Entities, and Users’. A number of techniques were 
developed to specify this composition (Costa, 2016, 
Eterovic, 2015, Fleurey, 2011, Kotnis, 2018, 
Prehofer, 2015). 

A conceptual modeling layer was placed (Prakash, 
2021, Prakash, 2022) on top of the IoT system. This 
highlighted the data of interest as well as data 
communication needs, in an IoT application. The 
salient feature of this conceptual model is its reliance 
on COMMunication AGents, COMMAGs that have 
aspects. Agents represent real world entities that are 
participants in IoT applications. Aspects capture the 
measurable quantities like temperature and pressure 
that are sensed by agents, possibly processed, and 
communicated to other agents. 

 
a  https://orcid.org/0000-0001-8404-3128 
b  https://orcid.org/0000-0003-1644-5613 

Moving further upstream, proposals have also 
been made for requirements engineering of IoT 
applications. Both Functional and Non-functional 
Requirements, FR and NFR respectively, have been 
addressed. The approach of (Costa, 2017) determines 
four parameters, namely, Location, Sensed Variable, 
Sensing Rate, and Sending Rate. For (Costa, 2017) 
these constitute FRs. NFRs are quality attributes of 
the system to-be, for example, reliability. 
Requirements are expressed as propositions in natural 
language in Requirements Diagrams of SySML. 

Kotnis et al. (Kotnis, 2018) concentrate on NFRs. 
They start with the assumption that devices are 
already known in their Health application. Devices 
are represented in Block Definition Diagrams, BDD 
of SySML. Interaction among devices is expressed as 
Internal Block Diagram, IBD of SySML. Thereafter 
Kotnis et al. associate BDD blocks with the 
requirements they must meet. For this, three 
categories of requirements are defined for health 
systems, namely, non-critical, safety-critical, and 
mission-critical requirements. Requirements falling 
in each category are identified. 

Use cases/Scenarios and Goals techniques 
originally developed for determining functionality of 
Software Engineering/Information Systems, have 
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also been used. Whereas FRs can be determined using 
these, special provision must be made for determining 
the sensing/actuating capacity of things as well as 
communication among devices. 

(Meacham, 2016) use a combination of use case 
diagrams for system functionality and Requirements 
Diagrams of SySML for things and thing-interaction. 
There are two levels of analysis, a high level and low 
level. Each high-level use case is expressed as blocks 
in RD and the action they perform is expressed in text 
in these RD blocks. Low-level use case diagrams are 
for representing low-level functions comprising the 
high-level functions. Again, the action carried out by 
these is expressed as text in structural blocks of RD. 
Movement to system design starts off from the high- 
level RD by postulating system blocks for each RD 
block. However, the manner in which this is to be 
done is not elaborated in (Meacham, 2016). 

(Mezghani, 2017) organize their requirements 
engineering approach in two parts, requirements 
identification and requirements formalization. In the 
former the elicited FRs are expressed as use cases. 
The latter is organized in a number of design patterns 
in multiple levels. This proposal aims to assist system 
architects rather than system developers per se. 

Reggio (Reggio 2018) builds a goal hierarchy of 
strategic and operational goals. Goals are then 
expressed in UML. Operational goals are associated 
to technological goals that express communication 
and device needs. However, the technological aspect 
is not elaborated in (Reggio, 2018) who state that it is 
“preliminary”.  

The approach of (Takai, 2019) is to use the translate 
GQM+ approach. Business goals become requirement 
nodes, questions become text of the requirement node 
and metrics become stereotyped requirement nodes, 
stereotyped as performance requirements. These are 
then converted into Requirements Diagram of 
SySML. The manner in which things and thing 
interaction is represented is not articulated in (Takai, 
2019). 

From the foregoing, we conclude that there are 
two parts to Requirements Engineering in the IoT 
domain (a) determining function is to be performed 
or what is to be done by a thing and (b) what is to be 
sensed and interaction among things. The former is 
de-emphasized in (Costa 2017, Kotnis, 2018) 
whereas the latter is of subordinate concern in 
(Meacham, 2016, Mezghani, 2017, Reggio, 2018). 
Yet, we believe that thing functionality, its 
sensing/actuating capacity and thing interaction form 
one integrated whole. By separating these, either 
thing functionality is not articulated as in (Costa 

2017, Kotnis, 2018) or the sensing/interaction aspect 
is not fully elaborated. 

It is with a view to obviate this, that we present 
our integrated approach to IoT requirements 
Engineering. Broadly speaking, our proposal is as 
follows. We base our proposal in goal-orientation and 
refer to GOals of IoT as GOT. We say that a GOT is 
achieved when the functional intention behind it is 
fulfilled and communicated. Goal fulfilment is for 
the function/processing to be performed by a thing 
and goal communication is for the sensing/actuating 
and thing interaction part. Goal reduction results in 
the usual AND/OR hierarchy. 

The layout of this paper is as follows. In the next 
section, we elaborate on the notion of a requirement 
in the IoT domain and define our notion of a goal. In 
section 3, the GOT model is described. The GOT 
requirements engineering process and the various 
drives are presented in section 4. In section 5, we 
apply our ideas to the car accident IoT. Thereafter, in 
section 6, we compare the proposals of (Meacham, 
2016) and (Reggio, 2018) with ours. Section 7 
concludes the paper. 

2 GOALS IN IoT 

A requirement has been variously defined and we 
adopt the definition as in IEEE standard 730-2014 as 
“A condition or capability that must be met or 
possessed by a system or system element to satisfy an 
agreement, standard, specification, or other formally 
imposed documents.” When applied to the IoT 
domain, a thing is the system component of interest 
and a collection of communicating things delivers the 
service required by an IoT application. The 
“condition or capability” of a thing is that it may 
obtain data, optionally process it, and communicate it 
to another thing. Data may be obtained by sensing the 
environment or as a communication from another 
thing. There are terminator things like the cloud or 
users, that consume data that they receive. Thus, we 
can define a requirement in the IoT domain as a 
statement about processing and communicating 
data. For example, consider the requirement, “the life 
of the battery must be monitored and low-life 
batteries must be replaced before they die.” The 
processing is “Estimate battery life” and the 
communication need is to send the message, “Low 
battery” to the user. 

Now, let us consider how to represent an IoT 
requirement as a GOal Of Things, GOT. A goal has 
been variously defined. (Lamsweerde, 2000) defines 
a goal as an objective that the system should achieve 
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through cooperation of agents in the software-to-be 
and in the environment. Anton (Anton, 1994) states 
that goals are high-level objectives of the business, 
organization or system. Dardenne (Dardenne, 1993) 
defines a goal as a non-operational objective to be 
achieved by the composite system.  

It can be seen that, central to the notion of a goal is 
that of an objective. In software 
engineering/information systems, an objective is the 
identification of the functions that the system should 
perform. In the IoT domain, however, the mere 
computation of the remaining battery life is not 
enough but the objective of the system is fully 
achieved only when this is also communicated to the 
user. Thus, for us, GOT is a pair 

GOT= < FO, CO > 

where FO is the functional objective and CO is the 
communication objective. Thus, our battery 
requirement above is specified as a GOT as follows: 
Maintain Battery = <Estimate Battery Life, Inform 
battery status> 

Now, we turn to the communication aspect of a 
GOT. We represent a communication objective as a 
triple, 

<Sender, Receiver, Message>. 
The message may contain the following: 
a) Sensed data. As an example, consider the 

temperature sensed by a temperature sensor 
b) Processed data produced as a result of FO, e.g., 

cleaned temperature data after taking false 
positives/negatives into account. 

Senders and receivers may be physical or virtual. 
Consider the goal to keep the milk in a milk van at a 
temperature at 4oC. Here, the physical milk van or the 
cooling unit is a sender/receiver. If the milk van is 
divided into regions, then each region could be treated 
as a sender/receiver. Senders/receivers may be the 
cloud or a user. 

Now, following goal-orientation, we build 
AND/OR goal hierarchies. In (Dardenne, 1993), we 
get the basis for this as follows: 

“Reduction (G, g) iff achieving goal g possibly 
with other subgoals is among the alternative ways 
of achieving goal G.” 
We adopt this for GOT as well thereby allowing 

G and g to be GOTs. Again, due to the two objectives 
of a GOT, it is possible to reduce an IoT goal along 
FO or CO. We illustrate these two forms of reduction 
through the milk transportation example having the 
requirement, Maintain temperature at 4 degrees 
centigrade. The corresponding GOT is as follows: 

Maintain_temp = <Compute Avtemp, Inform> 

Let computation of average temperature be in two 
parts, clean sensed data AND the actual calculation, 
Calculate Average. Notice, however, that in this 
example, the decomposition of the FO serves to 
clarify the manner of its achievement and that cleaned 
data obtained from the first sub-goal is not to be 
communicated. The rules governing this are given in 
section 3. 

Now, consider reduction along CO. Average 
temperature is required to be sent to two receivers, (a) 
the cooling unit, and (b) the cloud. Thus, we can do 
goal reduction and get sub-goals 

<Compute Avtemp, Inform Cooling Unit >  
AND 
<Compute Avtemp, Inform Cloud> 

From the foregoing, we see that the approach of 
goal-orientation formulated in Software 
engineering/Information Systems is extendable to 
goal-orientation in IoT with goal reduction along 
FOs and COs. 

It is to be noted that we do not consider inter-GOT 
relationships other than AND/OR here. Thus, issues 
of GOTs supporting each other and conflicting GOTs 
are not dealt with in this paper. Similarly, we are not 
dealing with non-functional aspects in the IoT domain 
here. A treatment of these issues is left for another 
paper. 

3 THE GOT MODEL 

The foregoing can be represented in a model- driven 
manner in the GOT model shown in Fig. 1. The model 
says that a GOT is an aggregate of FO and CO. The 
former may specify a computation or unprocessed, 
raw data. From the cardinality, it can be seen that a 
GOT has exactly one FO and one CO respectively. 
Further, an FO or a CO can participate in more than 
one GOT. The structure of the CO in Fig. 1 says that 
a CO is an aggregate of Sender, Receiver, and 
Message. The cardinality shows that a CO has exactly 
one Sender, one Receiver, and one Message. In the 
reverse direction, a Sender, Receiver, or Message may 
participate in more than one CO. It may be that the 
Sender sends the message to itself. For this, consider 
an IoT system with a single thing, a garden light, that 
turns ON/OFF after sensing the ambient light. Here, 
the GOT pair will have CO as: 

<garden light, garden light, ambientLight>. 

The model proposes three types of GOTs, simple 
GOTs that cannot be decomposed into simpler ones; 
complex GOTs that are composed of other simpler 
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GOTs; and abstract GOTs or those that enter into a 
generalization/specialization hierarchy. 

A complex GOT corresponds to the AND of goal- 
orientation considered in the previous section. 
Specialization/generalization allows a high level 
GOT to have specialized GOTs and corresponds to 
the OR of goal-orientation. Notice, that the model 
allows components/specializations that are 
themselves simple, complex or abstract.  

 
Figure 1: The GOT Model. 

Following the classification of a GOT, the FO/CO 
may be simple, complex, or abstract (not shown in 
the figure to prevent graphical clutter). These terms 
have the same meaning as for a GOT but are now 
applicable to functional and communication 
objectives. Again, the classification of CO implies 
that Sender and Receiver may be simple, complex, or 
abstract. Thus, the model makes it explicit that the 
requirements engineer should consider reduction of 
all three of these. We shall use this as a basis of our 
requirements engineering process discussed in the 
next section. 

Interaction among FO and CO is specified by the 
rules as follows. 
Rule 1: This rule considers the case when the sender 
or receiver is complex. 

• If the Sender is complex then ONLY the 
complex Sender sends out the message to the receiver 
but its component senders DO NOT. 

• If the Receiver is complex, then ALL 
component receivers get the message. 

Let us consider an example. Let there be a simple 
FO that computes Average temperature, Avtemp. Let 
our milk van be a complex sender composed of a 
number of regions, each of which calculates its own 
average temperature and sends it to the milk van. The 
milk van sends out the message, Avtemp. Let there be 
a complex receiver, Operations, having 

components, Cooling Unit and Recording Unit. 
Applying Rule 1 to the GOT, we get the pair 
<Calculate_Av_temp, (Milk_van, Operations, Avtemp) > 

We see that the Milk-van sends its average 
temperature to Operations and all components of the 
latter receive it. The average temperatures computed 
at the regions are not sent to Operations but only to 
milk-van. In other words, a valid reduction of the 
GOT is 
<Calculate_Av_temp, (Milk_van, Cooling Unit, Avtemp)> 

AND 
<Calculate_Av_temp, (Milk_van, Recording Unit, Avtemp)> 

Rule 2: This rule considers Communication with 
abstract Sender or Receiver.The rule for 
communication is as follows 

• The sender is specialized: ANY one or more, 
possibly, all the specialized senders can send a 
message  

• The receiver is specialized: ANY one or more, 
possibly all the specialized receivers can 
receive the message. 

Now, consider a simple FO, Calculate average 
temperature. Let us consider the milk van as a region 
specialized into two regions, front region and back 
region. Each region has its own cooling unit and we 
have the receiver, cooling unit specialized into front 
cooling unit and back cooling unit. Consider the GOT 

<Calculate_Av_temp, (Region, Cooling Unit, Avtemp)> 

Applying the rule for specialization, any or both 
of our back and front regions can be senders and any 
or both the colling units can be receivers. Thus, a 
reduction will be: 

<Calculate_Av_temp, (Back Region, Back Cooling 
Unit, Avtemp)> 

OR 

<Calculate_Av_temp, (Front Region, Front Cooling 
Unit, Avtemp)> 

To show communication to more than specialized 
receiver, let us change the example. Now, there is the 
milk van without regions but two cooling units as 
before. Then the message is sent from the milk van to 
both units. The GOT to be reduced is as follows 

<Calculate_Av_temp, (Milk Van, Cooling Unit, 
Avtemp)> 

The specialization rule allows the reduction as 
follows: 
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<Calculate_Av_temp, (Region, Back Cooling Unit, 
Avtemp)> 

AND 

<Calculate_Av_temp, (Region, Front Cooling Unit, 
Avtemp)> 

Rule 3: This rule considers the case of 
communication when an FO is complex. Only the 
data resulting from the complex FO is available 
for communication. Any data from the component 
FOs that needs to be transmitted must be subsumed 
by it. 

This justifies the example at the end of section 2 
above. The FO, Clean Data is a component of the 
complex FO, Compute Avtemp. Cleaned data 
generated by it is not available for transmission but 
only average temperature is. If cleaned data is to be 
communicated then it is the responsibility of 
Compute Avtemp to do so, in addition to average 
temperature. 

Rule 1 and Rule 2 apply for communication among 
different kinds of senders and receivers of complex 
data. 

Rule 4: If an FO is abstract and has specialized 
FOs, then data available from only one of the 
latter may participate in a GOT. That is, a separate 
GOT is required for each specialized FO and these are 
organized in the GOT reduction hierarchy. Rule 2 and 
Rule 3 apply in this case as well. 

4 THE REQUIREMENTS 
ENGINEERING PROCESS 

The requirements specification is a GOT hierarchy. 
The requirements engineering process presented in 
Fig. 2 considers how the hierarchy is built. We refer 
to this process as the GOT Process. 

The initial step, Formulate GOT in the GOT 
Process is elicitation and formulation of a high-level 
GOT. As part of this step, the requirements engineer, 
after first eliciting the FO or the CO, proceeds to 
complete the GOT. This completion corresponds to a 
specification of the various elements comprising the 
GOT. For example, it is possible that the FO is 
discovered first, as Calculate Average Temperature. 
In Formulate GOT, the missing CO part is elicited, 
say Inform Cooling Unit. The sender, receiver, and 
message of this CO are now determined. This yields 
the high-level GOT 

<Compute Avtemp, (Milk van, Cooling Unit, 
Temperature value)> 

With this, Formulate GOT is complete. 
Now, as mentioned in section 3, the three aspects 

of a GOT that form the basis of GOT reduction are 
the FO, Sender, and Receiver. Each of these gives rise 
to its own sub-process. We refer to these as FD for 
FO Drive, SD for Sender Drive and RD for Receiver 
Drive respectively. In the FD, reduction of FO is 
done; in the SD reduction of Sender is done and in the 
RD, reduction of the Receiver is done. Any of these 
can be picked up as the next step in the GOT Process 
as shown in Fig. 2. 

 
Figure 2: The GOT Process. 

In carrying out these drives, the next level of reduced 
FOs, Senders or Receivers respectively are 
determined along with their nature, simple, complex 
or abstract. It is possible to follow these drives to any 
depth as shown by the self-loops in the figure. Upon 
exit from the drives, Formulate GOT is carried out 
and the reduced GOTs are completely defined. The 
reduction process takes into account the four rules of 
FO-CO interaction of section 3. It can be seen that 
GOT reduction is multi-dimensional: FD yields 
reduction in one dimension, RD in the second, and SD 
in the third. We will indicate the level in each 
dimension by the superscript of the drive, for 
example, 3RD and 2SD refer to the third level in the RD 
dimension and second level in the SD dimension. The 
default dimension is FD. 

The GOT Process is applied to each GOT as it is 
formulated. The process terminates when simple 
GOTs are reached and no further reduction is 
possible. 

5 THE ACCIDENT EXAMPLE 

In this section, we apply the GOT requirements 
engineering process to reporting a car accident. In 
doing so, we proceed level-wise and complete each 
level before proceeding to the next. 

The main requirement is to alert help 
providers in case of a motor car accident. As 
stated, this requirement provides both the FO, 
Accident Alert, and the CO, Inform Help 
Providers. This latter is further defined in Formulate 
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GOT to determine the Sender, Accident Estimator 
that sends the message, SOS to the receiver, Helper. 
Accident Alert is predicated on detecting that an 
accident has occurred. The first row of Table I shows 
the GOT in two parts in the two columns Functional 
Objective and Communication Objective 
respectively. The root level of the GOT hierarchy 
(level 1 in the table) has been determined and GOT 
reduction can now be carried out. 

Table 1: FO-Reduced GOT <Accident Alert, Inform Help 
Providers>. 

Level Functional 
Objective 

Communication 
Objective 

1 Accident 
Alert 

Accident Estimator, 
Helper, "SOS”

2 Airbag 
Release Alert 

Air Bag Mechanism, 
Accident Estimator, 
“Air Bag Released”

2 Seat Belt 
Tension Alert 

Seat Belt Mechanism, 
Accident Estimator, 

Tension Value

2 Impact Alert 
Impact Assessor, 

Accident Estimator, 
Impact Value

Out of the three drives of Fig 2, let the 
requirements engineer choose to apply FD to reduce 
Accident Alert. It is determined that Accident Alert 
is a complex FO built from multiple inputs. The 
second and subsequent rows in Table I show these 
FOs. Formulate GOT is applied to each of these FOs 
and the COs are determined for each. 

Table 2: RD of Root GOT. 

Level Functional 
Objective Communication Objective

    1 Accident Alert Accident Estimator, 
Helper, "SOS”

2RD Accident Alert Accident Estimator, 
Police, "SOS”

2RD 
Accident Alert Accident Estimator, 

Health Service, "SOS” 

2RD Accident Alert Accident Estimator, 
Relative, "SOS”

Now let us apply SD of Fig 2 to the root goal. 
Senders of the reduced GOTs have already been 
determined as the result of applying the FD and the 
subsequent Formulate GOT step. Now, the 
requirements engineer determines that there is an OR 
relationship between the second level GOTs since all 
are alternative ways of estimating accident 
occurrence. Consequently, Accident Estimator is an 

abstract sender, with the second level senders as its 
specialization. 

The requirements engineer now proceeds to apply 
RD to the root goal. In fact, the receiver, Helper is 
complex as shown in Table II since all must be 
informed about the accident. This change in 
dimension is shown by the superscript. 

Now, the requirements engineer applies the 
reduction process to each of the second level GOTs 
in Table I. FOs for Airbag Release Alert and Seat Belt 
Tension Alert (second and third rows of Table I) are 
non-reducible. Attention shifts to Impact Alert and 
the result is shown in Table III. There are four ways 
in which the car can be impacted making it a complex 
FO. Notice that these are at the third level of the GOT 
hierarchy. 

SD is applied to the GOT for Impact Alert. Again, 
the reduced senders have already been determined at 
the third level GOTs. The question is only about their 
relationships. Any one or more third level senders can 
send a message to the second level GOT making 
Impact Assessor an abstract sender with third 
level senders as its specializations. Application of 
RD to Impact Alert shows that the receiver Accident 
Estimator structure has already been considered. 
Thus, RD does not contribute any further GOTs. 

Table 3: Reduction of Impact Alert. 

Level Functional 
Objective

Communication 
Objective 

2 Impact Alert 
Impact Assessor,

Accident Estimator, 
Impact Value 

3 Frontal Impact 
Alert 

Front Acceleration 
Assessor, 

Impact Assessor, 
Acceleration Value

3 Rear Impact 
Alert 

Back Acceleration 
Assessor,  

Impact Assessor, 
Acceleration Value

3 Right Impact 
Alert 

Right Acceleration 
Assessor, 

Impact Assessor, 
Acceleration Value

3 Left Impact 
Alert 

Left Acceleration 
Assessor, 

Impact Assessor, 
Acceleration Value

During application of FO to each of the newly 
discovered GOTs, the requirements engineer 
determines that these are all simple. Since GOTs of 
Table III are all irreducible, the GOT Process comes 
to an end. 
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5.1 The Starting Objective 

According to the GOT process, it is possible to deploy 
any drive in any order. In the accident example, we 
gave precedence to FD. Instead, the requirements 
engineer can start with reducing the communication 
objective first. In the accident example, this means 
that the starting requirement is, “Inform all helpers 
that a resident has had an accident” leading to the 
communication objective (Resident, Helper, “SOS”). 
During the Formulate GOT, the functional objective, 
Accident Alert would be identified and the GOT 
formulated.  Thereafter, instead of FD, the 
requirements engineer could follow the RD and 
determine the complex structure of Helper. 
Alternatively, the SD could be followed. 

6 COMPARISON 

In this section we compare our proposal with the goal 
oriented one of (Reggio, 2018) and use case based 
approach of (Meacham, 2016). This allows a 
comparison of the GOT approach with existing two 
major approaches to requirements engineering. 

6.1 The Goal-Oriented Genoa Science 
Festival 

The major differences between GOT and (Reggio, 
2018) are as follows: 

• Reggio proposes an explicit domain modelling 
stage that yields participants and objects 
whereas the GOT approach determines these as 
part of the requirements engineering process. 

• Sequence and activity diagrams of (Reggio, 
2018) identify respectively, the data needed for 
realizing operative goals and the sequence of 
operations to be carried out. In GOT, the issue 
of how irreducible functional objectives are 
operationalized is not considered. Rather, it is 
left to be considered in a subsequent step that 
deals with conversion of the GOT model to the 
IoT conceptual model (Prakash 2022). This 
aspect is the subject of another paper. 

• The communication aspect is brought into 
(Reggio 2018) by associating technological 
goals like “Communicate with Visitors Using 
Email” with operative goals like ‘Ask for 
Booking Confirmation’. How this association is 
carried out is not clarified but evidently, it is not 
part of the reduction process. We believe that 
this reflects the functional objective- 

communication objective dichotomy found in 
the IoT domain. This dichotomy led us to 
integrate both in the notion of a GOT. 

• The well defined-ness of technological goals of 
(Reggio 2018) is not formulated. In the GOT 
model, the communication objective is 
specified when the sender, receiver, and 
message are all specified.  

• Technological goals of (Reggio, 2018) reflect a 
choice of communication and device 
technologies likely to deliver operative goals. 
There is no proposal here to consider 
alternatives. In contrast, through SD and RD, 
we do AND/OR reduction of a GOT. 

6.2 The Use Case View of Fall 
Detection 

Let us now turn our attention to the Fall detection 
system of (Meacham, 2016): 

• Use cases are not used in (Meacham, 2016) to 
specify data flows in and out of the system but only to 
define SySML blocks so as to express objectives in 
textual form. 

• Low-level use cases correspond to GOT 
reduction following FD. However, in (Meacham 
2016), we have only a high and low level. This 
inhibits recursive reduction. 

• SySML RDs do not express the message and its 
sender/receiver. 

• The use of free text does not provide any 
structure for the notion of an objective. In contrast, the 
GOT is model driven. This provides a systematic 
GOT Process with clear expressive power and 
guidance. 

7 CONCLUSION 

An IoT application has its own specific requirements 
consisting of communication among connected 
things and processing carried out at things. We have 
defined a GOT that integrates the notions of 
functional and communication objectives. The 
structure of a GOT permits specification of a variety 
of communication needs like sending messages to 
multiple receivers or selected senders sending 
messages to selected receivers. 

The issue of non-functional requirements surfaces 
in two ways in an IoT application. There are 
traditionally recognized issues like security, 
reliability etc. Additionally, an IoT has its own non-
functional requirements. These are for example, the 

A Goal-Oriented Requirements Engineering Approach for IoT Applications

587



cost; battery life, remaining battery charge; 
convenience of humans wearing devices and so on. 
We believe that these require detailed investigation in 
the future. 
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