
A Goal-Oriented Requirements Engineering Approach for IoT
Applications

Deepika Prakash1 a and Naveen Prakash2 b
1Deparment of Computer Engineering, JK Lakshmipat University, Jaipur, India

2ICLC, 21/8 S. Bhagat Singh Marg, New Delhi 110001, India

Keywords: Functional Objective, Communication Objective, Sender, Receiver, Goal Reduction.

Abstract: Requirements Engineering of IoT systems has the twin objectives of specifying functionality as well as
communication objectives of the system. Existing goal-oriented and use case approaches were not developed
to bring out communication objectives of systems. Consequently, when these techniques are applied then
communication remains subordinate to functionality. We integrate both objectives in the notion of a GOT,
GOal of Things. The GOT model represents the structure of GOTs and an instance of this model is the
requirements specification of an IoT. The accompanying GOT Process provides three ways of GOT reduction.
We illustrate its application to an Accident Reporting System. The GOT proposal is compared with a use-case
oriented approach and a goal oriented approach.

1 INTRODUCTION

With the rapid growth of IoT applications like for
homes and power grids (Stankovic, 2014), dynamic
cargo monitoring (Focker, 2015), people with special
needs (Ferati, 2016), connected cars (Mikusz, 2017)
etc., it was found necessary to formulate ways of
representing an IoT system. The term IoT system
refers to (Costa, 2016) a ‘composition of Devices and
Services interacting with other Devices, Physical
Entities, and Users’. A number of techniques were
developed to specify this composition (Costa, 2016,
Eterovic, 2015, Fleurey, 2011, Kotnis, 2018,
Prehofer, 2015).

A conceptual modeling layer was placed (Prakash,
2021, Prakash, 2022) on top of the IoT system. This
highlighted the data of interest as well as data
communication needs, in an IoT application. The
salient feature of this conceptual model is its reliance
on COMMunication AGents, COMMAGs that have
aspects. Agents represent real world entities that are
participants in IoT applications. Aspects capture the
measurable quantities like temperature and pressure
that are sensed by agents, possibly processed, and
communicated to other agents.

a https://orcid.org/0000-0001-8404-3128
b https://orcid.org/0000-0003-1644-5613

Moving further upstream, proposals have also
been made for requirements engineering of IoT
applications. Both Functional and Non-functional
Requirements, FR and NFR respectively, have been
addressed. The approach of (Costa, 2017) determines
four parameters, namely, Location, Sensed Variable,
Sensing Rate, and Sending Rate. For (Costa, 2017)
these constitute FRs. NFRs are quality attributes of
the system to-be, for example, reliability.
Requirements are expressed as propositions in natural
language in Requirements Diagrams of SySML.

Kotnis et al. (Kotnis, 2018) concentrate on NFRs.
They start with the assumption that devices are
already known in their Health application. Devices
are represented in Block Definition Diagrams, BDD
of SySML. Interaction among devices is expressed as
Internal Block Diagram, IBD of SySML. Thereafter
Kotnis et al. associate BDD blocks with the
requirements they must meet. For this, three
categories of requirements are defined for health
systems, namely, non-critical, safety-critical, and
mission-critical requirements. Requirements falling
in each category are identified.

Use cases/Scenarios and Goals techniques
originally developed for determining functionality of
Software Engineering/Information Systems, have

Prakash, D. and Prakash, N.
A Goal-Oriented Requirements Engineering Approach for IoT Applications.
DOI: 10.5220/0011982500003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 581-588
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

581

also been used. Whereas FRs can be determined using
these, special provision must be made for determining
the sensing/actuating capacity of things as well as
communication among devices.

(Meacham, 2016) use a combination of use case
diagrams for system functionality and Requirements
Diagrams of SySML for things and thing-interaction.
There are two levels of analysis, a high level and low
level. Each high-level use case is expressed as blocks
in RD and the action they perform is expressed in text
in these RD blocks. Low-level use case diagrams are
for representing low-level functions comprising the
high-level functions. Again, the action carried out by
these is expressed as text in structural blocks of RD.
Movement to system design starts off from the high-
level RD by postulating system blocks for each RD
block. However, the manner in which this is to be
done is not elaborated in (Meacham, 2016).

(Mezghani, 2017) organize their requirements
engineering approach in two parts, requirements
identification and requirements formalization. In the
former the elicited FRs are expressed as use cases.
The latter is organized in a number of design patterns
in multiple levels. This proposal aims to assist system
architects rather than system developers per se.

Reggio (Reggio 2018) builds a goal hierarchy of
strategic and operational goals. Goals are then
expressed in UML. Operational goals are associated
to technological goals that express communication
and device needs. However, the technological aspect
is not elaborated in (Reggio, 2018) who state that it is
“preliminary”.

The approach of (Takai, 2019) is to use the translate
GQM+ approach. Business goals become requirement
nodes, questions become text of the requirement node
and metrics become stereotyped requirement nodes,
stereotyped as performance requirements. These are
then converted into Requirements Diagram of
SySML. The manner in which things and thing
interaction is represented is not articulated in (Takai,
2019).

From the foregoing, we conclude that there are
two parts to Requirements Engineering in the IoT
domain (a) determining function is to be performed
or what is to be done by a thing and (b) what is to be
sensed and interaction among things. The former is
de-emphasized in (Costa 2017, Kotnis, 2018)
whereas the latter is of subordinate concern in
(Meacham, 2016, Mezghani, 2017, Reggio, 2018).
Yet, we believe that thing functionality, its
sensing/actuating capacity and thing interaction form
one integrated whole. By separating these, either
thing functionality is not articulated as in (Costa

2017, Kotnis, 2018) or the sensing/interaction aspect
is not fully elaborated.

It is with a view to obviate this, that we present
our integrated approach to IoT requirements
Engineering. Broadly speaking, our proposal is as
follows. We base our proposal in goal-orientation and
refer to GOals of IoT as GOT. We say that a GOT is
achieved when the functional intention behind it is
fulfilled and communicated. Goal fulfilment is for
the function/processing to be performed by a thing
and goal communication is for the sensing/actuating
and thing interaction part. Goal reduction results in
the usual AND/OR hierarchy.

The layout of this paper is as follows. In the next
section, we elaborate on the notion of a requirement
in the IoT domain and define our notion of a goal. In
section 3, the GOT model is described. The GOT
requirements engineering process and the various
drives are presented in section 4. In section 5, we
apply our ideas to the car accident IoT. Thereafter, in
section 6, we compare the proposals of (Meacham,
2016) and (Reggio, 2018) with ours. Section 7
concludes the paper.

2 GOALS IN IoT

A requirement has been variously defined and we
adopt the definition as in IEEE standard 730-2014 as
“A condition or capability that must be met or
possessed by a system or system element to satisfy an
agreement, standard, specification, or other formally
imposed documents.” When applied to the IoT
domain, a thing is the system component of interest
and a collection of communicating things delivers the
service required by an IoT application. The
“condition or capability” of a thing is that it may
obtain data, optionally process it, and communicate it
to another thing. Data may be obtained by sensing the
environment or as a communication from another
thing. There are terminator things like the cloud or
users, that consume data that they receive. Thus, we
can define a requirement in the IoT domain as a
statement about processing and communicating
data. For example, consider the requirement, “the life
of the battery must be monitored and low-life
batteries must be replaced before they die.” The
processing is “Estimate battery life” and the
communication need is to send the message, “Low
battery” to the user.

Now, let us consider how to represent an IoT
requirement as a GOal Of Things, GOT. A goal has
been variously defined. (Lamsweerde, 2000) defines
a goal as an objective that the system should achieve

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

582

through cooperation of agents in the software-to-be
and in the environment. Anton (Anton, 1994) states
that goals are high-level objectives of the business,
organization or system. Dardenne (Dardenne, 1993)
defines a goal as a non-operational objective to be
achieved by the composite system.

It can be seen that, central to the notion of a goal is
that of an objective. In software
engineering/information systems, an objective is the
identification of the functions that the system should
perform. In the IoT domain, however, the mere
computation of the remaining battery life is not
enough but the objective of the system is fully
achieved only when this is also communicated to the
user. Thus, for us, GOT is a pair

GOT= < FO, CO >

where FO is the functional objective and CO is the
communication objective. Thus, our battery
requirement above is specified as a GOT as follows:
Maintain Battery = <Estimate Battery Life, Inform
battery status>

Now, we turn to the communication aspect of a
GOT. We represent a communication objective as a
triple,

<Sender, Receiver, Message>.
The message may contain the following:
a) Sensed data. As an example, consider the

temperature sensed by a temperature sensor
b) Processed data produced as a result of FO, e.g.,

cleaned temperature data after taking false
positives/negatives into account.

Senders and receivers may be physical or virtual.
Consider the goal to keep the milk in a milk van at a
temperature at 4oC. Here, the physical milk van or the
cooling unit is a sender/receiver. If the milk van is
divided into regions, then each region could be treated
as a sender/receiver. Senders/receivers may be the
cloud or a user.

Now, following goal-orientation, we build
AND/OR goal hierarchies. In (Dardenne, 1993), we
get the basis for this as follows:

“Reduction (G, g) iff achieving goal g possibly
with other subgoals is among the alternative ways
of achieving goal G.”
We adopt this for GOT as well thereby allowing

G and g to be GOTs. Again, due to the two objectives
of a GOT, it is possible to reduce an IoT goal along
FO or CO. We illustrate these two forms of reduction
through the milk transportation example having the
requirement, Maintain temperature at 4 degrees
centigrade. The corresponding GOT is as follows:

Maintain_temp = <Compute Avtemp, Inform>

Let computation of average temperature be in two
parts, clean sensed data AND the actual calculation,
Calculate Average. Notice, however, that in this
example, the decomposition of the FO serves to
clarify the manner of its achievement and that cleaned
data obtained from the first sub-goal is not to be
communicated. The rules governing this are given in
section 3.

Now, consider reduction along CO. Average
temperature is required to be sent to two receivers, (a)
the cooling unit, and (b) the cloud. Thus, we can do
goal reduction and get sub-goals

<Compute Avtemp, Inform Cooling Unit >
AND
<Compute Avtemp, Inform Cloud>

From the foregoing, we see that the approach of
goal-orientation formulated in Software
engineering/Information Systems is extendable to
goal-orientation in IoT with goal reduction along
FOs and COs.

It is to be noted that we do not consider inter-GOT
relationships other than AND/OR here. Thus, issues
of GOTs supporting each other and conflicting GOTs
are not dealt with in this paper. Similarly, we are not
dealing with non-functional aspects in the IoT domain
here. A treatment of these issues is left for another
paper.

3 THE GOT MODEL

The foregoing can be represented in a model- driven
manner in the GOT model shown in Fig. 1. The model
says that a GOT is an aggregate of FO and CO. The
former may specify a computation or unprocessed,
raw data. From the cardinality, it can be seen that a
GOT has exactly one FO and one CO respectively.
Further, an FO or a CO can participate in more than
one GOT. The structure of the CO in Fig. 1 says that
a CO is an aggregate of Sender, Receiver, and
Message. The cardinality shows that a CO has exactly
one Sender, one Receiver, and one Message. In the
reverse direction, a Sender, Receiver, or Message may
participate in more than one CO. It may be that the
Sender sends the message to itself. For this, consider
an IoT system with a single thing, a garden light, that
turns ON/OFF after sensing the ambient light. Here,
the GOT pair will have CO as:

<garden light, garden light, ambientLight>.

The model proposes three types of GOTs, simple
GOTs that cannot be decomposed into simpler ones;
complex GOTs that are composed of other simpler

A Goal-Oriented Requirements Engineering Approach for IoT Applications

583

GOTs; and abstract GOTs or those that enter into a
generalization/specialization hierarchy.

A complex GOT corresponds to the AND of goal-
orientation considered in the previous section.
Specialization/generalization allows a high level
GOT to have specialized GOTs and corresponds to
the OR of goal-orientation. Notice, that the model
allows components/specializations that are
themselves simple, complex or abstract.

Figure 1: The GOT Model.

Following the classification of a GOT, the FO/CO
may be simple, complex, or abstract (not shown in
the figure to prevent graphical clutter). These terms
have the same meaning as for a GOT but are now
applicable to functional and communication
objectives. Again, the classification of CO implies
that Sender and Receiver may be simple, complex, or
abstract. Thus, the model makes it explicit that the
requirements engineer should consider reduction of
all three of these. We shall use this as a basis of our
requirements engineering process discussed in the
next section.

Interaction among FO and CO is specified by the
rules as follows.
Rule 1: This rule considers the case when the sender
or receiver is complex.

• If the Sender is complex then ONLY the
complex Sender sends out the message to the receiver
but its component senders DO NOT.

• If the Receiver is complex, then ALL
component receivers get the message.

Let us consider an example. Let there be a simple
FO that computes Average temperature, Avtemp. Let
our milk van be a complex sender composed of a
number of regions, each of which calculates its own
average temperature and sends it to the milk van. The
milk van sends out the message, Avtemp. Let there be
a complex receiver, Operations, having

components, Cooling Unit and Recording Unit.
Applying Rule 1 to the GOT, we get the pair
<Calculate_Av_temp, (Milk_van, Operations, Avtemp) >

We see that the Milk-van sends its average
temperature to Operations and all components of the
latter receive it. The average temperatures computed
at the regions are not sent to Operations but only to
milk-van. In other words, a valid reduction of the
GOT is
<Calculate_Av_temp, (Milk_van, Cooling Unit, Avtemp)>

AND
<Calculate_Av_temp, (Milk_van, Recording Unit, Avtemp)>

Rule 2: This rule considers Communication with
abstract Sender or Receiver.The rule for
communication is as follows

• The sender is specialized: ANY one or more,
possibly, all the specialized senders can send a
message

• The receiver is specialized: ANY one or more,
possibly all the specialized receivers can
receive the message.

Now, consider a simple FO, Calculate average
temperature. Let us consider the milk van as a region
specialized into two regions, front region and back
region. Each region has its own cooling unit and we
have the receiver, cooling unit specialized into front
cooling unit and back cooling unit. Consider the GOT

<Calculate_Av_temp, (Region, Cooling Unit, Avtemp)>

Applying the rule for specialization, any or both
of our back and front regions can be senders and any
or both the colling units can be receivers. Thus, a
reduction will be:

<Calculate_Av_temp, (Back Region, Back Cooling
Unit, Avtemp)>

OR

<Calculate_Av_temp, (Front Region, Front Cooling
Unit, Avtemp)>

To show communication to more than specialized
receiver, let us change the example. Now, there is the
milk van without regions but two cooling units as
before. Then the message is sent from the milk van to
both units. The GOT to be reduced is as follows

<Calculate_Av_temp, (Milk Van, Cooling Unit,
Avtemp)>

The specialization rule allows the reduction as
follows:

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

584

<Calculate_Av_temp, (Region, Back Cooling Unit,
Avtemp)>

AND

<Calculate_Av_temp, (Region, Front Cooling Unit,
Avtemp)>

Rule 3: This rule considers the case of
communication when an FO is complex. Only the
data resulting from the complex FO is available
for communication. Any data from the component
FOs that needs to be transmitted must be subsumed
by it.

This justifies the example at the end of section 2
above. The FO, Clean Data is a component of the
complex FO, Compute Avtemp. Cleaned data
generated by it is not available for transmission but
only average temperature is. If cleaned data is to be
communicated then it is the responsibility of
Compute Avtemp to do so, in addition to average
temperature.

Rule 1 and Rule 2 apply for communication among
different kinds of senders and receivers of complex
data.

Rule 4: If an FO is abstract and has specialized
FOs, then data available from only one of the
latter may participate in a GOT. That is, a separate
GOT is required for each specialized FO and these are
organized in the GOT reduction hierarchy. Rule 2 and
Rule 3 apply in this case as well.

4 THE REQUIREMENTS
ENGINEERING PROCESS

The requirements specification is a GOT hierarchy.
The requirements engineering process presented in
Fig. 2 considers how the hierarchy is built. We refer
to this process as the GOT Process.

The initial step, Formulate GOT in the GOT
Process is elicitation and formulation of a high-level
GOT. As part of this step, the requirements engineer,
after first eliciting the FO or the CO, proceeds to
complete the GOT. This completion corresponds to a
specification of the various elements comprising the
GOT. For example, it is possible that the FO is
discovered first, as Calculate Average Temperature.
In Formulate GOT, the missing CO part is elicited,
say Inform Cooling Unit. The sender, receiver, and
message of this CO are now determined. This yields
the high-level GOT

<Compute Avtemp, (Milk van, Cooling Unit,
Temperature value)>

With this, Formulate GOT is complete.
Now, as mentioned in section 3, the three aspects

of a GOT that form the basis of GOT reduction are
the FO, Sender, and Receiver. Each of these gives rise
to its own sub-process. We refer to these as FD for
FO Drive, SD for Sender Drive and RD for Receiver
Drive respectively. In the FD, reduction of FO is
done; in the SD reduction of Sender is done and in the
RD, reduction of the Receiver is done. Any of these
can be picked up as the next step in the GOT Process
as shown in Fig. 2.

Figure 2: The GOT Process.

In carrying out these drives, the next level of reduced
FOs, Senders or Receivers respectively are
determined along with their nature, simple, complex
or abstract. It is possible to follow these drives to any
depth as shown by the self-loops in the figure. Upon
exit from the drives, Formulate GOT is carried out
and the reduced GOTs are completely defined. The
reduction process takes into account the four rules of
FO-CO interaction of section 3. It can be seen that
GOT reduction is multi-dimensional: FD yields
reduction in one dimension, RD in the second, and SD
in the third. We will indicate the level in each
dimension by the superscript of the drive, for
example, 3RD and 2SD refer to the third level in the RD
dimension and second level in the SD dimension. The
default dimension is FD.

The GOT Process is applied to each GOT as it is
formulated. The process terminates when simple
GOTs are reached and no further reduction is
possible.

5 THE ACCIDENT EXAMPLE

In this section, we apply the GOT requirements
engineering process to reporting a car accident. In
doing so, we proceed level-wise and complete each
level before proceeding to the next.

The main requirement is to alert help
providers in case of a motor car accident. As
stated, this requirement provides both the FO,
Accident Alert, and the CO, Inform Help
Providers. This latter is further defined in Formulate

A Goal-Oriented Requirements Engineering Approach for IoT Applications

585

GOT to determine the Sender, Accident Estimator
that sends the message, SOS to the receiver, Helper.
Accident Alert is predicated on detecting that an
accident has occurred. The first row of Table I shows
the GOT in two parts in the two columns Functional
Objective and Communication Objective
respectively. The root level of the GOT hierarchy
(level 1 in the table) has been determined and GOT
reduction can now be carried out.

Table 1: FO-Reduced GOT <Accident Alert, Inform Help
Providers>.

Level Functional
Objective

Communication
Objective

1 Accident
Alert

Accident Estimator,
Helper, "SOS”

2 Airbag
Release Alert

Air Bag Mechanism,
Accident Estimator,
“Air Bag Released”

2 Seat Belt
Tension Alert

Seat Belt Mechanism,
Accident Estimator,

Tension Value

2 Impact Alert
Impact Assessor,

Accident Estimator,
Impact Value

Out of the three drives of Fig 2, let the
requirements engineer choose to apply FD to reduce
Accident Alert. It is determined that Accident Alert
is a complex FO built from multiple inputs. The
second and subsequent rows in Table I show these
FOs. Formulate GOT is applied to each of these FOs
and the COs are determined for each.

Table 2: RD of Root GOT.

Level Functional
Objective Communication Objective

 1 Accident Alert Accident Estimator,
Helper, "SOS”

2RD Accident Alert Accident Estimator,
Police, "SOS”

2RD
Accident Alert Accident Estimator,

Health Service, "SOS”

2RD Accident Alert Accident Estimator,
Relative, "SOS”

Now let us apply SD of Fig 2 to the root goal.
Senders of the reduced GOTs have already been
determined as the result of applying the FD and the
subsequent Formulate GOT step. Now, the
requirements engineer determines that there is an OR
relationship between the second level GOTs since all
are alternative ways of estimating accident
occurrence. Consequently, Accident Estimator is an

abstract sender, with the second level senders as its
specialization.

The requirements engineer now proceeds to apply
RD to the root goal. In fact, the receiver, Helper is
complex as shown in Table II since all must be
informed about the accident. This change in
dimension is shown by the superscript.

Now, the requirements engineer applies the
reduction process to each of the second level GOTs
in Table I. FOs for Airbag Release Alert and Seat Belt
Tension Alert (second and third rows of Table I) are
non-reducible. Attention shifts to Impact Alert and
the result is shown in Table III. There are four ways
in which the car can be impacted making it a complex
FO. Notice that these are at the third level of the GOT
hierarchy.

SD is applied to the GOT for Impact Alert. Again,
the reduced senders have already been determined at
the third level GOTs. The question is only about their
relationships. Any one or more third level senders can
send a message to the second level GOT making
Impact Assessor an abstract sender with third
level senders as its specializations. Application of
RD to Impact Alert shows that the receiver Accident
Estimator structure has already been considered.
Thus, RD does not contribute any further GOTs.

Table 3: Reduction of Impact Alert.

Level Functional
Objective

Communication
Objective

2 Impact Alert
Impact Assessor,

Accident Estimator,
Impact Value

3 Frontal Impact
Alert

Front Acceleration
Assessor,

Impact Assessor,
Acceleration Value

3 Rear Impact
Alert

Back Acceleration
Assessor,

Impact Assessor,
Acceleration Value

3 Right Impact
Alert

Right Acceleration
Assessor,

Impact Assessor,
Acceleration Value

3 Left Impact
Alert

Left Acceleration
Assessor,

Impact Assessor,
Acceleration Value

During application of FO to each of the newly
discovered GOTs, the requirements engineer
determines that these are all simple. Since GOTs of
Table III are all irreducible, the GOT Process comes
to an end.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

586

5.1 The Starting Objective

According to the GOT process, it is possible to deploy
any drive in any order. In the accident example, we
gave precedence to FD. Instead, the requirements
engineer can start with reducing the communication
objective first. In the accident example, this means
that the starting requirement is, “Inform all helpers
that a resident has had an accident” leading to the
communication objective (Resident, Helper, “SOS”).
During the Formulate GOT, the functional objective,
Accident Alert would be identified and the GOT
formulated. Thereafter, instead of FD, the
requirements engineer could follow the RD and
determine the complex structure of Helper.
Alternatively, the SD could be followed.

6 COMPARISON

In this section we compare our proposal with the goal
oriented one of (Reggio, 2018) and use case based
approach of (Meacham, 2016). This allows a
comparison of the GOT approach with existing two
major approaches to requirements engineering.

6.1 The Goal-Oriented Genoa Science
Festival

The major differences between GOT and (Reggio,
2018) are as follows:

• Reggio proposes an explicit domain modelling
stage that yields participants and objects
whereas the GOT approach determines these as
part of the requirements engineering process.

• Sequence and activity diagrams of (Reggio,
2018) identify respectively, the data needed for
realizing operative goals and the sequence of
operations to be carried out. In GOT, the issue
of how irreducible functional objectives are
operationalized is not considered. Rather, it is
left to be considered in a subsequent step that
deals with conversion of the GOT model to the
IoT conceptual model (Prakash 2022). This
aspect is the subject of another paper.

• The communication aspect is brought into
(Reggio 2018) by associating technological
goals like “Communicate with Visitors Using
Email” with operative goals like ‘Ask for
Booking Confirmation’. How this association is
carried out is not clarified but evidently, it is not
part of the reduction process. We believe that
this reflects the functional objective-

communication objective dichotomy found in
the IoT domain. This dichotomy led us to
integrate both in the notion of a GOT.

• The well defined-ness of technological goals of
(Reggio 2018) is not formulated. In the GOT
model, the communication objective is
specified when the sender, receiver, and
message are all specified.

• Technological goals of (Reggio, 2018) reflect a
choice of communication and device
technologies likely to deliver operative goals.
There is no proposal here to consider
alternatives. In contrast, through SD and RD,
we do AND/OR reduction of a GOT.

6.2 The Use Case View of Fall
Detection

Let us now turn our attention to the Fall detection
system of (Meacham, 2016):

• Use cases are not used in (Meacham, 2016) to
specify data flows in and out of the system but only to
define SySML blocks so as to express objectives in
textual form.

• Low-level use cases correspond to GOT
reduction following FD. However, in (Meacham
2016), we have only a high and low level. This
inhibits recursive reduction.

• SySML RDs do not express the message and its
sender/receiver.

• The use of free text does not provide any
structure for the notion of an objective. In contrast, the
GOT is model driven. This provides a systematic
GOT Process with clear expressive power and
guidance.

7 CONCLUSION

An IoT application has its own specific requirements
consisting of communication among connected
things and processing carried out at things. We have
defined a GOT that integrates the notions of
functional and communication objectives. The
structure of a GOT permits specification of a variety
of communication needs like sending messages to
multiple receivers or selected senders sending
messages to selected receivers.

The issue of non-functional requirements surfaces
in two ways in an IoT application. There are
traditionally recognized issues like security,
reliability etc. Additionally, an IoT has its own non-
functional requirements. These are for example, the

A Goal-Oriented Requirements Engineering Approach for IoT Applications

587

cost; battery life, remaining battery charge;
convenience of humans wearing devices and so on.
We believe that these require detailed investigation in
the future.

REFERENCES

Anton A., McCracken W., Potts C (1994). Goal
Decomposition and Scenario Analysis in Business
Process Reengineering. Proc. 6th Conference On
Advanced Information Systems Engineering
(CAiSE’94), Utrecht, Holland, June 1994

Costa B., Pires P.F., Delicato F. C. (2017), Specifying
Functional Requirements and QoS Parameters for IoT
Systems, 2017 IEEE 15th Intl Conf on Dependable,
Autonomic and Secure Computing, 15th Intl Conf on
Pervasive Intelligence and Computing, 3rd Intl Conf on
Big Data Intelligence and Computing and Cyber
Science and Technology Congress, 407-414.

Costa B., Pires P.F., Delicato F. C. (2016), Modeling IoT
Applications with SysML4IoT, 42nd Euromicro
Conference on Software Engineering and Advanced
Applications, 157-164.

Dardenne, A.; Lamsweerde, A.V.; Ficas, S. (1993). Goal
Directed Acquisition. Science of Computer
Programming. 20:(1-2)

Eterovic, T., et al., (2015), An Internet of Things visual
domain specific modeling language based on UML."
Information, Communication and Automation
Technologies (ICAT), 2015 XXV International
Conference on. IEEE, 2015 (3)

Ferati M., Kurti A., Vodel B., Raufi B., (2016),
Augmenting Requirements Gathering for People with
Special Needs using IoT: A Position Paper, 9th Intl.
Workshop on Cooperative and Human Aspects of
Software Engineering, ACM, 48 -51

Fleurey, F., Morin, B., Solberg, A., & Barais, O., (2011),
MDE to manage communications with and between
resource-constrained systems. In International
Conference on Model Driven Engineering Languages
and Systems, 349-363

Föcker F., Neubauer A., Metzger A., Gröner G., Pohl K.
(2015), Real-time Cargo Volume Recognition using
Internet-connected 3D Scanners. ENASE, 323-330.

Kotronis C., Nikolaidou M., Dimitrakopoulos G.,
Anagnostopoulos D., Amira A., Bensaali F. (2018), A
Model-based Approach for Managing Criticality
Requirements in e-Health IoT Systems, in 13th Annual
Conference on System of Systems Engineering (SoSE),
60-67.

Lamsweerde van A. (2000), Requirements Engineering in
the Year 00: A Research Perspective, Keynote Paper for
ICSE’2000 - 22nd International Conference on
Software Engineering, Limerick, ACM Press

Meacham S., Phalp K., (2016) Requirements Engineering
Methods for an Internet of Things applications: Fall
Detection for Ambient Assisted Living, BCS
SQM/Inspire Conference

Mezghani E., Exposito E., Drira K., (2017), A Model-
Driven Methodology for the Design of Autonomic and
Cognitive IoT-Based Systems: Application to
Healthcare, in IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 1, no. 3, 224-234

Mikusz M., Schafer T., Taraba T., Jud C.
(2017),Transforming the Connected Car into a Business
Model Innovation, 19th IEEE Conference on Business
Informatics, 247 – 256.

Prakash D., Prakash N., (2021), Towards a Life Cycle for
IoT Applications Development, TechRxiv.
Preprint.https://doi.org/10.36227/techrxiv.14906277.v1

Prakash N., Prakash D.(2022), Concepts for Conceptual
Modelling of an IoT Application. ENASE, 494-501

Prehofer C., Chiarabini L. (2015), From Internet of Things
Mashups to Model-Based Development. Proceedings
of the 2015 IEEE 39th Annual Computer Software and
Applications Conference, COMPSAC ’15, vol. 3, 499-
504

Reggio G., (2018), A UML based Proposal for IoT
Requirements Specification, 10th International
Workshop on Modelling in Software Engineering, 9 -
16.

Stankovic J.A.,(2014), Research Directions for the Internet
of Things, IEEE Internet of Things Journal, 1, 1, 3 -9.

Takai T., Shintani K., Andoh H., and Washizaki H. (2019),
Case Study Applying GQM+Strategies with SysML for
IoT Application System Development," 8th
International Congress on Advanced Applied
Informatics (IIAI-AAI), 914-919.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

588

