
Revision of the AIG Software Toolkit: A Contribute to More User
Friendliness and Algorithmic Efficiency

Sebastian Kucharski1, Gregor Damnik2, Florian Stahr1 and Iris Braun1

1Computer Networks Group, Faculty for Computer Science, Technische Universität Dresden, Germany
2Center for Teacher Education and Educational Research, Technische Universität Dresden, Germany

{sebastian.kucharski, gregor.damnik, florian.stahr, iris.braun}@tu-dresden.de

Keywords: Automatic Item Generation, AIG, Assessment, Cognitive Model, Item Model.

Abstract: The traditional way of constructing items to assess learning is time-consuming because it requires experts to
perform the labor-intensive task of creating legions of items by hand. The Automatic Item Generation (AIG)
approach aims to streamline this process by having experts not formulate individual items, but rather create
highly structured models that can be used by software to automatically generate them. This requires two types
of software components. First, an editor that allows experts to specify these models. Second, a generator
that processes the specified models and generates the intended items. The elaboration of these components
must address the following challenges. The former must be usable for the definition of complex knowledge
models while the corresponding modeling process should be easy to understand. The latter should be able
to process these models in a reasonable time. Thus, the goal is to overcome both challenges by defining and
conceptualizing the use of a model representation that is easy to understand and efficient to process. Therefore,
we present a new AIG software toolkit in relation to our previous work, which addresses these challenges by
introducing a new representation approach - the layered-model-approach. The toolkit shall be evaluated in
terms of usability and efficiency.

1 INTRODUCTION

The creation of items for the assessment of learning
is a very time-consuming and resource-intensive pro-
cess ((Gierl et al., 2012; Braun et al., 2022; Baum
et al., 2021)). The reason for this is that the de-
velopment of (test) items, requires experts who have
to deal with several steps. They have to define the
learning objectives in a subject area, write the items
to meet those objectives, administer the test, score
the test, and announce the results. While research
has shown that test administration and scoring can
easily be supported by the help of testing software
(computer-based testing; e.g., (Gierl and Haladyna,
2012)), especially item writing is still often done by
hand for each individual item. As a result, the individ-
ually written items are often problematic in terms of
their standardization and comparability. This is not
only due to the unlinked creation process, but also
to the lack of analysis and revision after an assess-
ment or learning situation has taken place. For ex-
ample, items are rarely statistically analyzed for their
ability to differentiate between learners and revised
accordingly to improve them before they are added

to a larger item pool. In this paper, we will intro-
duce Automatic Item Generation (AIG; (Gierl et al.,
2012; Braun et al., 2022; Baum et al., 2021; Damnik
et al., 2018; Embretson, 2013; Embretson and Yang,
2006)), a process that is significantly different from
the traditional way creating items. In addition, we
will show how our new AIG item editor works and the
progress we have made from our old software ((Braun
et al., 2022; Baum et al., 2021)). Finally, we will dis-
cuss how items can be drawn from a larger item pool
by using an algorithmic approach.

2 THE PROCESS OF
AUTOMATIC ITEM
GENERATION

In AIG, experts do not write individual items as in
traditional item creation; rather, they define a repre-
sentation of the subject area that is highly structured
and standardized. This representation is called a cog-
nitive model (Leighton and Gierl, 2011) in the AIG
process. To create the cognitive model, experts must

410
Kucharski, S., Damnik, G., Stahr, F. and Braun, I.
Revision of the AIG Software Toolkit: A Contribute to More User Friendliness and Algorithmic Efficiency.
DOI: 10.5220/0011982000003470
In Proceedings of the 15th International Conference on Computer Supported Education (CSEDU 2023) - Volume 2, pages 410-417
ISBN: 978-989-758-641-5; ISSN: 2184-5026
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



Figure 1: A cognitive model about different kinds of vertebrates.

define typical problems they face in the subject area
and the information they need to solve those prob-
lems. Figure 1 shows a cognitive model of the subject
area biology or more precisely of the topic kinds of
vertebrates.

To generate items with the AIG process, experts
first describe the problem of kinds of vertebrates by
naming all five forms in the cognitive model: fishes,
amphibians, reptiles, birds, and mammals. Then, they
add three sources of information that are needed at
a minimal level to decide which kind of vertebrate
is given in a particular example. They name these
sources: locomotion, blood heat, and breathing. This
type of sources of information is called case-specific.
Furthermore, they add two sources of information
with their features that are often given in examples but
are not really necessary to decide which kind of ver-
tebrates is given: appearance and commonality. This
kind of sources of information is called generic. Fi-
nally, the experts define the elements that each source
of information or, more precisely, each feature can
have and how these features are related to the different
kinds of vertebrates. For example, they mention that
mammals, reptiles, and birds breathe air through their
lungs while fish and amphibians can (also) breathe
from water through their gills.

Once the cognitive model is complete, the experts
create an item model that can be used as a template
for all items by defining the item stem, the sources of
information and the sources of information of the fea-
tures, and the options. The options are necessary be-

cause this model was created for single and multiple-
choice items. Next, some sources of information are
blanked out and the AIG software creates a set of
items by combining the cognitive model and the item
model. These items are then stored in an item bank,
which supports the scoring of the test and the report-
ing of results. Figure 2 shows the item model men-
tioned above. Blanks are represented by [[. . . ]] in the
item stem. The sources of information are in capital
letters and the elements are listed behind them. Fig-
ure 2 also shows two examples of the items generated
for the problem kinds of vertebrates.

3 REQUIREMENT FOR A NEW
AIG SOFTWARE TOOLKIT

We presented a software toolkit that contains the men-
tioned software for the definition of the described
models and the use of these models for the generation
of items in (Braun et al., 2022). This toolkit was de-
veloped in the context of the AMCS-AIG project and
was intended for the generation of items for the Au-
dience Response System (ARS) AMCS (Auditorium
Mobile Classroom Service) (Braun et al., 2018). It
included two components - a model generator and an
item generator.

The model generator component, which we call
the AMCS-AIG editor, is a web-based editor that can
be used to define cognitive models and item models.
Cognitive models in the AMCS-AIG editor consist of

Revision of the AIG Software Toolkit: A Contribute to More User Friendliness and Algorithmic Efficiency

411



Figure 2: The item model and item examples belonging to the cognitive model of different kinds of vertebrates.

classes, nodes, and edges and can be defined either
graphically or textually using a well-defined XML-
or JSON-based description format. Classes, which
correspond to sources of information, can be used to
group nodes, which then represent features. Edges
define connections between these elements and can
also be grouped to restrict the valid paths through the
cognitive model graph. These restrictions are imple-
mented during the traversal of the graph by applying
the following rule - once a grouped edge is passed,
only edges corresponding to previously passed edge
groups can be passed. Item models are built from an
interrogative clause (i.e., the item stem), where the
classes from the cognitive model are referenced using
angle brackets.

The second component (i.e., the item generator),
which we call AIG Item Generator, is responsible for
the actual item generation. To do this, first, all pos-
sible nodes (i.e., features) are inserted into the corre-
sponding reference gaps of the item model to generate
all possible items, regardless of their validity or inva-
lidity with respect to the conditions which are defined
by the cognitive model. Then, the invalid items are
removed by checking if the graph can be traversed us-
ing only the nodes referenced by the considered item
without violating the described traversal rule.

Although these two components are convenient
for creating and editing of small models and gener-
ating the corresponding items, a user evaluation re-
vealed two major drawbacks for the processing of

more complex models. First, we measured a pro-
cessing time of up to several minutes for generating
items for these models. This prevents the applicabil-
ity for real-time scenarios. Thus, although items can
be generated for complex models, this process can-
not be interactive in the sense of allowing the user to
review the generated items and dynamically modify
parts of these underlying models. Second, as soon
as the definition of the cognitive model requires the
specification of complex branches in the correspond-
ing graph, the use of the editor becomes difficult due
to the appearance of the user interface and the repre-
sentation of all information in a single graph, which
thus quickly becomes confusing.

For these reasons, a revision of the components of
the AIG toolkit was planned. The main objectives of
the revision and the corresponding research and con-
ception process were the following three.

1. Adapt the model editor to the current state of
user interface-related research.

2. Conceptualize and implement a model representa-
tion format which is easy to understand even when
it is used for the development of complex cogni-
tive models.

3. Conceptualize and implement a more efficient al-
gorithm for the generation of items for complex
models.

CSEDU 2023 - 15th International Conference on Computer Supported Education

412



Figure 3: Representation of the vertebrates related cognitive model and item model in AME.

4 A NEW AIG SOFTWARE
TOOLKIT

With regard to the revision goals specified in sec-
tion 3, we have created two software components
that correspond to the established ones presented
in (Braun et al., 2022). The revised model generator
that replaces the former AMCS-AIG editor is called
AIG Model Editor (AME) and is described in sec-
tion 4.1. The item generator that replaces the former
AIG Item Generator is called Item Generator using
SAT (IGuS) and is introduced in section 4.2.

4.1 Model Editor

The revised model editor, which we call AIG Model
Editor (AME), is a web application with a user inter-
face that is divided into two areas, as shown in fig-
ure 3. The area B can be used to develop item mod-
els. An item model consists of one or more item tem-
plates, which can be of different types. The type of
item template defines what kind of items are gener-
ated during the processing of the considered template.
There are three different types - single choice, multi-
ple choice and matching. The sources of information,
whose features are varied during the generation pro-
cess, are referenced using angle brackets.

The area A (i.e., A1 and A2) can be used to de-
velop cognitive models. The sources of information
and their corresponding features are defined in the
area A2 and can be added to the cognitive model graph
in the area A1 using drag & drop. The dependencies

between the defined features are defined graphically
by creating connections between the ports associated
with each feature within the source of information
node, as shown in figure 3.

4.1.1 The Layered Model Approach

The main idea of AME’s approach to cognitive model
representation, which we call the layered model ap-
proach, is to use separate graphs to represent con-
nections upon multiple sources of information, rather
than using a single graph with grouped edges to
describe these connections throughout that graph.
Therefore, the former complex graph (Braun et al.,
2022) is replaced by multiple less complex graphs that
are encapsulated in so-called layers. Each layer con-
tains exactly one graph and has a type that determines
how this graph is constructed. There are two types of
layers.

1. Base layers, of which each cognitive model con-
tains exactly one, are described in section 4.1.2.

2. Second, condition layers, of which each cognitive
model can contain multiple or none, are described
in section 4.1.3.

A conceptual example of a cognitive model with
one base layer and one condition layer is shown in
figure 4.

4.1.2 The Base Layer

Within the graph of the base layer of a cognitive
model (e.g., area A in figure 4), the problem of this

Revision of the AIG Software Toolkit: A Contribute to More User Friendliness and Algorithmic Efficiency

413



Figure 4: Representation of an extended vertebrates-related
model using the layered model approach.

model is specified and the direct connections between
the corresponding scenarios and the features of case-
specific sources of information that directly infer a re-
striction of possible scenarios are defined. If there are
no dependencies between sources of information and
thus connections upon multiple sources of informa-
tion and scenarios, the base layer and the definition of
the sources of information described above represent
the entire cognitive model. As soon as there are de-
pendencies between sources of information, meaning
the selection of one feature of a source of information
restricts the possible selections of features of another
source of information, additional condition layers are
required to represent these dependencies.

4.1.3 The Condition Layers

Condition layers describe the dependencies upon
multiple sources of information by specifying the de-
pendencies for the features of one source of informa-
tion in a separate layer. Therefore, the source of in-
formation whose dependencies are to be further de-
scribed, is defined as the condition of the layer. In
addition, the layer contains one or more conclusion
and several or no pre-condition sources of informa-
tion. The features of the pre-conditions can be con-
nected to the ingoing ports of the condition. The
features of the conclusions can be connected to the
outgoing ports of the condition. For a fully speci-

fied condition layer, each outgoing port of the condi-
tion defines a constraint, which can be considered as
a logical implication with a premise and a conclusion.
The premise is constructed by creating a conjunction
(i.e., a logical AND relation) from the corresponding
feature and all features that have an edge to the in-
going port that is related to the considered outgoing
port. The conclusion is constructed by creating a dis-
junction (i.e., a logical OR relation) from all features
of the conclusion source of information that have an
edge to the considered outgoing port. If there is more
than one conclusion source of information, the men-
tioned disjunction combines the conjunctions of the
features that are part of the paths through the conclu-
sion sources of information.

In summary, AME is a modern web application
that can be used to define cognitive models and item
models for the AIG process. For the definition of
the cognitive model, the newly conceptualized lay-
ered model approach is used. The main idea of this
approach is to use one graph to specify the relation-
ships between features and scenarios encapsulated in
a so-called base layer and additional graphs to de-
fine dependencies upon multiple sources of informa-
tion in so-called condition layers. The advantage of
this approach is that cognitive models with extensive
branching scenarios can be modeled without having
to encapsulate all information in a single graph, which
quickly becomes confusing. As a result, even com-
plex cognitive models can be clearly represented and
easily modeled.

4.2 Item Generator

The revised item generator, which we called Item
Generator using SAT (IGuS), is a web service that
can be invoked using a REST API. IGuS is based on
the main idea of representing a cognitive model by a
logical formula which we called the cognitive model
expression and using a SAT solver for the determina-
tion of valid compilations of features of case-specific
sources of information and scenarios. How this cog-
nitive model expression is derived is explained in sec-
tion 4.2.1. How this expression is used to automati-
cally generate items is described in section 4.2.2.

4.2.1 Cognitive Model Expression

To derive a cognitive model expression from a given
cognitive model, first, a boolean variable is assigned
to each feature of a case-specific source of informa-
tion and to each scenario. Then, for each condition
defined by the cognitive model, a boolean implication
term is constructed. If a variable is set to TRUE in
such a term, it means that the represented feature or

CSEDU 2023 - 15th International Conference on Computer Supported Education

414



scenario can occur in a generated item together with
all other features or scenarios whose variables are set
to TRUE in the considered term, but not together with
the features or scenarios whose variables are set to
FALSE. For example, the condition that mammals,
amphibians and reptiles use legs for locomotion and
fishes and birds use flapper and wings, is represented
by the following boolean term:

(Legs ⇒ (Mammals∨Reptiles∨Amphibians)) ∧
(Flapper and Wings ⇒ (Fishes∨Birds))

(1)
This term represents the conditions that if a ver-

tebrate uses either flapper and wings or legs for loco-
motion, it must be of the corresponding type, but nev-
ertheless it cannot be used for the item generation yet.
The reason for this is that if only this term would be
considered, the variable Legs and the variable Flap-
per and Wings could be set to TRUE at the same
time, suggesting that the compilation of legs, flapper
and wings, mammals, reptiles, amphibians, fishes and
birds is valid. Thus, another boolean term is needed to
enforce the implicit condition of the cognitive model
that only one feature of a source of information and
one scenario of the defined problem can be used in
an item. For the locomotion example the following
terms are needed.

(¬Legs∧Flapper and Wings) ∨
(Legs∧¬Flapper and Wings)

(2)

(Fishes∧¬Amphibians∧¬Reptiles
∧¬Birds∧¬Mammals) ∨

(¬Fishes∧Amphibians∧¬Reptiles
∧¬Birds∧¬Mammals) ∨

(¬Fishes∧¬Amphibians∧Reptiles
∧¬Birds∧¬Mammals) ∨

(¬Fishes∧¬Amphibians∧¬Reptiles
∧Birds∧¬Mammals) ∨

(¬Fishes∧¬Amphibians∧¬Reptiles
∧¬Birds∧Mammals)

(3)

In summary, the conjunction of boolean implica-
tion terms for each condition that is defined by the
cognitive model and boolean terms to enforce that for
the problem and each source of information only one
scenario or respectively one feature per item can be
selected, leads to a logical representation of the whole
cognitive model, which we call the cognitive model
expression. Each variable assignment, for which this
expression can be evaluated to TRUE, represents a
valid compilation of case-specific features and scenar-
ios of the represented cognitive model.

4.2.2 Item Generation

The item generation is done in two steps. First, the
computation of the valid feature compilations using
the defined cognitive model expression. Second, the
actual creation of the items by inserting the features
and scenarios of the determined compilations into the
corresponding gaps of the item templates of the item
model. The SAT solver library Sat4j (Le Berre and
Parrain, 2010) is used to determine all valid feature
compilations. To be processed by this library, the cog-
nitive model expression is first transformed into the
CNF format and then into the DIMACS-CNF format.

Once the valid compilations of scenarios and fea-
tures of case-specific sources of information has been
determined, the actual item creation process is per-
formed. For each item template, the first step is to
determine in which gaps scenarios or features of case-
specific sources of information and in which gaps fea-
tures of generic sources of information must be in-
serted. Then, the number of compilations is extended
by combining each possible compilation of features
of generic sources of information with each valid
compilation of scenarios and features of case-specific
sources of information. Finally, the required items
are created by inserting the scenarios and features
of each resulting compilation into the corresponding
item template gaps.

In summary, IGuS is a web service that can be
used to automatically generate items defined by a
given item model, taking into account the conditions
defined by a corresponding cognitive model. The gen-
eration is performed in the following two steps. First,
the cognitive model is transformed into one boolean
expression and a SAT solver is used to determine all
valid compilations of features of case-specific sources
of information. Second, the features and scenarios of
these compilations are inserted into the item templates
of the item model to generate the required items. This
approach has the advantage that the computational
complexity of these steps is inversely proportional to
the frequency with which they need to be performed.
The first step, is computationally expensive, but the
computation result can be reused as long as the cog-
nitive model does not change. Thus, it only needs to
be done once to generate a large number of items. The
second step must be performed for each combination
of item template and determined compilation (i.e., for
each item), but is computationally inexpensive. In ad-
dition, a highly optimized SAT solver is used to deter-
mine valid compilations, so that even the processing
of complex models takes a few seconds at most.

Revision of the AIG Software Toolkit: A Contribute to More User Friendliness and Algorithmic Efficiency

415



5 ITEM SELECTION

Once all possible items have been generated for a
given item model and the corresponding cognitive
model, a mechanism is needed to select the generated
items in a comprehensible way. The reason for this
is that rarely are all items needed at once, but often
only certain subsets of these items are required, while
other item subsets could be used to dynamically re-
place them. Which items are selected for a particular
subset depends on the use case for which the gener-
ated items are intended. We have defined the follow-
ing two use cases for the utilization of automatically
generated items:

1. Exam - Items are generated for a task of an exam.
For this use case the items have to differ as much
as possible with regard to their appearance to ef-
fectively prevent cribbing, but have to be as equal
as possible with regard to the tested knowledge to
ensure the equality of opportunity for all exami-
nees.

2. Individual - Items are generated for individual
studying or training for example in the range of
exam preparation. For this use case the items have
to differ as much as possible with regard to the
tested knowledge, to ensure that the learner works
with the complete learning matter, and can also
differ with regard to their appearance to detract
the recognition factor.

5.1 Implementation

The differentiation between items derived from a spe-
cific item model can be described by the used fea-
tures of case-specific sources of information, features
of generic sources of information and scenarios that
were inserted into the gaps of the mentioned item
model during the generation process as described in
section 2. To make these differences measurable, we
have defined two quantities - dcs and dg. dcs is the dis-
tance between two features with respect to the used
features of case-specific sources of information and
scenarios, and dg is the distance between two features
with respect to the used features of generic sources
of information. As an example, consider the follow-
ing item template for the cognitive model shown in
figure 1.

There is an animal with [[LOCOMOTION]]
which breaths [[BREATHING]]. The animal is
normally approximately [[SIZE]] long and has
a weight of [[WEIGHT]]. Which kind of animal
is it? [[VERTEBRATE]]
For this item template the following two items

could be generated.

I1. There is an animal with legs which breaths oxygen
from air. The animal is normally approximately
80 cm long and has a weight of 30 kg. Which
kind of animal is it? Mammal

I2. There is an animal with flapper or wings which
breaths oxygen from air. The animal is normally
approximately 50 cm long and has a weight of
30 kg. Which kind of animal is it? Bird

For these two items, dcs is 2 because they differ
with respect to the scenario and the source of infor-
mation LOCOMOTION but not with respect to the
source of information BREATHING. dg is 1 because
they differ with regard to the source of information
SIZE but not with regard to the source of information
WEIGHT.

These two values can be utilized to select items
for the defined use cases. For the INDIVIDUAL-
selection use case the value of dcs between the se-
lected items is tried to be maximized. So first a ran-
dom start item is chosen. Second, the item with the
highest dcs value with respect to the first item is se-
lected. If there are multiple items with the same dcs
value, the item out of these with the highest dg value
with respect to the first item is selected. If there are
multiple items with the same dg value, the second
item is selected at random. For the third value, the
procedure is the same with regard to the quantity pri-
oritization, but now both already selected items are
taken into account. When considering multiple items,
the calculated distance values are weighted to prevent
a selection where multiple items are similar and only
one item has a large distance value to all other items.
Thus, when the remaining items are ranked for selec-
tion, the number of items to which a considered item
has the largest distance is counted and the selection
is made on that basis, rather than summing the dis-
tance values to all other items and selecting the item
with the highest value. Subsequent items are selected
in the same way until the required number of items is
reached.

For the EXAM-selection use case the value of dcs
between the selected items is tried to be minimized
and the value of dg between the selected items is tried
to be maximized. Therefore, first a random starting
element is chosen. Second, the item with the lowest
dcs value with respect to the first item is selected. If
there are multiple items with the same dcs value, the
item out of these with the highest dg value with re-
gard to the first item is selected. If there are multiple
items with the same dg value, the second item is se-
lected at random. The selection of the following items
works analogous with regard to the quantity prioriti-
zation and uses the same weighting mechanism for

CSEDU 2023 - 15th International Conference on Computer Supported Education

416



determining distances to multiple items as described
for the INDIVIDUAL-selection use case.

6 CONCLUSION

Although the development of the AMCS-AIG editor
and the AIG Item Generator in the context of the
AMCS-AIG project (Braun et al., 2022) greatly sim-
plified the generation of large item sets in less time
than the traditional creation of such sets, the evalua-
tion of these components revealed several drawbacks.
We described these drawbacks in detail, defined the
goals we pursued during the revision of our AIG soft-
ware toolkit and presented the conceptual results of
our investigation. We then presented our revised AIG
software toolkit, the implementation of which took
into account the aforementioned conceptual findings.
This toolkit consists of two components. First, the
AIG Model Editor - a graphical editor that can be
used to define AIG models and that uses a newly in-
troduced representation approach called the layered
model approach. This approach is based on the idea
of representing cognitive models in multiple graphs
instead of one graph to improve the usability of the
editor and to flatten the learning curve for the AIG
model creation process. Second, the Item Generator
using SAT - an item generator that represents cog-
nitive models by boolean equations and which uses
a SAT solver for the actual generation process. The
main advantage of this component is that, due to the
short processing time, the user can request the mod-
eled items in almost real time. We showed how items
can be generated for a simple cognitive model, with
the intention of describing how this process works
for more complex models during the presentation.
Finally, we described why the selection of gener-
ated items is necessary to support different learning
scenarios, specified such scenarios, and presented a
mechanism how this selection can be done with re-
spect to the considered scenarios. Future work will in-
clude completing the evaluation of our new software
toolkit in terms of usability and efficiency.

REFERENCES

Baum, H., Damnik, G., Gierl, M. J., and Braun, I. (2021). A
shift in automatic item generation towards more com-
plex tasks. In INTED2021 Proceedings, pages 3235–
3241. IATED.

Braun, I., Damnik, G., and Baum, H. (2022). Rethink-
ing assessment with automatic item generation. In
INTED2022 Proceedings, pages 1176–1180. IATED.

Braun, I., Kapp, F., Hara, T., Kubica, T., and Schill, A.
(2018). Amcs (auditorium mobile classroom service)–
an ars with learning questions, push notifications, and
extensive means of evaluation. In CEUR Workshop
Proceedings, volume 2092.

Damnik, G., Gierl, M., Proske, A., Körndle, H., and
Narciss, S. (2018). Automatische erzeugung von
aufgaben als mittel zur erhöhung von interaktivität
und adaptivität in digitalen lernressourcen. In E-
Learning Symposium 2018, pages 5–16. Univer-
sitätsverlag Potsdam.

Embretson, S. and Yang, X. (2006). 23 automatic item gen-
eration and cognitive psychology. Handbook of statis-
tics, 26:747–768.

Embretson, S. E. (2013). Generating abstract reasoning
items with cognitive theory. In Item generation for
test development, pages 251–282. Routledge.

Gierl, M. J. and Haladyna, T. M. (2012). Automatic item
generation: Theory and practice. Routledge.

Gierl, M. J., Lai, H., and Turner, S. R. (2012). Using au-
tomatic item generation to create multiple-choice test
items. Medical education, 46(8):757–765.

Le Berre, D. and Parrain, A. (2010). The sat4j library 2.2,
system description. Journal on Satisfiability, Boolean
Modeling and Computation To appear.

Leighton, J. P. and Gierl, M. J. (2011). The learning sci-
ences in educational assessment: The role of cognitive
models. Cambridge University Press.

Revision of the AIG Software Toolkit: A Contribute to More User Friendliness and Algorithmic Efficiency

417


