
Towards Automated Prediction of Software Bugs from Textual
Description

Suyash Shukla and Sandeep Kumar
Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Roorkee, India

Keywords: Issue Tracking System, Machine Learning, Term Frequency Inverse Document Frequency, Smartshark.

Abstract: Every software deals with issues such as bugs, defect tracking, task management, development issue to a
customer query, etc., in its entire lifecycle. An issue-tracking system (ITS) tracks issues and manages software
development tasks. However, it has been noted that the inferred issue types often mismatch with the issue title
and description. Recent studies showed machine learning (ML) based issue type prediction as a promising
direction, mitigating manual issue type assignment problems. This work proposes an ensemble method for
issue-type prediction using different ML classifiers. The effectiveness of the proposed model is evaluated over
the 40302 manually validated issues of thirty-eight java projects from the SmartSHARK data repository, which
has not been done earlier. The textual description of an issue is used as input to the classification model for
predicting the type of issue. We employed the term frequency-inverse document frequency (TF-IDF) method
to convert textual descriptions of issues into numerical features. We have compared the proposed approach
with other widely used ensemble approaches and found that the proposed approach outperforms the other
ensemble approaches with an accuracy of 81.41%. Further, we have compared the proposed approach with
existing issue-type prediction models in the literature. The results show that the proposed approach performed
better than existing models in the literature.

1 INTRODUCTION

The maintenance of any software system is crucial
as it involves activities such as mitigating potential
defects in the source code, the evolvement of soft-
ware based on user requirements, etc. Issue track-
ing systems such as JIRA, Github, etc., are tools that
support these maintenance tasks by efficiently man-
aging and controlling issues arising in the software.
The software developers or users label the issue in the
system, which helps maintain the software (Alonso-
Abad et al., 2019). However, it is noticeable from
the existing research that reported issue types usu-
ally differ in their title, and description (Antoniol
et al., 2008; Herzig et al., 2013a). Misclassified is-
sues can negatively affect the software development
process and users who use the issue-tracking system
data. Researchers conducted experiments over dif-
ferent datasets (Herzig et al., 2013a; Herbold et al.,
2020a) and reported that almost 40% of the issues are
misclassified as bugs.

One way to deal with the problem of mislabelling
is by using machine learning (ML) techniques to pre-
dict issue types from the title and description of the

issue. In the past, the researchers used different su-
pervised(Antoniol et al., 2008; Chawla and Singh,
2015; Zhou et al., 2016; Otoom et al., 2019; Kallis
et al., 2019) and unsupervised (Hammad et al., 2018;
Chawla and Singh, 2018) learning models for auto-
mated issue-type prediction over different datasets.
The classifiers provide good prediction accuracy;
however, there are chances that the predicted issue
types might still be misclassified. This problem can
be alleviated by training the model with manually ver-
ified issue data. To handle these gaps, we have pre-
sented a methodology for the prediction of issue type
from a textual description of the issue. Further, this
work proposes an ensemble approach for issue type
prediction over the 40302 manually validated issues
of thirty-eight java projects from the SmartSHARK
data repository. The proposed ensemble model uses
naive Bayes (NB), K-nearest neighbor (KNN), deci-
sion tree (DT), and logistic regression (LR) as base
estimators and support vector classifier (SVC) as the
meta estimator. The textual descriptions of various
issues are used as input to the proposed model for
predicting its type. The textual data is converted into
numerical features using the term frequency-inverse

Shukla, S. and Kumar, S.
Towards Automated Prediction of Software Bugs from Textual Description.
DOI: 10.5220/0011982400003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 193-201
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

193



document frequency (TF-IDF) method and provided
to the proposed model.

The following are some of the contributions made
by the work presented:

• We extracted the data of different java projects
from the SmartSHARK release 2.2 data reposi-
tory and preprocessed them. Hence, through this
work, we have contributed a ready-to-use dataset
with issues verified by the researchers.

• We have proposed an ensemble-based approach
for issue-type prediction. The proposed approach
used the TF-IDF method to convert the textual
description of different issues into numerical fea-
tures. These numerical features will serve as input
for the issue type prediction.

• We have compared the effectiveness of the pro-
posed approach against different solo and ensem-
ble classification models for issue-type prediction.

• We have also compared the proposed approach to
existing models in the literature.

The following research questions will be investi-
gated in the experimental study presented:

RQ1: How does combining issue title and de-
scription affects model performance?

RQ2: How effective is the proposed method com-
pared to the base learners utilized for issue-type pre-
diction?

RQ3: How effective is the proposed method com-
pared to the ensemble learners utilized for issue-type
prediction?

The remainder article is organized as follows:
Section 2 discusses related work for issue-type pre-
diction. The process for data preparation is discussed
in Section 3. The overview of the proposed method-
ology is discussed in section 4. Section 5 discusses
the implementation details and results of the experi-
mental analysis. Section 6 discusses the comparative
analysis. The answers to the RQs are discussed in sec-
tion 7. In Section 8, threats to validity are examined.
Finally, Section 9 discusses the conclusion.

2 RELATED WORK

Both supervised and unsupervised methods have been
used for issue-type prediction. Antoniol et al. (An-
toniol et al., 2008) used three classification algo-
rithms (NB, DT, and LR) and the term frequency ma-
tric (TFM) feature representation method for issue
type prediction. They also used symmetrical uncer-
tainty feature selection to remove irrelevant features.
Chawla et al. (Chawla and Singh, 2015) utilized a

fuzzy classifier with TFM over the issue title to pre-
dict the issue type. Otoom et al. (Otoom et al., 2019)
modified the TFM method by introducing a set of 15
words and calculated the term frequencies of those
words from the issue title and descriptions. Zhou et
al. (Zhou et al., 2016) used the structural information
of issues with their title and descriptions for issue type
prediction. They also classified titles into three cat-
egories (high, low, medium) based on the difficulty
of deciding whether it’s a bug or not and used them
to train the NB classifier. Herbold et al. (Herbold
et al., 2020b) developed a methodology incorporat-
ing manually specified knowledge for issue-type pre-
diction using ML models. They used ML classifiers
to predict issue types over the SmartSHARK dataset.
Li et al. (Li et al., 2022) also developed a method
for issue type prediction incorporating Long Short-
Term Memory as a feature extraction method over the
SmartSHARK dataset.

Some researchers used unsupervised learning al-
gorithms by categorizing issues into different clus-
ters to predict issue types. Hammad et al. (Hammad
et al., 2018) used an agglomerative hierarchical clus-
tering approach to categorize issues into distinct clus-
ters based on similarity. Then, they identified features
for each cluster and built an ML model for each clus-
ter to predict issue types. Chawla et al. (Chawla and
Singh, 2018) used fuzzy C-means clustering for the
same task.

Based on the above discussion, we can say that
both supervised and unsupervised learning models
were used in the literature and provided good pre-
diction accuracy. However, there are still misclassi-
fied issues, which may create problems for the high-
quality software applications which are largely depen-
dent on the information of these issue-tracking sys-
tems. This problem requires the manual interven-
tion of researchers to verify developer-assigned is-
sue types. The SmartSHARK data repository used
in this work has projects containing manually vali-
dated issues by the researchers. The learning model’s
performance can be improved by evaluating them
over manually validated issues. So, this work pro-
poses an ensemble classification model for issue type
prediction over manually validated issues from the
SmartSHARK data repository.

3 DATASET GENERATION

This work uses the SmartSHARK release 2.2
(Trautsch et al., 2021) dataset for experimentation,
which is recently published and used by several re-
searchers (Khoshnoud et al., 2022; de Almeida et al.,

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

194



Table 1: Detailed Information on the Dataset used.

Projects # of Issues # of Bugs # of Non-Bugs
Ant Ivy 1526 912 614
Archiva 1630 1035 595
Calcite 2281 1689 592

Cayenne 2366 1196 1170
Commons Bcel 305 237 68

Commons Beanutils 509 322 187
Commons Codec 240 129 111

Commons Collections 639 337 302
Commons Compress 453 263 190

Commons Configuration 719 432 287
Commons Dbcp 530 365 165

Commons Digester 188 118 70
Commons Io 565 272 293
Commons Jcs 159 117 42
Commons Jexl 270 126 144
Commons Lang 1342 619 723
Commons Math 1395 667 728
Commons Net 646 456 190

Commons Scxml 269 106 163
Commons Validator 444 257 187

Commons Vfs 669 417 252
Deltaspike 1034 406 628

Eagle 997 384 613
Giraph 1129 496 633
Gora 535 184 351

Jspwiki 942 554 388
Knox 1383 821 562
Kylin 2810 1511 1299
Lens 1096 490 606

Mahout 1825 755 1070
Manifoldcf 1534 802 732

Nutch 2508 1164 1344
Opennlp 1068 312 756

Parquet Mr 1138 581 557
Santuario Java 495 379 116

. Systemml 1476 496 980
Tika 2572 1299 1273

Wss4j 615 329 286
40302 21035 19267

2022; Peruma et al., 2022). The SmartSHARK
dataset contains issue-tracking data, bug-inducing
data, mailing lists, pull request data, etc., of 96
java projects, available in larger (640 gigabytes) and
smaller forms (65 gigabytes). However, we have only
extracted data from thirty-eight java projects from
the SmartSHARK release 2.2 data repository because
they contain manually validated issues. The high-
lights of thirty-eight java projects used for this work
are shown in Table 1.

To acquire issue data from these projects, first, we

downloaded the .agz file of the SmartSHARK dataset,
as shown in Figure 1. Then, we created a MongoDB
instance and loaded the dataset locally using mon-
gorestore. Finally, we selected the issue tracker of
the project under consideration and extracted its is-
sue data. The issue dataset used in this work contains
40302 issues. Out of 40302 issues, 21035 are bugs,
and 19267 are nonbugs.

Towards Automated Prediction of Software Bugs from Textual Description

195



Figure 1: Extraction of Issues from the SmartSHARK Data.

4 PROPOSED METHODOLOGY

The methodology used for issue-type prediction is di-
vided into three steps, as discussed in Figure 2.

4.1 Load Issue Data

This step involves loading the extracted issue data,
which contains the issue id, title, description, issue
type, status, linked issues, priority, pull request, etc.
However, we used only textual data as independent
features to predict the issue type for this work. The
issue type represents the type of issue that can be
of any type, such as bug, task, enhancement, im-
provement, new feature, etc. But we have consid-
ered the issue types other than bugs as non-bugs be-
cause this work aims to investigate the classification
of bug and non-bug issues. Ready-to-use datasets
of our experimental analysis can be found in the
GitHub repository. https://anonymous.4open.science/
r/ENASE\ Research-1BD8.

4.2 Data Preprocessing

The data extracted from the issue tracker is in raw for-
mat. So, preprocessing is required to convert data into
a usable format. Purposefully, we removed the issues
containing missing values for independent or depen-
dent features and followed the below steps:

• Tokenization of textual descriptions: This step
breaks the textual descriptions into tokens. Then,
it removes the unnecessary punctuation from
them.

• Conversion into Lowercase: This step converts
the words (or tokens) in the text to lowercase as

the programming languages are case-sensitive and
consider ‘was’ and ‘WAS’ as different words.

• Removal of Stopwords: There are so many
words in the natural language that do not represent
any useful information when used alone. These
words are called stopwords and can be removed
from the feature space.

• Conversion of words into stems: This is one of
the most important steps in topic modeling, which
converts the words (or tokens) into their stems.
The benefit of stemming is that the words such
as stop, stopped, and stopping are considered the
same.

• Convert textual data to numerical data: After
stemming, we used the TF-IDF method to convert
the textual data into numerical features to make
it suitable for the machine learning model. The
TF-IDF is an important technique in information
retrieval, which computes the score for each word
in the text and signifies its importance.

4.3 Model Training and Testing

After obtaining the numerical features from the is-
sue’s textual description, the proposed ensemble
model is built over them to predict the type of issue.
The proposed model is based on the idea of stacking
ensemble, which uses four classification models, such
as NB, KNN, DT, and LR as base estimators and SVC
as the meta estimator. First, the issue data is given to
the base estimators to generate intermediate predic-
tions, which will then be fed to the meta-estimator to
generate final predictions. These final predictions will
be used to evaluate the performance of the proposed
model.

5 EXPERIMENTAL ANALYSIS

5.1 Implementation Details

This subsection discusses the implementation details
used for the experimental analysis. For experimenta-
tion, we have chosen the most commonly used classi-
fiers in this domain, i.e., NB, KNN, DT, LR, and SVC.
NB and KNN are selected due to their simplicity and
easy-to-implement nature, DT and LR are chosen due
to their versatility, and SVC is chosen as it minimizes
the risk of overfitting. To evaluate the performance of
the proposed model, we divided the issue data into
the ratio 70:30, 70% of the data is used for model
training, whereas 30% of the data is used for model
testing. We have chosen the default hyperparameters

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

196



Figure 2: Extraction of Issues from the SmartSHARK Data.

Table 2: Details of performance measures utilized.

Measure Description Formula

Accuracy (A) It is the proportion of correctly predicted
issues compared to all issues. A = Correctly Predicted Issues

All Issues

Precision (P) It is the proportion of correctly predicted
bugs compared to all bugs. P = Correctly Predicted Bugs

All Bugs

Recall (R) It is the proportion of correctly predicted
bugs compared to all predicted bugs. R = Correctly Predicted Bugs

All Predicted Bugs

F1-score (F1) It is defined as the harmonic mean of
precision and recall. F1 = 2 P∗R

P+R

for each classification model. The implementation of
different ML techniques is done using the scikit-learn
library of python.

5.2 Performance Measures

The earlier works on issue-type prediction used pre-
cision, recall, and f1-score to evaluate classifier per-
formance (Antoniol et al., 2008; Kallis et al., 2019;
Herzig et al., 2013b; Hosseini et al., 2017; Just et al.,
2014; Lukins et al., 2008; Marcus et al., 2004). We
have also used these performance measures in this

work. Apart from these three measures, we have also
used the accuracy (Mills et al., 2018) measure to eval-
uate different classifiers. The formula and description
of these measures are shown in Table 2.

5.3 Experimental Results

This subsection presents the experimental results of
this work on applying the proposed ensemble ap-
proach over the 40302 manually validated issues of
thirty-eight java projects from the SmartSHARK data
repository. The performance of the proposed ensem-

Towards Automated Prediction of Software Bugs from Textual Description

197



Figure 3: Performance of the proposed model over different textual fields.

ble model is evaluated under three scenarios, (i) Only
title as input to the proposed model, (ii) Only descrip-
tion as input to the proposed model, (iii) Combination
of title and description as input to the proposed model.
The performance of the proposed model for manually
validated issues is shown in Figure 3.

From Figure 3, we can say that the proposed
model performed well when only considering the is-
sue title as the input to the model with an accuracy
of 81.41%, demonstrating that the issue title contains
more useful information to predict its type. Also, the
concatenation of the issue title and description is not
effectively using the information of two fields as the
performance is decreasing. Table 3 shows the confu-
sion matrix obtained after applying testing data to the
proposed model.

Table 3: Confusion matrix for the testing data.

Bug NonBug
Bug 5111 1231

NonBug 1016 4733

6 COMPARATIVE ANALYSIS

6.1 Comparison with Other Models

This subsection compares the performance of the pro-
posed model with the base learners (NB, KNN, DT,
and LR) and widely used ensemble learners such as
the bagging classifier, AdaBoost classifier, random
forest classifier (RFC), gradient boosting classifier
(GBC), and extra tree classifier. The comparison of

the proposed model against the other models is shown
in Table 4.

From Table 4, we can say that the proposed model
outperformed the base learners used in this work.
The accuracy of the base learners lies in 0.6605-
0.8035, whereas the accuracy of the proposed model
is 0.8141. Similarly, the accuracy of the ensemble
learners lies in 0.7409-0.8113, which is lower than
the proposed model. We have used Wilcoxon’s signed
rank (Seo and Bae, 2013) test for the statistical analy-
sis as it does not require the data to follow any distri-
bution. The Wilcoxon test compares the relative per-
formance of two models depending on the p-value; a
p-value less than 0.05 shows the models are signifi-
cantly different, whereas a p-value greater than 0.05
indicates no difference among the models. Wilcoxon
test results for different classifiers used in this work
are shown in Table 5.

Table 5 shows that the proposed model differs sig-
nificantly from the other models, as the p-values are
less than 0.05.

6.2 Comparison with Existing Works

This section compares the performance of the pro-
posed approach with the existing works (Otoom et al.,
2019; Kallis et al., 2019; Herbold et al., 2020b;
Pandey et al., 2018; Limsettho et al., 2014) on issue-
type prediction in the literature. The existing works
mentioned above have used datasets other than the
one used in this work, as the SmartSHARK (cur-
rent release) data-based works are not available in the
literature. Limsettho et al.(Limsettho et al., 2014),
Otoom et al. (Otoom et al., 2019), and Pandey et
al. (Pandey et al., 2018) have used three OSS project

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

198



Table 4: Comparison of the proposed model with the base learners.

Technique A P R F1

Base Learners NB 0.782648251 0.777495517 0.820403658 0.798373485
KNN 0.660573981 0.766555503 0.507410911 0.610626186
DT 0.738565875 0.759419344 0.734153264 0.746572597
LR 0.803572905 0.831301152 0.784768212 0.80736475

Ensemble Learners Bagging 0.774046812 0.784790155 0.784295175 0.784542587
AdaBoost 0.740964354 0.792136877 0.686218858 0.735383576

RFC 0.794144405 0.811278074 0.791706086 0.801372596
GBC 0.753535688 0.800071403 0.706717124 0.750502344

Extra tree 0.811347283 0.826499437 0.810469883 0.818406178
Proposed Model 0.814159 0.834177 0.805897 0.819793

Table 5: P-values for different models.

P-value H-stat Significance
Proposed vs NB 8.201e-05 10.0 Yes

Proposed vs KNN 1.907e-06 0.0 Yes
Proposed vs DT 1.907e-06 0.0 Yes
Proposed vs LR 0.0239 45.0 Yes

Proposed vs Bagging 1.907e-06 0.0 Yes
Proposed vs AdaBoost 1.907e-06 0.0 Yes

Proposed vs RFC 0.00315 29.0 Yes
Proposed vs GBC 1.907e-06 0.0 Yes

Proposed vs Extra tree 0.03123 41.5 Yes

datasets from the Apache repository. Kalis et al.
(Kallis et al., 2019) used a dataset of 30000 issues
from Github, while Herbold et al. (Herbold et al.,
2020b) used the earlier release of the SmarkSHARK
dataset. The F1-score for the existing works lies
in 0.65-0.805, whereas the F1-score of the proposed
method is 0.819793. So, we can say that the results
obtained from the proposed model are significantly
improved compared to the existing works in the liter-
ature.

7 DISCUSSION

This section discusses answers to the research ques-
tions.

RQ1: How does combining issue title and de-
scription affects model performance?

To answer this RQ, we evaluated the performance
of the proposed ensemble model is evaluated un-
der three scenarios, (i) title as input to the proposed
model, (ii) description as input to the proposed model,
(iii) a combination of title and description as input
to the proposed model, shown in Figure 3. Figure 3
shows that the proposed model performed well when
only considering the issue title as the input to the
model with an accuracy of 81.41%, demonstrating
that the issue title contains more useful information

to predict its type.
RQ2: How effective is the proposed method com-

pared to the base learners utilized for issue-type pre-
diction?

To answer this RQ, we compared our model’s per-
formance to that of the basic learners (NB, KNN, DT,
and LR) employed in this study, as shown in Table
4. The suggested model performed better than the
basic learners utilized in this work, as shown in Ta-
ble 4. The proposed model’s accuracy is 0.8141 as
opposed to the base learners’ accuracy, which ranges
from 0.6605-0.8035.

RQ3: How effective is the proposed method com-
pared to the ensemble learners utilized for issue-type
prediction?

To answer this RQ, we have compared the perfor-
mance of the proposed model with the widely used
ensemble learners such as the bagging classifier, Ad-
aBoost classifier, RFC, GBC, and extra tree classifier,
as shown in Table 4. Table 4 shows that the proposed
model outperformed the ensemble learners used in
this work. The accuracy of the ensemble learners lies
in 0.7409-0.8113, whereas the accuracy of the pro-
posed model is 0.8141.

Towards Automated Prediction of Software Bugs from Textual Description

199



8 THREATS TO VALIDITY

This section discusses threats related to validity.
Internal Validity: Internal validity is primarily jeop-
ardised by the possibility of errors in the implementa-
tion of the proposed and compared approaches in the
study. To reduce this risk, we build the proposed and
compared approaches on mature frameworks/libraries
(such as Jupyter and sklearn) and thoroughly test our
code and experiment scripts before and during the ex-
perimental study. Another risk may be posed by pa-
rameter settings for the investigated methods. How-
ever, for the learning models investigated in this pa-
per, we used default hyperparameters.
External Validity: External validity discusses the
generalizability of the results of this work. This work
uses only thirty-eight java projects, and their data is
gathered from the JIRA issue tracker. So, the results
of this work may not apply to projects developed in
different programming languages whose data is col-
lected from other issue trackers.
Construct Validity: Construct validity discusses the
performance measures used in this work. The pre-
sented work uses four performance measures: accu-
racy, precision, recall, and F1-score, for model evalu-
ation by ignoring the other important measures, which
may affect the results of this work. Although we
have verified with different works in the literature and
found that the measures used in this work are the most
popular measures for issue type prediction.

9 CONCLUSION

The issue-tracking systems are useful for software
maintenance activity. However, the incorrect clas-
sification of issues may create problems for high-
quality software applications. This problem re-
quires the manual intervention of researchers to ver-
ify developer-assigned issue types. An ample amount
of research has been done for issue-type prediction
over different datasets in the past. However, the used
datasets do not have manually verified issues. In this
work, we used the SmartSHARK release 2.2 dataset
containing manually verified projects for analysis and
handled various challenges related to the dataset men-
tioned above. Further, we proposed an ensemble-
based approach and evaluated its performance over
the 40302 manually validated issues of thirty-eight
java projects from the SmartSHARK data repository.
The results show that the proposed model performed
well when considering only the issue title as the in-
put. Further, we have compared the proposed ap-
proach with other models and found that the proposed

approach showed significant improvement compared
to the other models.

REFERENCES

Alonso-Abad, J., López-Nozal, C., Maudes-Raedo, J., and
Marticorena-Sánchez, R. (2019). Label prediction on
issue tracking systems using text mining. Progress in
Artificial Intelligence, 8(3):325–342.

Antoniol, G., Ayari, K., Penta, M. D., Khomh, F., and Gue-
heneuc, Y. (2008). Is it a bug or an enhancement?:
A text-based approach to classify change requests. In
In: Proceedings of the 2008 Conference of the Cen-
ter for Advanced Studies on Collaborative Research:
Meeting of Minds, pages 304–318.

Chawla, I. and Singh, S. (2015). An automated approach
for bug categorization using fuzzy logic. In In: Pro-
ceedings of the 8th India Software Engineering Con-
ference, pages 90–99.

Chawla, I. and Singh, S. (2018). Automated labeling of is-
sue reports using semisupervised approach. Journal of
Computational Methods in Sciences and Engineering,
18(1):177–191.

de Almeida, C., Feijó, D., and Rocha, L. (2022). Studying
the impact of continuous delivery adoption on bug-
fixing time in apache’s open-source projects. In In
Proceedings of the 19th International Conference on
Mining Software Repositories, pages 132–136.

Hammad, M., Alzyoudi, R., and Otoom, A. (2018). Auto-
matic clustering of bug reports. International Journal
of Advanced Computer Research, 8(39):313–323.

Herbold, S., Trautsch, A., and Trautsch, F. (2020a). Is-
sues with szz: An empirical assessment of the state of
practice of defect prediction data collection. In arXiv
preprint arXiv:1911.08938.

Herbold, S., Trautsch, A., and Trautsch, F. (2020b). On the
feasibility of automated prediction of bug and non-bug
issues. Empirical Software Engineering, 25(6):5333–
5369.

Herzig, K., Just, S., and Zeller, A. (2013a). It’s not a bug,
it’s a feature: How misclassification impacts bug pre-
diction. In In: Proceedings of the International Con-
ference on Software Engineering, page 392–401.

Herzig, K., Just, S., and Zeller, A. (2013b). It’s not a bug,
it’s a feature: How misclassification impacts bug pre-
diction. In In: Proceedings of the International Con-
ference on Software Engineering, page 392–401.

Hosseini, S., Turhan, B., and Gunarathna, D. (2017). A sys-
tematic literature review and meta-analysis on cross-
project defect prediction. IEEE Transactions on Soft-
ware Engineering, 45(2):111–147.

Just, R., Jalali, D., and Ernst, M. (2014). Defects4j: A
database of existing faults to enable controlled test-
ing studies for java programs. In In: Proceedings of
the 2014 International Symposium on Software Test-
ing and Analysis (ISSTA), pages 437–440.

Kallis, R., Sorbo, A., Canfora, G., and Panichella, S.
(2019). Ticket tagger: Machine learning-driven is-

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

200



sue classification. In In: IEEE International Con-
ference on Software Maintenance and Evolution (IC-
SME), pages 406–419.

Khoshnoud, F., Nasab, A., Toudeji, Z., and Sami, A. (2022).
Which bugs are missed in code reviews: An empiri-
cal study on smartshark dataset. In In Proceedings of
the 19th International Conference on Mining Software
Repositories, pages 137–141.

Li, Z., Pan, M., Pei, Y., Zhang, T., Wang, L., and Li, X.
(2022). Deeplabel: Automated issue classification for
issue tracking systems. In In: 13th Asia-Pacific Sym-
posium on Internetware, pages 231–241.

Limsettho, N., Hata, H., and Matsumoto, K. (2014). Com-
paring hierarchical dirichlet process with latent dirich-
let allocation in bug report multiclass classification.
In 15Th IEEE/ACIS international conference on soft-
ware engineering, artificial intelligence, networking
and parallel/distributed computing (SNPD), pages 1–
6.

Lukins, S., Kraft, N., and Etzkorn, L. (2008). Source code
retrieval for bug localization using latent dirichlet al-
location. In In: Proceedings of the 2008 15th Working
Conference on Reverse Engineering, pages 155–164.

Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J.
(2004). An information retrieval approach to con-
cept location in source code. In In: Proceedings of
the 11th Working Conference on Reverse Engineering,
page 214–223.

Mills, C., Pantiuchina, J., Parra, E., Bavota, G., and Haiduc,
S. (2018). Are bug reports enough for text retrieval-
based bug localization? In In: IEEE Int. Conf. on
Software Maintenance and Evolution (ICSME), page
381–392.

Otoom, A., Al-jdaeh, S., and Hammad, M. (2019). Auto-
mated classification of software bug reports. In In:
Proceedings of the 9th International Conference on
Information Communication and Management, pages
17–21.

Pandey, N., Hudait, A., Sanyal, D., and Sen, A. (2018). Au-
tomated classification of issue reports from a software
issue tracker. In Progress in intelligent computing
techniques: theory, practice, and applications, page
423–430.

Peruma, A., AlOmar, E., Newman, C., Mkaouer, M., and
Ouni, A. (2022). Refactoring debt: Myth or real-
ity? an exploratory study on the relationship between
technical debt and refactoring. In In Proceedings of
the 19th International Conference on Mining Software
Repositories, pages 127–131.

Seo, Y. and Bae, D. (2013). On the value of outlier elimina-
tion on software effort estimation research. Empirical
Software Engineering, 18(4):659–698.

Trautsch, A., Trautsch, F., and Herbold, S. (2021).
SmartSHARK 2.2 Small.

Zhou, Y., Tong, Y., Gu, R., and Gall, H. (2016). Combining
text mining and data mining for bug report classifi-
cation. Journal of Software: Evolution and Process,
28(3):150–176.

Towards Automated Prediction of Software Bugs from Textual Description

201


