
RePAD2: Real-Time Lightweight Adaptive Anomaly Detection for
Open-Ended Time Series

Ming-Chang Lee1 a and Jia-Chun Lin2 b

1Department of Computer science, Electrical engineering and Mathematical Sciences,
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Abstract: An open-ended time series refers to a series of data points indexed in time order without an end. Such a
time series can be found everywhere due to the prevalence of Internet of Things. Providing lightweight and
real-time anomaly detection for open-ended time series is highly desirable to industry and organizations since
it allows immediate response and avoids potential financial loss. In the last few years, several real-time time
series anomaly detection approaches have been introduced. However, they might exhaust system resources
when they are applied to open-ended time series for a long time. To address this issue, in this paper we
propose RePAD2, a real-time lightweight adaptive anomaly detection approach for open-ended time series
by improving its predecessor RePAD, which is one of the state-of-the-art anomaly detection approaches. We
conducted a series of experiments to compare RePAD2 with RePAD and another similar detection approach
based on real-world time series datasets, and demonstrated that RePAD2 can address the mentioned resource
exhaustion issue while offering comparable detection accuracy and slightly less time consumption.

1 INTRODUCTION

A time series refers to a series of data points or obser-
vations obtained through repeated measurements over
time (Ahmed et al., 2016). In the real world, many
time series are continuously observed and collected.
They are called open-ended time series in this paper
because they do not have an end point. Such time se-
ries can be found everywhere due to the prevalence of
the Internet of Things. Examples include CO2 lev-
els measured by air quality monitors, human heart
rates or blood pressure measured by medical IoT de-
vices, electricity consumption by smart meters, hu-
midity levels by smart agriculture IoT devices, water
flow and saturation levels by smart ocean monitoring
systems, etc.

Anomaly detection refers to a data analysis task
that detects anomalous or abnormal data from a given
dataset (Ahmed et al., 2016). An anomaly is de-
fined as “an observation which deviates so much
from other observations as to arouse suspicions that it
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was generated by a different mechanism” (Hawkins,
1980). Anomaly detection has been widely applied in
many application domains such as intrusion detection,
fraud detection, industrial damage, sensor network,
healthcare, etc. (Hochenbaum et al., 2017; Aggarwal
and Yu, 2008; Xu and Shelton, 2010; Fisher et al.,
2016; Wu et al., 2018; Staudemeyer, 2015; Bontemps
et al., 2016). We believe that providing real-time and
lightweight anomaly detection for open-ended time
series is highly desirable to industry and organizations
since it enables immediate response, allows appropri-
ate countermeasure to be promptly taken, and avoids
the occurrence of catastrophic failures/events.

During the past few years, several real-time and
lightweight anomaly detection approaches have been
introduced for time series, such as RePAD (Lee et al.,
2020b) and its two successors ReRe (Lee et al.,
2020a) and SALAD (Lee et al., 2021b). However,
RePAD suffers from a resource exhaustion issue due
to its design in determining its adaptive detection
threshold. More specifically, the adaptive detection
threshold will be periodically recalculated based on
all previously derived average absolute relative error
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(AARE) values. Hence, when RePAD works on an
open-ended time series for a long time, it will eventu-
ally exhaust the system resources. The same situation
will also happen to ReRe and SALAD since they in-
herit the threshold design from RePAD.

To address the above-mentioned resource exhaus-
tion issue, in this paper, we propose RePAD2 by im-
proving RePAD in designing the adaptive detection
threshold. Instead of relying on all historical AARE
values to calculate the detection threshold, RePAD2
only calculates the detection threshold based on a
fixed number of recently derived AARE values. In
other words, we employ the concept of sliding win-
dow to redesign the threshold. However, it is unclear
how different sliding window sizes impact the detec-
tion accuracy and time consumption of RePAD2.

To demonstrate the performance of RePAD2, we
conducted a series of experiments based on real-world
time series data from the Numenta Anomaly Bench-
mark (NAB, 2015) and compared RePAD2 with an-
other two state-of-the-art real-time anomaly detec-
tion approaches. The experiment results show that
RePAD2 with a sufficiently long sliding window can
provide comparable prediction accuracy and slightly
less time consumption.

The rest of the paper is organized as follows: Sec-
tion 2 describes related work. Section 3 describes
RePAD. In Section 4, we present how RePAD2 im-
proves RePAD. Section 5 presents and discusses the
experiments and the corresponding results. In Section
6, we conclude this paper and outline future work.

2 RELATED WORK

During the past decades, a number of anomaly detec-
tion approaches have been introduced, and they can
be divided into two categories: Statistical learning ap-
proaches and machine-learning approaches.

Statistical learning approaches work by creating a
statistical model for a set of normal data and then use
the model to determine if a data point fits this model
or not. If the data point has a low probability to be
generated from the model, it is considered anomalous.
For examples, AnomalyDetectionTs and Anomaly-
DetectionVec are statistical learning approaches pro-
posed by Twitter (Twitter, 2015). AnomalyDetec-
tionTs was designed to detect statistically significant
anomalies in a given time series. On the other hand,
AnomalyDetectionVec was designed to detect statis-
tically significant anomalies in a given vector of ob-
servations without timestamp information. However,
both approaches are parameter sensitive because they
require human experts to set appropriate values to

their parameters in order to achieve good detection
performance.

Luminol (LinkedIn, 2018) is another statistical-
based anomaly detection approach proposed by
LinkedIn to identify anomalies in real user monitor-
ing data. Given a time series, Luminol calculates an
anomaly score for each data point. If a data point has
a high score, it indicates that this data point is likely
to be anomalous. However, human experts still need
to further determine which data points are anomalies
based on their domain knowledge and experiences.
Siffer et al. (Siffer et al., 2017) introduced a time
series anomaly detection approach based on Extreme
Value Theory. This approach makes no assumption on
the distribution of time series and requires no thresh-
old manually set by humans. However, this approach
needs a long period to do necessary calibration before
conducting anomaly detection.

On the other hand, most machine learning-based
anomaly detection approaches require either domain
knowledge or human intervention. For instances, Ya-
hoo proposed EGADS (Laptev et al., 2015) to de-
tect anomalies on time series based on a collection
of anomaly detection and forecasting models. How-
ever, EGADS requires to model the target time series
so as to predict a data value later used by its anomaly
detection module and its altering module. Lavin and
Ahmad (Lavin and Ahmad, 2015) introduced Hierar-
chical Temporal Memory to capture pattern changes
in time series. However, this approach requires 15%
of its training dataset to be non-anomalous for train-
ing its neural network.

Greenhouse (Lee et al., 2018) is an anomaly
detection algorithm for time series based on Long
Short-Term Memory (LSTM for short) (Hochreiter
and Schmidhuber, 1997), which is an neural network
designed to learn long short-term dependencies and
model temporal sequences. Greenhouse requires all
its training dataset to be non-anomalous. During the
training phase, Greenhouse adopts a Look-Back and
Predict-Forward strategy to detect anomalies. For a
given time point, a window of most recently observed
data point values of length b is used as a Look-Back
period to predict a subsequent window of data point
values of length f. This feature enables Greenhouse to
adapt to pattern changes in the training data. How-
ever, Greenhouse requires an offline training phase
to train its LSTM model, and its detection threshold
must be specified by human experts.

RePAD (Lee et al., 2020b) is one of the state-of-
the-art real-time and lightweight time series anomaly
detection approaches, and it is also based on LSTM
and the Look-Back and Predict-Forward strategy.
However, unlike Greenhouse, RePAD does not need
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an offline training phase. RePAD utilizes a simple
LSTM network (with one hidden layer and ten hidden
units) trained with short-term historical data points
to predict upcoming data points, and then decides if
each data point is anomalous based on a dynamic de-
tection threshold that can adapt to pattern changes in
the target time series. However, RePAD needs to re-
calculate its detection threshold based on all histori-
cal AARE values at every time point (except the first
few time points). Hence, when RePAD works on an
open-ended time series, it might eventually exhaust
the underlying system resources.

ReRe (Lee et al., 2020a) is an enhanced real-time
time series anomaly detection based on RePAD, and
it was designed to keep a high true positive rate and a
low false positive rate. It utilizes two LSTM models
to jointly detect anomalous data points. One of the
LSTM models works exactly as RePAD, whereas the
other LSTM model works similar to RePAD but with
a stricter detection threshold.

3 RePAD

Before introducing RePAD2, let us understand how
RePAD works. Figure 1 illustrates the algorithm of
RePAD (Lee et al., 2020b). RePAD uses short-term
historical data points to predict upcoming data points
by setting its Look-Back parameter (denoted by b) to
a small integer and its Predict-Forward parameter (de-
noted by f ) to 1. To help explain how RePAD works,
let b be 3. In other words, RePAD always predicts the
next data point based on three historical data points.

When RePAD is launched, the current time point
(denoted by t) is considered as 0. Since b equals 3,
RePAD needs to collect three data points to train an
LSTM model. Hence, RePAD collects data points
v0, v1, and v2 at time points 0, 1, and 2, respectively.
When t is 2, RePAD can train the first LSTM model
with data points v0, v1, and v2. This model is denoted
as M, and it is used by RePAD to predict the next data
point, denoted by v̂3. When t advances to 3 and 4,
RePAD continues the same process to predict v̂4 and
v̂5, respectively (see lines 5 and 6 of Figure 1). When t
equals 5, RePAD can calculate AARE5 based on Equa-
tion 1.

AARE t =
1
b
·

t

∑
y=t−b+1

| vy − v̂y |
vy

, t ≥ 2b−1 (1)

where vy is the observed data value at time point
y, and v̂y is the predicted data value for time point

y. Recall b equals 3, AARE5 = 1
3 · ∑

5
y=3

|vy−v̂y|
vy

=

1
3 · (

v3−v̂3
v3

+
v4−v̂4

v4
+

v5−v̂5
v5

).

Figure 1: The algorithm of RePAD (Lee et al., 2020b).

Note that RePAD always calculates AAREt based
on three most recently absolute relative errors. A
low AARE value indicates accurate prediction be-
cause the predicted values are close to the observed
values. When t advances to 6, RePAD keeps calculat-
ing AARE6 and training a new LSTM model to predict
v̂7 (see lines 8 to 10 of Figure 1).

When t advances to 7, RePAD calculates AARE7
and then calculates its adaptive detection threshold,
denoted by thd (see line 14), using Equation 2 based
on the Three-Sigma Rule (Hochenbaum et al., 2017).
In other words, RePAD needs at least three AARE
values to determine thd.

thd = µAARE +3 ·σ, t ≥ 2b+1 (2)

where µAARE is the average AARE, and it is calcu-
lated as below.

µAARE =
1

t −b−1
·

t

∑
x=2b−1

AAREx (3)

In Equation 2, σ is the standard deviation, and it can
be derived as below.

σ =

√
∑

t
x=2b−1 (AAREx −µAARE)2

t −b−1
(4)

Once the detection threshold thd is calculated, it is
used immediately by RePAD to decide if the upcom-
ing data point is anomalous or not. If AAREt is not
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higher than the threshold (see line 15), vt is not con-
sidered as anomalous, and the current LSTM model
will be kept for future prediction.

On the other hand, if AAREt is higher than the
threshold (see line 16), it might indicate that either
the data pattern of the time series has changed or that
anomalies might have occurred. In this case, RePAD
will try to adapt to the potential pattern change by
retraining another new LSTM model to re-predict v̂t
and see if this newly trained LSTM model can lower
AAREt. If the new AAREt does not exceed the thresh-
old (see line 21), RePAD does not consider vt anoma-
lous. However, if the new AAREt exceeds the thresh-
old, meaning that the newly trained LSTM model still
cannot accurately predict the data point, RePAD im-
mediately reports the data point as an anomaly, al-
lowing for corresponding actions or countermeasures
to be taken. Furthermore, RePAD sets its flag to
false (see line 24), enabling a new LSTM model to
be trained at the next time point instead of using the
current LSTM model. The above process will repeat
as time advances.

4 RePAD2

As described previously, RePAD has several good
features, including lightweight LSTM network (one
hidden layer with 10 hidden units), dynamic detection
threshold that can adapt to pattern changes, LSTM
model training only in the beginning and only when
AARE exceeds the detection threshold, etc. How-
ever, as shown in Equations 3 and 4, RePAD relies
on all historical AARE values to calculate its detec-
tion threshold at every time point except in the begin-
ning phase between time point 0 and time point 2b.
This design might slow down RePAD when RePAD is
employed to detect anomalies in an open-ended time
series for a long time, and it might eventually ex-
haust the underlying system resources (e.g., the sys-
tem memory) due to the increasing number of the his-
torical AARE values.

Figure 2 illustrates the algorithm of RePAD2
where T denotes the current time point (T starts from
0), DT denotes the observed data point at time point
T, and D̂T denotes the predicted data point at time
point T. It is clear that the algorithm of RePAD2 is
similar to that of RePAD. However, instead of provid-
ing the flexibility to configure the Look-Back param-
eter, RePAD2 always uses three historical data points
to predict each upcoming data point by following the
Look-Back parameter suggestion made by (Lee et al.,
2021a).

Similar to RePAD, RePAD2 always uses three his-

Figure 2: The algorithm of RePAD2.

torical absolute relative errors to calculate the aver-
age absolute relative error at time point T, denoted by
AARE*

T. The equation is shown below.

AARE*
T =

1
3
·

T

∑
y=T−2

| Dy − D̂y |
Dy

,T ≥ 5 (5)

To address the resource exhaustion issue, RePAD2
uses Equation 6 to calculate its detection threshold at
time point T (where T ≥ 7). The threshold is denoted
by Thd*.

T hd* = µ*
AARE +3 ·σ*,T ≥ 7 (6)

where µ*
AARE and σ* are calculated by Equations 7

and 8, respectively.

µ*
AARE =

{
1

T−4 ·∑
T
x=5 AARE*

x,7 ≤ T <W +4
1

W ·∑T
x=T−W+1 AARE*

x, T ≥ W +4
(7)

σ
* =


√

∑
T
x=5 (AARE*x−µ*

AARE)2

T−4 ,7 ≤ T <W +4√
∑

T
x=T−W+1 (AARE*x−µ*

AARE)2

W , T ≥ W +4
(8)

Note that in Equations 7 and 8, W is an integer to
indicate how many historical AARE values will be
considered to calculate Thd*. If the total number of
all historical AARE values is less than W, all the his-
torical AARE values will be considered to calculate
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Thd*. Otherwise, only the W most recently derived
AARE values will be used to calculate Thd*. For in-
stance, if W equals 1000, then Thd* at time point 1004
will be calculated as AARE*

5+AARE*
6+...+AARE*

1004
1000 + 3 ·√

(AARE*
5−µ*

AARE)2+...+(AARE*
1004−µ*

AARE)2

1000 . Recall
that Thd* will be re-calculated at every time point (ex-
cept from time point 0 to time point 6). By restrict-
ing the number of AARE values to calculate Thd*,
we avoid RePAD2 from running out of the underly-
ing system resources.

Another difference between RePAD2 and RePAD
is that RePAD2 attempts to reduce unnecessary
LSTM model training when a re-calculated AARE*

value is not higher than Thd* (see lines 23 and 24 of
Figure 2). In the next section, we will evaluate the
performance of RePAD2 and investigate how differ-
ent values of W impact RePAD2.

5 EXPERIMENT RESULTS

To evaluate RePAD2, we compared it with an-
other two state-of-the-art real-time and lightweight
anomaly detection approaches RePAD (Lee et al.,
2020b) and ReRe (Lee et al., 2020a) by conduct-
ing two experiments. In the first experiment, we
chose one time series data called ec2-cpu-utilization-
825cc2 (CC2 for short) from the Numenta Anomaly
Benchmark (NAB, 2015). In the second experi-
ment, we chose another time series data called rds-
cpu-utilization-e47b3b (B3B for short) from the same
benchmark. Both time series consist of 4032 data
points that were collected every five minutes. How-
ever, CC2 was collected from April 10th to April 24th
in 2014, whereas B3B was collected from April 10th
to April 23rd in the same year. CC2 contains two
point anomalies and one sequential anomaly noted
by domain experts, whereas B3B contains one point
anomaly and one sequential anomaly noted by do-
main experts. Note that a point anomaly is considered
as a sequential anomaly of size one (Schneider et al.,
2021).

Due to lack of open-source time series that is
open-ended and contains anomalies labelled by do-
main experts, we created a long time series (called
CC2-10) by duplicating CC2 ten times and concate-
nating the ten series together. We also did the same
for B3B and created a long time series called B3B-
10. The purpose is to evaluate the performance of the
three approaches (i.e., RePAD2, RePAD, and ReRe)
on such long time series. Table 1 summaries the de-
tails of the two extended time series. There are 20
point anomalies and 10 sequential anomalies in CC2-

10, and 10 point anomalies and 10 sequential anoma-
lies in B3B-10. Figures 3 and 4 illustrate the two time
series. Each point anomaly is marked as a red circle,
and each sequential anomaly is marked in red.

Table 1: Details of the two extended time series used in the
experiments.

Name CC2-10 B3B-10

# of data points 40320 40320
Time interval (min) 5 5
# of point anomalies 20 10
# of sequential anomalies 10 10

Figure 3: All data points of CC2-10. Note that all anomalies
are marked in red.

Figure 4: All data points of B3B-10. Note that all anomalies
are marked in red.

To achieve a fair comparison, all the three ap-
proaches had the same hyperparameter and param-
eter setting as listed in Table 2, and they were im-
plemented in DL4J (Deeplearning4j, 2023), which
is a programming library written in Java for deep
learning. All approaches adopted Early Stopping
(EarlyStopping, 2023) to automatically determine the
number of epochs (up to 50) for LSTM model train-
ing. Furthermore, the Look-Back parameter for both
RePAD and ReRe was set to three so that all the three
approaches always use three historical data points to
predict every upcoming data point. In both experi-
ments, RePAD2 was evaluated under four values for
variable W: 1440, 4032, 8064, and 16128. These slid-
ing window sizes are equivalent to 5, 14, 28, and 56
days because the number of data points collected per
day in both CC2 and B3B was 288. All the exper-
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iments were performed on a laptop running MacOS
Monterey 12.6 with 2.6 GHz 6-Core Intel Core i7 and
16GB DDR4 SDRAM.

Table 2: The hyperparameter and parameter setting used by
the three approaches.

Hyperparameters and parameters Value

The number of hidden layers 1
The number of hidden units 10
The number of epochs 50
Learning rate 0.005
Activation function tanh
Random seed 140

To evaluate the detection accuracy of the three
approaches, we followed the evaluation method
used by (Lee et al., 2020a) to measure preci-
sion (which equals TP/(TP+FP)), recall (which
equals TP/(TP+FN)), and F-score (which equals
2×(precision×recall)/(precision+recall)). Note that
TP, FP, and FN represent true positive, false positive,
and false negative, respectively. More specifically, if
any point anomaly occurring at time point Z can be
detected within a time period ranging from time point
Z−K to time point Z+K, this anomaly is considered
correctly detected. On the other hand, for any sequen-
tial anomaly, if it starts at time point I and ends at time
point J (J>I), and it can be detected within a period
between I−K and J, this anomaly is considered cor-
rectly detected. Note that we followed (Ren et al.,
2019) and set K to 7. This setting was applied to all
the three approaches as well.

5.1 Experiment 1

Table 3 lists the detection accuracy of RePAD2,
RePAD, and ReRe on CC2-10. When W was 1440,
RePAD2 had a poor precision (i.e., 0.531). Even
though RePAD2 under this sliding window size had
recall of 1, the low precision resulted in the worst
F-score among all compared approaches. When W
was increased to 4032, the precision of RePAD2 sig-
nificantly increased to 0.972, but its recall reduced
to 0.7, leading to the F-score of 0.814. We can see
that the detection accuracy of RePAD2 remained sim-
ilar when W was further increased to 8064, but it
dropped slightly when W was further increased to
16128. Based on the results shown in Table 3, we
can see that RePAD2 provides a slightly better de-
tection accuracy than RePAD when W is 4032, 8064,
or 16128. As compared with ReRe, RePAD2 offers
a comparable detection accuracy when W is 4032 or
8064.

To explain why RePAD2 has different results, Fig-
ures 5 − 8 illustrate how the detection threshold of

Table 3: The detection accuracy of different approaches on
CC2-10.

Approach Precision Recall F-score

RePAD2 (W=1440) 0.531 1 0.694
RePAD2 (W=4032) 0.972 0.7 0.814
RePAD2 (W=8064) 0.971 0.7 0.814
RePAD2 (W=16128) 0.965 0.7 0.811
RePAD 0.964 0.7 0.811
ReRe 0.971 0.7 0.814

RePAD2 changed over time under different values of
W. When W was 1440, we can see that the thresh-
old curve as shown in Figure 5 apparently rises and
then falls repeatedly, implying that RePAD2 period-
ically lost the memory about older historical AARE
values and obtained the memory about newer histor-
ical AARE values. Due to the fact that the detection
threshold was calculated at every time point based on
the past 1440 AARE values, the threshold was prone
to be affected by high AARE values. Such a phe-
nomenon caused a lot of false positives. That is why
RePAD2 with W of 1440 has poor precision.

When W was increased to 4032 and 8064, the
threshold curve became flatter (see Figures 6 and
7) since RePAD2 used more historical AARE val-
ues to calculate its detection threshold. In other
words, the threshold was less affected by few high
AARE values. However, when W was further in-
creased to 16128, it could not further improve the
precision of RePAD2 due to false positives. Never-
theless, RePAD2 achieves a similar detection accu-
racy as RePAD. Therefore, according to the results, it
is recommended to choose a sufficiently long sliding
window (e.g., 4032) for RePAD2 so as to reduce false
positives.

Figure 5: All derived AARE values vs. the detection thresh-
old over time when RePAD2 worked on CC2-10 and had a
sliding window of 1440.

Recall that RePAD2, RePAD, and ReRe are all de-
signed to decide if each upcoming data point in the
target time series is anomalous. When they find that
their current LSTM models cannot accurately predict
a data point, they will retrain a new LSTM model.
Table 4 lists the LSTM retraining ratios of all the
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Figure 6: All derived AARE values vs. the detection thresh-
old over time when RePAD2 worked on CC2-10 and had a
sliding window of 4032.

Figure 7: All derived AARE values vs. the detection thresh-
old over time when RePAD2 worked on CC2-10 and had a
sliding window of 8064.

three approaches. When W was 1440, RePAD2 re-
quired to retrain a LSTM model for 555 data points.
Since the total number of the data points in CC2-10
is 40320, the LSTM model retraining ratio is 0.014.
We can see that the retraining ratio of RePAD2 re-
duced when W was increased, implying that including
more historical AARE values to calculate the thresh-
old helps reduce LSTM model retraining. When
RePAD2 is compared with RePAD, it requires slightly
more model retraining. But when it is compared with
ReRe, RePAD2 has a lower retraining ratio. This is
because ReRe employs two detectors to jointly detect
anomalies. The detection threshold used by detector
2 is more stricter than the detection threshold used by
detector 1, which causes more LSTM model retrain-
ing.

Figure 8: All derived AARE values vs. the detection thresh-
old over time when RePAD2 worked on CC2-10 and had a
sliding window of 16128.

Table 4: The LSTM training ratio of different approaches
on CC2-10.

Approach LSTM model retraining ratio

RePAD2 (W=1440) 0.014 (=555/40320)
RePAD2 (W=4032) 0.012 (=460/40320)
RePAD2 (W=8064) 0.011 (=448/40320)
RePAD2 (W=16128) 0.011 (=428/40320)
RePAD 0.010 (=417/40320)
ReRe 0.010 (=417/40320) for detector 1

0.038 (=1522/40320) for detector 2

Table 5 shows the average time required by the
three approaches to decide if a data point in CC2-
10 is anomalous when LSTM model retraining is re-
quired. We can see that the time required by RePAD2
slightly reduced when W was increased, implying that
including more AARE values to calculate the detec-
tion threshold slightly helps reduce the time consump-
tion of RePAD2. As compared with RePAD, RePAD2
is slightly more efficient when W is 8064 or 16128.
On the other hand, ReRe consumed more time than
RePAD2 and RePAD since it employs two parallel de-
tectors (rather than one detector) to detect anomalies
simultaneously.

Table 5: Time consumption of different approaches on
CC2-10 when LSTM model retraining is required.

Approach Average time to decide if a
data point is anomalous (sec)

Standard de-
viation (sec)

RePAD2 (W=1440) 0.205 0.030
RePAD2 (W=4032) 0.204 0.031
RePAD2 (W=8064) 0.200 0.027
RePAD2 (W=16128) 0.200 0.026
RePAD 0.202 0.030
ReRe 0.231 0.394

Table 6 lists the time consumption of the three
approaches when LSTM model retraining is not re-
quired by these approaches. It is clear that RePAD2
has a similar performance as RePAD, but a slightly
better performance than ReRe.

Table 6: Time consumption of different approaches on
CC2-10 when LSTM model retraining is NOT required.

Approach Average time to decide if a
data point is anomalous (sec)

Standard de-
viation (sec)

RePAD2 (W=1440) 0.029 0.032
RePAD2 (W=4032) 0.028 0.012
RePAD2 (W=8064) 0.028 0.012
RePAD2 (W=16128) 0.028 0.011
RePAD 0.028 0.012
ReRe 0.031 0.080

Based on all the above results on CC2-10, we can
see that RePAD2 provides a slightly better detection
accuracy and/or a slightly less time consumption than
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RePAD when it uses a sufficiently long sliding win-
dow (e.g., 4032, 8064, or 16128) to calculate its de-
tection threshold. As compared with ReRe, RePAD2
offers a comparable detection accuracy and a slightly
less time consumption when its sliding window size
is 4032 or 8064.

5.2 Experiment 2

In experiment 2, we evaluated the performance of the
three approaches on B3B-10. As listed in Table 7,
RePAD2 had poor precision when W was 1440. This
is because the threshold repeatedly rose and dropped
and when it dropped, its value was lower than 0.1 (see
Figure 9), which caused many false positives.

Table 7: The detection accuracy of different approaches on
B3B-10.

Approach Precision Recall F-score

RePAD2 (W=1440) 0.667 1 0.800
RePAD2 (W=4032) 0.920 1 0.958
RePAD2 (W=8064) 0.921 1 0.959
RePAD2 (W=16128) 0.939 1 0.969
RePAD 0.939 1 0.969
ReRe 0.939 1 0.969

Figure 9: All derived AARE values vs. the detection thresh-
old over time when RePAD2 worked on B3B-10 and had a
sliding window of 1440.

Figure 10: All derived AARE values vs. the detection
threshold over time when RePAD2 worked on B3B-10 and
had a sliding window of 4032.

When W was further increased to 4032 and 8064,

Figure 11: All derived AARE values vs. the detection
threshold over time when RePAD2 worked on B3B-10 and
had a sliding window of 8064.

the precision of RePAD2 significantly increased to
0.920 and 0.921, respectively. We can see from Fig-
ures 10 and 11 that the two threshold curves are more
flatter than that in Figure 9, and that the values of
the thresholds are higher than 0.1 in most of the time.
Hence, not so many normal data points were wrongly
identified as anomalous by RePAD2.

When W was further increased to 16128, RePAD2
achieved the same precision and recall (and of course
the same F-score) as RePAD and ReRe. Clearly, we
can see that increasing W helps increase the precision
of RePAD2.

Table 8: The LSTM training ratio of different approaches
on B3B-10.

Approach LSTM model retraining ratio

RePAD2 (W=1440) 0.006 (=225/40320)
RePAD2 (W=4032) 0.004 (=153/40320)
RePAD2 (W=8064) 0.004 (=152/40320)
RePAD2 (W=16128) 0.004 (=148/40320)
RePAD 0.004 (=148/40320)
ReRe 0.004 (=148/40320) for detector 1

0.008 (=323/40320) for detector 2

Table 8 shows the LSTM retraining ratios required
by the three approaches on B3B-10. Apparently,
RePAD2 required the most LSTM model retraining
when W was 1440, and we can also see from Ta-
ble 9 that these retraining slightly impacted the time
consumption of RePAD2. However, when W was in-
creased, the retraining ratio of RePAD2 reduced and
stabilized, and it is comparable to that of RePAD and
less than that of ReRe. In addition, we can also see
that the time consumption of RePAD2 (as shown in
Table 9) slightly reduced as W was increased, and
RePAD2 was slightly more efficient than RePAD and
ReRe. Table 10 shows RePAD2 had almost the same
time consumption as RePAD when LSTM model re-
training was not required, regardless of the value of
W.

Based on the above results on B3B-10, we con-
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Table 9: Time consumption of different approaches on
B3B-10 while LSTM model retraining is required.

Approach Average time to decide if a
data point is anomalous (sec)

Standard de-
viation (sec)

RePAD2 (W=1440) 0.207 0.023
RePAD2 (W=4032) 0.204 0.019
RePAD2 (W=8064) 0.203 0.023
RePAD2 (W=16128) 0.203 0.024
RePAD 0.206 0.026
ReRe 0.314 0.706

clude that RePAD2 can achieve the same detection
accuracy as RePAD and ReRe when it uses the slid-
ing window size of 16128, but it consumes less time
consumption than RePAD and ReRe, especially when
LSTM model retraining is required.

Table 10: Time consumption of different approaches on
B3B-10 while LSTM model retraining is NOT required.

Approach Average time to decide if a
data point is anomalous (sec)

Standard de-
viation (sec)

RePAD2 (W=1440) 0.028 0.010
RePAD2 (W=4032) 0.028 0.009
RePAD2 (W=8064) 0.028 0.009
RePAD2 (W=16128) 0.028 0.009
RePAD 0.028 0.010
ReRe 0.032 0.133

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we have introduced RePAD2 for ad-
dressing the resource exhaustion problem that several
state-of-the-art real-time and lightweight anomaly de-
tection approaches might suffer when they work on
open-ended time series for a long time. By limiting
the number of historical AARE values to calculate the
detection threshold that is dynamically updated at ev-
ery data point (except for the first few data points),
RePAD2 successfully avoids the underlying system
resources from exhaustion.

Two experiments based on real-world time series
from the Numenta Anomaly Benchmark have been
conducted to compare RePAD2 with two other real-
time and lightweight anomaly detection approaches
(i.e., RePAD and ReRe). Four different sliding win-
dow sizes were used to evaluate the performance of
RePAD2. According to the results, it is not recom-
mended that RePAD2 uses a small sliding window
size (i.e., using a few number of historical AARE val-
ues to calculate the detection threshold) because the
detection threshold will fluctuate over time and it will
cause unwanted false positives.

A large sliding window size is recommended for
RePAD2. As compared with RePAD and ReRe,
RePAD2 with a large sliding window can reduce false
positives and increase F-score, and therefore offers ei-
ther slightly better or comparable detection accuracy.
In addition, RePAD2 provides a slightly better per-
formance when it comes to the time consumption for
determining whether each data point in the target time
series is anomalous or not.

As our future work, we would like to implement
and deploy RePAD2 on a tiny computer such as Rasp-
berry Pi for different IoT time series anomaly detec-
tion (e.g., energy consumption, network traffic, room
temperature, humidity, etc.). We also plan to deploy
RePAD2 on android-based smart phones to see how
it can help individual user to better monitor their net-
work usages. In addition, we plan to extend RePAD2
to detect anomalies in multivariate open-ended time
series in a real-time and lightweight manner.
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