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Abstract: Public transport planning is a complex task in which many factors must be considered. One of these factors is
route profitability, highly dependent on the demand for a given connection. Computing such demands quickly
in a potentially changing environment is crucial in suggesting and comparing multiple alternative routes. In
this preliminary paper, we propose a mathematical model for this problem, adequate for transport modes
with intermediate stops on their routes. We analyze similar problems in the literature, provide some efficient
algorithms with good theoretical bounds, and evaluate them on real-life road networks. We also pose open
research questions related to further generalization, improvement, and better understanding of the problem.

1 INTRODUCTION

Answering optimal path queries is a fundamental
problem in transportation systems. With road graphs
spanning millions of vertices and edges, algorithms
whose query time is even linear in the size of the
graph are far too costly to be practical. State-of-the-
art solutions (see e.g., (Bast et al., 2016) for a sur-
vey) feature some sort of preprocessing phase, whose
product—a semantically redundant data structure—
allows actual answer times to be lower, logarithmic
or even constant in the size of the graph. Here, we
consider a closely related, yet different problem.

For a business-level perspective, imagine that we
would like to propose new, profitable, bus routes in
a given road network with bus stops located along
the edges. A necessary prerequisite for a hypothet-
ical route to be profitable is a high enough demand
for transportation services along this route. Comput-
ing such demand is our primary concern in this pa-
per. However, because profitability is influenced by
many factors besides just the demand, instead of sim-
ply finding some high-demand routes, we want to be
able to answer multiple demand queries.

To make this a bit more specific, suppose that we
are given demand information for every directed pair
of stops (e.g., an average daily number of people in-
terested in getting from one to the other), and assume
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that a bus can serve all passengers along its route, i.e.,
satisfy the aggregated demand for all (directed) pairs
of the stops it visits.

For a moment, let us also assume that the bus
must follow a graph-optimal path between its ini-
tial and final stops. Our queries then take the form
of path demand queries: for a graph-optimal path
u = u0

e1−→ u1
e2−→ . . .

ek−→ uk = v (given by just its end-
points u and v), return the total demand

du v := ∑
1≤i< j≤k

dei,e j ,

where de, f denotes the demand for travel from (stops
along) the edge e to (stops along) the edge f .

For a more realistic scenario, we may allow the
bus route to be a concatenation of a few edge-disjoint
optimal paths. This leads to a natural adaptation of
the above query to a pair demand query: given the
endpoints of two edge-disjoint graph-optimal paths
π1 : u1 v1 and π2 : u2→ v2, return the total demand

du1 v1,u2 v2 := ∑
e1∈π1

∑
e2∈π2

de1,e2 .

The two types of queries are tightly related.
Consider a graph-optimal path u v which passes
through some intermediate vertex w. We can decom-
pose this path into two graph-optimal paths u w
and w v, thus expressing the path demand du v as

du v = du w +du w,w v +dw v.

Similarly, a pair demand query from a path u1  
w1  v1 to a path u2  w2  v2 can be calculated
from the pair demands between their fragments.
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This leads to a natural general strategy for solv-
ing both problems: find a decomposition hierarchy for
all optimal paths in the graph, precompute aggregated
answers for all possible path- and pair demand queries
up to some level of this hierarchy, and use the higher
levels to answer arbitrary queries.

For such a solution to be practical, the decom-
position must balance between two goals. On one
hand, the number of precomputed queries must be low
enough so that their results can be stored. Because we
are considering queries between pairs of paths, this
means that the number of such base paths should be
low—preferably log-linear in the size of the graph.
On the other hand, answering an arbitrary query re-
quires aggregating a number of precomputed values
quadratic in the length of the decomposition. There-
fore, each graph-optimal path should decompose into
a number of base paths at most logarithmic in the size
of the graph (or, if possible, even in the length of such
a path).

How does this pairwise path aggregation prob-
lem relate to the standard one of finding optimal
paths? In one direction, all solutions to (non-
aggregate) optimal path queries perform some sort
of path decomposition. However, such decomposi-
tion might be highly dependent on the start and/or
end node of the query, and the total number of “base”
paths covering arbitrary queries might be too high for
pairwise aggregation. Only when the decompositions
do share enough paths, a viable solution for pairwise
aggregation can be obtained.

In the other direction, any hierarchy featuring a
logarithmic decomposition of optimal paths could be
used to effectively answer optimal path queries. Note
however, that for pairwise aggregation, we allow the
preprocessed information to be at least quadratic in
the size of the graph (in fact, even the input to our
problem is quadratic, as it contains demand informa-
tion for every pair of edges). Therefore, our prepro-
cessing phase must be allowed at least this much time
(for practical instances, even O(n3) time is acceptable
with O(n2) input size)—this might be far too much
for optimal path search, aimed usually at much larger
graphs with possibly tens of millions of edges.

For the above reasons, even though the two prob-
lems are tightly related, it makes sense both to trans-
late existing solutions, and to look for solutions to
pairwise aggregation which are not suitable for short-
est path queries.

This paper is a collection of ideas, results, and re-
search questions. In particular, we:

• formally define the pairwise path aggregation
problem (Section 2),

• theoretically analyse a solution based on separa-

tor hierarchies, showing that it allows O(logn)
decomposition into a set of O(n logn) base paths
(Section 3.1),

• discuss translations of solutions for optimal path
queries, based on Contraction Hierarchies (Sec-
tion 3.2) and Transit Nodes (Section 3.3),

• shortly discuss better bounds for simple graph
classes (Section 3.4), and

• provide experimental evaluation of the above so-
lutions on some practical data sets (Section 4).

We hope that this work might open a discussion
on the pairwise aggregation problem. Throughout
the paper, we state some research questions. Further-
more, Section 5 proposes some additional research di-
rections.

2 THE PROBLEMS

Let us state the problems we are considering in a more
formal way.

We are given a directed graph G = (V,E) with
edge costs c : E→ R≥0. A path between nodes u,v ∈
V is called optimal iff its total cost is the least among
such paths. Assuming optimal paths are unique, let us
denote by u v the optimal path from u to v.

There is also some additional data associated with
each pair of edges: d : E2 → D. This data can be
aggregated in some commutative monoid1 (D,+,0),
from pairs of edges to paths and pairs of paths:

d
u0

e1−→...
ek−→uk

:= ∑
1≤i< j≤k

dei,e j ,

d
u0

e1−→...
ek−→uk,v0

f1−→...
fl−→vl

:= ∑
1≤i≤k

∑
1≤ j≤l

dei, f j .

In the pairwise path aggregation problem we
need to answer queries of two types:

• given two vertices u,v, return the aggregated data
du v, and

• given four vertices u,v,w,x ∈V , return the aggre-
gated data du v,w x.

We can preprocess the input data, however:

• preprocessing time should be reasonable—at most
O(|E|3),
• storage for preprocessed data should not ex-

ceed the input size Θ(|E|2) by more than a
(poly)logarithmic factor, and

• query times should be low, at most O(log2 |V |).

1Other algebraic structures are discussed in Section 5.2
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As discussed in the Introduction, we could choose
a suitable subset B ⊆ V 2 of ordered pairs of vertices,
forming a set of base paths, precompute du v and
du v,w x for all (u,v),(w,x) ∈ B, and answer queries
by decomposing each optimal path into base paths.

Therefore, in the path base problem, we are look-
ing for a set B⊆V 2 with the following properties:

1. |B|= O(|E| log |V |),
2. for each optimal path u0 −→ . . .−→ uk, there exist at

most O(log |V |) indices 0= b0 < b1 < .. . < br = k
such that (ubi ,ubi+1) ∈ B for each 0≤ i < r.

3 ALGORITHMS

We now discuss a few solutions to the path base prob-
lem (and thus, to the pairwise path aggregation prob-
lem), beginning with one based on computing an edge
separator hierarchy, and then on translations from the
optimal path query problem.

3.1 Separator-Based algorithm

Given a graph G = (V,E) with |V | ≥ 2, an edge sep-
arator is a set of edges S ⊆ E such that the removal
of S increases the number of connected components
of G.

An edge separator is (α,β)-balanced, if it has
size at most β

√
|V |, and each connected component

formed by the removal of that separator has size at
most α|V |, for some positive constants α < 1 and β.

A graph G = (V,E) has an (α,β) edge separator
hierarchy if its every sufficiently large subgraph has
an (α,β)-balanced edge separator.

In this section, we model road networks as graphs
embedded on the plane, whose edge crossing graphs
have bounded degeneracy—see (Eppstein and Gupta,
2017) for details. Such graphs have vertex separator
hierarchies (Eppstein and Gupta, 2017), but for the
existence of edge separator hierarchy we also need a
bounded degree of graph vertices. To achieve this, we
can apply to each (high degree) vertex a local degree
reduction scheme shown in Figure 1. This method re-
duces the degree to 3, while increasing the total num-
bers of vertices and edges by 4|E|, and the degeneracy
of the crossing graph by at most 1.

We will now present an algorithm for the path base
problem for graphs with an (α,β) edge separator hier-
archy. The algorithm will first construct a separator
tree, and then use it to create the required set B.

Each node of the separator tree will correspond to
some induced subgraph of the input graph G (the root
covering the whole of G), represented by the set of its

Figure 1: Degree reduction scheme. A vertex of degree d is
replaced with a spiral of 2d vertices, consisting of an outer
and an inner loop, handling respectively the incoming and
outgoing edges. Edges on the spiral have zero cost and zero
aggregable data. Queries related to the original vertex are
remapped to one of the endpoints of the edge between the
outer and the inner loop. After the reduction, previously
edge-disjoint paths may share loop edges—this, however,
has no influence on the aggregated data. Uniqueness of op-
timal paths is preserved.

Figure 2: Separator tree.

vertices X ⊆V . If |X |< c (for some constant c), then
X will be a leaf node. Otherwise, the node will have
exactly two children Y and Z, where

• {Y,Z} is a partition of X ,

• the set SX of edges between Y and Z forms an
(α,β)-balanced separator of X .

A tree with these properties can be created by
straightforward recursion, because all sufficiently
large subgraphs of G are assumed to have (α,β)-
balanced edge separators.

Additionally, for each leaf node X we define SX
to be the set of all edges in its induced subgraph.
Because an (α,β)-balanced separator is also (α,β′)-
balanced for every β′ > β, letting β ≥ c

√
c we can

guarantee that |SX | ≤ β
√
|X | for every node X .

For an edge set F ⊆ E, let

η(F) := {u : ∃v : (u,v) ∈ F ∨ (v,u) ∈ F}

be the set of endpoints of any edge in that set. Defin-
ing the depth of a node in the standard way (the root
has depth 1, and children of a node of depth i have
depth i+1), let us assign to each vertex u ∈V a level
l(u), being the minimum depth of a node X , such that
u ∈ η(SX ).
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From the balanced separator property, we know
that |Y | < α|X | whenever Y is a child node of X , and
hence the height of the tree is at most

L = O(log 1
α

|V |) = O(log |V |).

Furthermore, since the children of each node form its
partition, each vertex of G will be present in at most
O(log |V |) nodes of the tree, each of different depth.

Now, we can define the set

B′ := {(u,v) : l(u)≥ l(v)∧ (∃X : u ∈ η(SX )∧v ∈ X)}

and show that B := B′ ∪{(u,v) : (v,u) ∈ B′} satisfies
the requirements for a path base.

Fix an arbitrary vertex v, and denote by Yi the
unique node of depth i containing v. Now consider a
pair (u,v)∈ B′, witnessed by a node X with u∈ η(SX )
and v ∈ X . By definition, l(u) must not exceed the
depth of X , and therefore X must be equal to Yi for
some i≥ l(u)≥ l(v). The number of such (u,v) pairs
with X = Yi is bounded by

|η(SYi)| ≤ 2β
√
|Yi| ≤ 2β

√
α

i−l(v)
√
|Yl(v)|,

which summed over all i≥ l(v) gives at most

2β

1−
√

α

√
|Yl(v)|.

We call all the pairs accounted for in this way rooted
at the set Yl(v).

Now fix an arbitrary node Y , and denote by l its
depth. Consider a vertex v ∈ Y with l(v) = l. The
level must be witnessed by v ∈ η(SX ) ⊆ X for some
node X at depth l. However, Y is the unique such
node. Therefore, the number of such vertices in Y is
bounded by

|η(SY )| ≤ 2β
√
|Y |,

from which we can bound the number of pairs in B′

rooted at Y by

4β2

1−
√

α
|Y |= O(|Y |).

Because the nodes at each single depth are dis-
joint, the number of pairs in B′ rooted at such a depth
is bounded by O(|V |). Summing these over all possi-
ble depths gives us

|B| ≤ 2|B′|= O(|V | log |V |).

For assessing the size of decomposition of any
optimal path u v into base paths, let w0 (respec-
tively, w′0) be the first (last) vertex having the lowest
level on this path u→ ·· · → v. Since B is symmet-
ric, it suffices to compute the decomposition length of
u−→ . . .−→ w0. The subpath w′0 −→ . . .−→ v can then be
handled analogously, and the subpath w0 −→ . . .−→ w′0

(if w0 6= w′0) will be a base path because there are no
vertices with smaller level between w0 and w′0, and
thus they must be endpoints of some edges in the same
separator set.

Let us then focus on the path u −→ . . . −→ w0. If
nonempty, it must be fully contained in a single child
of some node X with w0 ∈ η(SX )—it is the node wit-
nessing the level of w0. Let w1 be the leftmost vertex
on our path with the lowest level (except for w0). The
level l(w1) > l(w0) must be witnessed by some node
Y , with w1 being an endpoint of some edge in SY .

No separator at any depth l(w0)< l < l(w1) sepa-
rates w1 from w0—otherwise some vertex on this sub-
path would have level l, contradicting the choice of
w1. Thus, w0 ∈ Y and (w1,w0) ∈ B.

Now, all vertices on path u  w1 have levels
strictly smaller than l(w1), so we can recursively de-
compose this path. The depth of this recursion will
be at most the height L of the separator tree, hence
the total decomposition size of u  v is at most
2L+1 = O(log |V |).

3.2 Contraction Hierarchies

Contraction Hierarchies (Geisberger et al., 2012) are
one of the most popular methods of answering short-
est path queries. The preprocessing phase of this
method sequentially contracts vertices in some cho-
sen order, creating shortcuts (but preserving optimal
path lengths), which are later used to quickly answer
optimal path queries.

It can be adapted to perform base path decompo-
sition by simply creating a single base path for every
edge in the original graph and for every shortcut cre-
ated during contraction. After the base paths are cho-
sen, we can precompute for each pair of vertices the
shortest decomposition into a sequence of base paths.
To achieve this, it suffices to add shortcuts to the orig-
inal graph (with appropriate weights) and then com-
pute all pairs shortest paths in that network, where
“shortest” should first minimize the original path cost
and later the number of edges used. This can be com-
puted in O(|E||V | log |V |) time, and stored in O(|V |2)
space.

Various heuristics have been proposed to produce
a contraction order yielding both a small number of
shortcuts and guaranteeing a small search space af-
terwards (see for example (Geisberger et al., 2008)
and (Funke and Storandt, 2015)). For our setting,
the former directly translates to the total number of
base paths, but the latter is not inherently related to
the length of the decomposition. Therefore we revisit
here the most popular heuristics.
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3.2.1 Nested Dissection Order

Since road networks have small vertex separators, we
can temporarily remove the vertices lying in the sep-
arator set, recursively contract the components of the
resulting graph, and finally, contract the vertices of
the separator. This “nested dissection” method was
first analyzed in (Gilbert and Tarjan, 1986). Later,
(Milosavljević, 2012) and (Columbus, 2013) applied
it to contraction hierarchies, and shown that it would
generate O(|V | log |V |) shortcuts.

Analogously to what we have done in Section 3.1,
we can decompose any optimal path according to the
“levels” corresponding to the recursive dissection, ob-
taining a similar O(log |V |) upper bound for the de-
composition length.

3.2.2 Random Contraction Order

A much simpler method is to contract vertices in
random order. As we will show in this subsection,
this yields (in expectation) very similar results to the
nested dissection order.

Let us first look at the decomposition length.
The following observation is a direct consequence of
Lemma 5 in (Blum et al., 2021):
Observation 1. For any optimal path v0 −→ v1 −→
. . . −→ vn, the pair (v0,vn) forms a base path if and
only if v0 and vn are both contracted later than all of
v1, . . . ,vn−1.

For any vertices v0 6= vn of a directed graph G, we
will estimate the expected value of the decomposition
length of the optimal path v0 −→ . . .−→ vn.

Let vm be the vertex on that path with the largest
rank (i.e., contraction time). Then, the decomposition
length of the path is equal to the sum of decomposi-
tion lengths of v0 vm and vm vn. Since the anal-
ysis of both parts is very similar, let us only focus on
the former.

For all i ∈ {0, . . . ,m}, let Xi be a random vari-
able indicating whether rank(vi) is larger than all of
rank(v0), . . . , rank(vi−1). Note, that X0 = 1 land Xm =
1. Let us look at the largest index j < m for which
X j = 1. From Observation 1, (v j,vm) forms a base
path, and since the rank of v j is larger than all pre-
vious values, we can recursively decompose v0 v j.
Therefore, the expected decomposition length of the
path v0 vm is equal to

E(
m

∑
i=1

Xi) =
m

∑
i=1

1
i
= O(logm),

and hence the expected decomposition length of the
path v0 vn is O(logn).

The above result holds for any class of graphs.
The assessment of the expected size of the base path

set has been done for the bounded growth model
(Blum et al., 2021). In this model, we assume for all
r ∈N, that the number of vertices reachable from any
single node using at most r edges is O(r2). Under
these conditions, the expected number of shortcuts
created in the contraction hierarchy is O(|V | log |V |).

Remember however, that we are precomputing in-
formation for every pair of base paths and we are an-
swering queries for pairs of optimal paths. Therefore,
we actually need to calculate the expected value of
the squared size of the base paths set and the expected
value of the product of decomposition lengths for any
two optimal paths. We can rephrase these as the fol-
lowing questions, yet unanswered:

Question 1. When contracting vertices in random or-
der, what is the variance of the size of the base path
set?

Question 2. When contracting vertices in random or-
der, for any two optimal paths, what is the covariance
between the decomposition lengths of these paths?

For real-life applications, the latter question does
not need to be that general—if we will only be an-
swering path aggregation queries, all we need is the
expected value of the squared decomposition length
of a single path v0 −→ . . .−→ vn.

Note, that the previously introduced indicator
variables Xi and X j are independent for i 6= j, and
so the expected value of the squared decomposition
length is O(log2 n), which matches the deterministic
result for the separator-based algorithm.

For the case, mentioned in the Introduction, of a
concatenation of a few optimal paths, we would also
need pair queries over edge-disjoint paths v0 vn and
u0  um, sharing only some small number k of ver-
tices. To analyze this case, we can partition each of
the two input paths into k+1 segments between these
shared vertices, and take advantage of the following
observation:

Observation 2 (Triangle inequality for decomposi-
tion length). For a graph G = (V,E), an optimal path
u w, and a vertex v ∈ u w, we have

δ(u v)+δ(v w)≥ δ(u w),

where δ(π) denotes the decomposition length of the
path π.

Now, denoting the shared vertices as ui1 , . . . ,uik
(according to their positions on the path u0 um), we
can estimate the expected product of decomposition
lengths as

E(δ(v0 vn)δ(u0 um))≤

E
(

δ(v0 vn)
(
δ(u0 ui1−1)+
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+δ(ui1−1 ui1+1)+δ(ui1+1 ui2−1)+

. . .

+δ(uik−1 uik+1)+δ(uik+1 um)
))

.

For vertex-disjoint paths, their decomposition
lengths are independent. The length-three subpaths
introduce only a constant factor to the product of de-
composition lengths. Therefore,

E(δ(v0 vn)δ(u0 um)) =

O(3k logn+(k+1) logn logm) =

O(k log2 |V |).
In particular, for a constant k it is also O(log2 |V |).

3.2.3 Deleted Neighbours Order

Another contraction order suggested in (Geisberger
et al., 2008) is the deleted neighbours order, in which
we greedily contract a vertex with minimal num-
ber of already contracted neighbours. Even though
this method can produce quadratic number of base
paths for some trivial classes of graphs (e.g., star
graphs), all such counterexample classes we found
have vertices with non-constant degree. Moreover,
this method performed best in our experimental evalu-
ation. Hence, the following questions arises naturally:

Question 3. What are the theoretical upper and/or
lower bounds for both base path set size and decom-
position length for the deleted neighbours order for
road networks?

3.3 Transit Nodes

Another algorithm for which some theoretical guaran-
tees were stated is the Transit Nodes algorithm (Bast
et al., 2007). In this method, we carefully pick a set
of access nodes A(u) for each vertex u of the orig-
inal graph, and then form the set of transit nodes
T =

⋃
v∈V A(v). Now, each long enough path from

u v can be decomposed into three parts:

• from u to some node au ∈ A(u),

• similarly, from some node av ∈ A(v) to v, and

• from au to av.

Originally, we precompute the distance table be-
tween any pair of transit nodes to answer these queries
rapidly. For short paths, we simply run another short-
est path algorithm, e.g. bidirectional Dijkstra. The
definition of being long enough and the set of access
nodes can be specified in various ways to achieve dif-
ferent guarantees.

In our setting, it looks natural to create a base path
for each edge, for each pair of transit nodes, and for

each pair of a node and its access node. This approach
would however produce shortest path decomposition
of length at most 3 for all long enough paths, and thus
it seems unlikely to yield subquadratic number of base
paths at the same time.

3.4 Better Bounds for Special Graph
Families

Except for Transit Nodes, all aforementioned al-
gorithms achieve O(|V | log |V |) base path size and
O(log |V |) decomposition length of any path for road
networks.

A natural question to ask is whether these results
are optimal. There could possibly exist some other
decomposition methods that would result in only a
slightly larger base path size, but with sublogarithmic
decomposition length.

For some subfamilies of road network graphs, the
answer to this question is positive. In the next sub-
sections, we consider line graphs and trees and de-
scribe alternative algorithms based on Transitive Clo-
sure Spanners (Bhattacharyya et al., 2012).

3.4.1 Line Graphs

A k-transitive-closure-spanner (in short k-TC-
spanner) of a directed graph G = (V,E) is a directed
graph H = (V,EH), where EH is a subset of the edge
set of the transitive closure of G, and the distance
(in terms of the number of edges) between any two
vertices connected in G is at most k.

For a line graph G, let us orient all the edges in one
direction. In the transitive closure of a such graph,
there will be a directed edge between every pair of
vertices. Note, that if H = (V,EH) is a k-TC-spanner
of G, then

{(u,v) : (u,v) ∈ EH ∨ (v,u) ∈ EH}
is a base path set having 2|EH | edges and decomposi-
tion length at most k for any path.

k-TC-spanners of line graphs have been analysed
in (Raskhodnikova, 2010) and (Alon and Schieber,
1987). Particularly, for any k there exists a k-TC-
spanner of size O(|V |λk(|V |)), where λk is the k-
th row inverse Ackermann function. On the other
hand, they have shown that with O(|V |) base path
set size, an optimal decomposition length is precisely
O(λ(|V |)), where λ is the inverse Ackermann func-
tion.

3.4.2 Tree Graphs

Similarly, we can orient the edges of any tree from the
root to the leaves, forming a directed tree G. Then,
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any path in the undirected tree can be decomposed
into at most two paths from the lowest common an-
cestor of its endpoints. Therefore, if H = (V,EH)
is a k-TC-spanner of G, then again, {(u,v) : (u,v) ∈
EH ∨ (v,u) ∈ EH} is a base path set, this time having
decomposition length at most 2k.

As noted in (Raskhodnikova, 2010) and proven
in (Alon and Schieber, 1987), the optimal k-TC-
spanners for lines and trees have asymptotically the
same number of edges, and therefore the results ob-
tained for line graphs also apply here.

These better algorithms raise the following ques-
tion:

Question 4. Can we achieve similar better bounds
for wider classes of (or even all) road networks?

4 EXPERIMENTAL EVALUATION

We have analysed the behaviour of the above algo-
rithms in practice. We used two real-life road net-
works with distances, each having a few thousand ver-
tices. Both datasets assumed that all roads are bidirec-
tional, so the distance matrices were symmetric. For
each data set, we selected the largest connected com-
ponent and contracted all vertices of degree 2.

Our datasets are listed below:

• Major road network of California, generated from
(Li et al., 2005): 1364 vertices and 1959 edges.

• Road network of Oldenburg, generated from
(Brinkhoff, 2000): 2930 vertices and 3750 edges.

We computed the base path set size and average
squared decomposition length over all optimal paths.
(for random contraction order, we averaged the results
over 10 runs). For finding separators in the separator-
based algorithm, we first planarized the graphs by cre-
ating auxiliary vertices in place of line crossings and
then used a dynamic programming method over span-
ning trees of that graph and its dual.

To find the access nodes set in the Transit Nodes
method, we used the ε-net construction, described in
(Blum et al., 2021), attempting to find ε-net for radius
r = 30. We started with k = |V |, trying 10 times to
get an ε-net of size k by randomly selecting vertices.
On failure, k was multiplied by 1.2, and the search
was retried. The value r = 30 was chosen so that even
the “short” queries (not going through an access node)
were guaranteed to have a short decomposition.

The plots in Figures 3 and 4 show the distributions
of squared decomposition lengths for both datasets.
Numbers in parentheses represent the size of the base
path set for each method.
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Figure 3: California: squared decomposition length (out-
liers omitted).
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Figure 4: Oldenburg: squared decomposition length (out-
liers omitted).

As expected, the Transit Nodes method yielded an
average decomposition length close to 3, but the num-
ber of base paths was huge—too large to be useful for
pairwise aggregation. Therefore we have omitted it
from the plots.

We can conclude, that the deleted neighbours
method achieves the best results on both datasets,
having the shortest average squared decomposition
length while keeping the base path set size only
slightly larger than the separator-based algorithm. On
the other hand, the other methods (excluding Transit
Nodes) still yield quite competitive results and can be
useful in practice.

5 RESEARCH DIRECTIONS

5.1 Demand Updates

In real-life applications, we might want to be able to
efficiently update the demand dei,e j for a single pair
of edges. It requires modifying precomputed infor-
mation on all base path pairs (u1 v1,u2 v2), for
which ei ∈ u1 v1 and e j ∈ u2 v2. The update time
would be proportional to that number (assuming con-
stant time operations in the data monoid), and so ide-
ally, we would like to have a decomposition method
with some guaranteed upper bounds.

Similarly to the decomposition length, in non-
randomized algorithms we can focus just on the af-
fected base path set A(e) for a given edge e.

We have extended our experimental evaluation to
include the distribution of |A(e)| over all edges in each
dataset. As shown in Figures 5 and 6, the average
size of A(e) for the deleted neighbours and separator-
based methods is quite small, while for random con-
traction order it is significantly larger.
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Figure 5: California: the expected number of base paths
containing a random edge.
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Figure 6: Oldenburg: the expected number of base paths
containing a random edge.

For line graphs, using standard segment trees
we can achieve guaranteed O(|V |) base path size,
O(log |V |) decomposition length, and O(log |V |) af-
fected base path set. For the more general case, we
leave open the following question:

Question 5. Are there any upper/lower bounds for
the average/pessimistic affected base path size for any
of the presented decomposition algorithms?

5.2 Subtractive and Idempotent Bases

So far, we have assumed the data domain to be a
commutative monoid. It seems natural to consider a
strengthening of its structure to a commutative group.
This allows the use of subtractive decomposition, in
which a path may be covered by overlapping “posi-
tive” and “negative” base paths, as long as the total
number (sign included) of base paths containing each
edge is exactly one.

In case of trees, simply connecting each vertex
with the (arbitrarily chosen) root yields a path base
of size O(|V |) with decomposition length O(1).

Instead of having a group structure, we might re-
quire the monoid operation to be idempotent (this
happens for example when the aggregated informa-
tion is some kind of maximum). Then the base path
set must allow an idempotent decomposition of any
path, in which each edge may be covered an arbitrary
positive number of times.

Note that in both above cases, solutions to the
aggregation and path base problems can no longer
be directly used to efficiently answer optimal path
queries, as the summed number of edges covered by
base paths in a decomposition could is general be sig-
nificantly larger than the length of the resulting path.
This opens up the following interesting research di-
rection:

Question 6. Find efficient solutions to the path base
problem on road networks, when the path base is al-
lowed to be subtractive or idempotent.

5.3 Sparse Demand Matrix

To this point, we have assumed the input demands to
be given as a full matrix, of size Θ(|E|2). In prac-
tice, many entries of this matrix could be negligibly
small or even equal to zero. Thus, we could approxi-
mate it with a sparse matrix, having only some set Q
of non-zero entries (with 0≤ |Q| ≤ |E|2). If the pair-
wise aggregation problem can in this case be solved
efficiently with smaller amount of preprocessed data,
one could apply it to larger graphs.

For solutions with small affected base path sets,
one could start with an empty sparse matrix with
precomputed pairwise base path data, and treat each
member of Q as an update. For example, with affected
base path sets of size O(log |V |), one would obtain a
final preprocessed data structure of size (|Q| log2 |V |),
scaling nicely with the amount of input information2.

We thus pose a final open question:

Question 7. Can the pairwise aggregation problem
be solved efficiently with space requirements scaling
gently with the number of non-zero data entries?

6 CONCLUSIONS

In this work, we have stated a new problem of ag-
gregating pairwise information over optimal graph
routes. In our opinion, the problem is worth gain-
ing more attention because of both its practical appli-
cations and interesting theoretical properties, derived
from relationships with shortest path query problems
and segment-tree-like data structures.

We have presented algorithms leading to accept-
able time and space complexities, and hope that they
can be improved even further, especially wrt. space
consumption. Practical, implemented solutions to the
proposed problem could form an important compo-
nent of a larger system for optimizing and proposing
new routes for public transportation. In particular, we
hope that answering some of the open questions stated
in this paper can bring us closer to this goal.

2This does not include the information necessary to per-
form decomposition of each arriving query, which may de-
pend on the decomposition method.
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