
Online Polyglot Programming Education with LFT (Lingua Franca
Transformer)

Sokratis Karkalas1, Filothei Chalvatza1 and Manolis Mavrikis2

1Simple, Farkadona, Greece
2UCL Knowledge Lab, University of London, London, U.K.

fi

Keywords: Authoring Tools, Programming Education, Exploratory Learning, Web Learning Components.

Abstract: This paper presents a novel approach to improve reusability and augment the educational value of web com-
ponents through a polyglot environment. The idea is to enable communication with web components in a
language neutral context by provisioning, along with the instructions, the grammar specification of the lan-
guage used for those instructions and thus make the system agnostic of the language being used. This ability
promotes reusability in the sense that learning designers are able to utilise learning materials using the lan-
guage they feel more comfortable with or the language that seems to be more suitable for the task. Another
benefit is that learners can make better use of the same learning environments they are accustomed to using
through different languages. This allows learners to experiment with different programming paradigms, use
more expressive or specialised languages and combine them with the concepts available in the learning envi-
ronment of preference. In the context of this project we developed an authoring environment that allows the
specification of any language and the automatic generation of parsers that can be used to dynamically transpile
code into JavaScript. Preliminary testing confirmed that the idea is feasible and gave us positive feedback for
future development.

1 INTRODUCTION

An important aspect of teaching programming to
novices is the choice of language. The language
used to encode concepts and techniques developed
during learning should be expressive enough to carry
them throughout the learning process. Different lan-
guages vary in how specialized they are, how close
they are to the physical architecture of the machine,
and other factors. Not all languages may be suitable
for teaching programming, depending on the educa-
tional course, approach, and other parameters.

The Lingua Franca Transformer (LFT) is a sys-
tem intended for transformations from any language
to JavaScript. LFT is a tool that can be used to de-
velop the definition of any language and generate the
respective transpiler to JavaScript. The tool can be
used to experiment with new languages designed for
educational or other purposes. LFT makes it possible
to use existing learning environments with different
languages, and new programming languages may also
be defined with the same ease as existing ones.

2 RELATED WORK

The question of which language to use for introduc-
tory programming education is almost as old as CS
education itself (Becker and Quille, 2019; Sobral,
2019) and it is an important one (Laakso et al., 2008;
Minor and Gewali, 2004). Comparisons between dif-
ferent languages and programming paradigms with
respect to the educational value they carry in CS1
courses are a constant and recurring theme in the aca-
demic literature (Smith and Rickman, 1976; Wexel-
blat, 1979; Tharp, 1982; Duke et al., 2000; Mannila
and de Raadt, 2006; Azad and Smith, 2014; Goosen,
2008; Parker et al., 2006; Sobral, 2019; Irimia, 2001;
Wainer and Xavier, 2018; Lewis et al., 2016). Never-
theless it seems that there is still no definitive answer
as to which should be the most preferable language
to convey the necessary concepts to newcomers in the
discipline. The fact that the Association for Comput-
ing Machinery (ACM) and the Institute of Electrical
and Electronics Engineers (IEEE) have never given
clear curriculum recommendations for this subject is
indicative of the situation (Sobral, 2020). Naturally
decisions about this are being made on an ad hoc ba-

Karkalas, S., Chalvatza, F. and Mavrikis, M.
Online Polyglot Programming Education with LFT (Lingua Franca Transformer).
DOI: 10.5220/0011981400003470
In Proceedings of the 15th International Conference on Computer Supported Education (CSEDU 2023) - Volume 1, pages 305-312
ISBN: 978-989-758-641-5; ISSN: 2184-5026
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

305



sis by course directors and teachers based on criteria
that vary. An extensive list of typical criteria used are
given in (Ezenwoye, 2018; Lindoo, 2020; Naveed
et al., 2018; Sobral, 2019; Irimia, 2001; Wainer and
Xavier, 2018; Sobral, 2021). A mixed approache
that proposes multiple languages for CS1 courses is
given in (Lindoo, 2020) where the use of a multi-
programming language approach reduced the drop-
out rates and increased pass - success rates signifi-
cantly.

Programming is by nature a craft and as such it is
learnt better through experimentation and exploration
in a constructivist context. Learning in this context
is accomplished through personal inquiry, divergent
thinking and self-directed learning (Hannafin et al.,
1999). Naturally, learning environments that promote
that type of learning are virtual worlds (microworlds).
There have been numerous attempts in academia and
the industry to address this need through projects like
(Solomon and Papert, 1976; PATTIS, 1981; Bergin
et al., 1996; Bergin et al., 2005; Becker, 2001; Kahn,
1996; Cooper et al., 2000; Van Haaster and Hagan,
2004; Henriksen and Kölling, 2004; Kölling and Hen-
riksen, 2005; Zschaler et al., 2014; Kynigos and Latsi,
2007; Maloney et al., 2008). In all those cases, the
environments developed are tied to a specific lan-
guage though. The language used in Turtle Graphics
(Solomon and Papert, 1976; Papert, 1980) and Malt+
(Kynigos and Latsi, 2007) is LOGO and the one used
in Greenfoot (Henriksen and Kölling, 2004) is Java.
Following the discussion above about the flexibility to
allow different languages for introductory program-
ming education we consider this a potentially limiting
factor that imposes considerable constraints when it
comes to utilising those environments and exploiting
the full potential of them. It would be really beneficial
to have the ability to use the same environments with
other languages like C# and Python.

Another challenge that needs to be addressed is
that the de facto platform for development and de-
ployment of educational software nowadays is the
web (Wen et al., 2020). Naturally applications de-
veloped in that context are supposed to be executed
within a web browser. This offers a lot of flexibil-
ity as it allows for easier development, deployment,
maintenance, upgrading and administration but at the
same time it introduces barriers in terms of what can
actually be processed in the context of a browser. The
most obvious concerns are the limitations of mem-
ory, processing resources and dependencies on cer-
tain functionalities. The not so obvious concern but
a crucial one is that the low-level machine language
of the browser is JavaScript. That realisation reveals
an additional concern that regardless of the language

being used to express things at a high level the com-
mon denominator is always JavaScript as execution
takes place in the underlying JavaScript runtime en-
gine supported by the browser. The alternative would
be to utilise a server at the back end to actually pro-
cess requests in native runtime environments and then
send back to the browser the results (Serrano et al.,
2006; Balat et al., 2009). A roundtrip to a server for
every request is not a scalable and therefore viable so-
lution for web deployments, therefore we are not con-
sidering that option at all. Executing everything lo-
cally in the browser, in a disconnected fashion is both
good and bad. The advantage is that it is guaranteed
that standard Javascript will always be the same in any
platform and that means that no recompilation will be
necessary for different machine and platform archi-
tectures. This guarantee of uniformity gives indepen-
dence, flexibility and reduces the cost of developing
solutions. On the flip side though, the limitations and
the somewhat distinct idiosyncrasy of JavaScript will
always be a limiting factor to what can be expressed
and executed in the context of a browser. It is lit-
erally impossible to keep the exact same semantics
between any other language and Javascript and it is
also impossible to rely on certain operating system
abstractions like multi-threading, file systems and so
on. Thus, the chances are very high that there will
be certain compromises when expressing and execut-
ing foreign code in the browser but these are compro-
mises that we should be willing to accept since the
benefit outweighs the cost. Another approach that has
been proposed by (Canou et al., 2012) is to perform
a compilation of code in its native environment and
port the target bytecode to a virtual machine running
in Javascript on the browser. The idea is simple, ef-
ficient and effective if it is known in advance what is
required to be transported to the browser but in the
context of online exploratory learning environments
the expectation is that the code is given in real time by
the learners and the aim is for this code to be directly
executable in real time so that the user can manipulate
constructs in those environments. This requires a JiT
(Just in Time) transpilation of code from any language
to Javascript directly in the browser.

Finally, the most recent development in this area
is the deployment of fully fledged virtual machines
in the browser that are able to execute absolutely un-
modified source code written in different languages
as if they are in their native environment (Wen et al.,
2020). This is a solution that entails the execution of
an OS via a virtual hypervisor running in the browser.
The prospect of having the ability to operate like that
in a browser exceeds even the most ambitious expec-
tations and this is something definitely worth invest-

CSEDU 2023 - 15th International Conference on Computer Supported Education

306



ing in future research projects. Nevertheless, the obvi-
ous obstacles to using this approach currently is that it
is not mature enough to provide well defined interfac-
ing options so that the functionality of the code being
run in the VM can be externalised and used directly to
manipulate objects in the browser and also the cost of
running a heavyweight component like the VM itself
may pose considerable resource and performance de-
ficiencies in such a limited platform like the browser.

The work in this paper is inspired by (Ford, 2004;
Matsumura and Kuramitsu, 2016). The aim is to
have the ability to manipulate any object that exposes
an API in the context of a browser with instructions
given in any language. The idea is simple. Instead of
just giving the code intended to perform some action,
we provide both the code and the language specifica-
tion that the code adheres to. The language specifica-
tion is used to generate a parser able to understand the
code and another process generates its equivalent in
Javascript. The Javascript code is then executed in the
usual way and all that happens in an automated fash-
ion. Parsers can either be generated on the fly, or gen-
erated only once and reused thereafter if performance
issues arise. This simple mechanism allows any num-
ber of diverse web widgets in the browser ecosystem
to operate in a truly polyglot environment with min-
imal dependencies and performance overheads since
everything takes place locally.

3 DESIGN CONSIDERATIONS -
PARSERS

The main objective in this part is to identify the opti-
mal solution to generate parsers for input languages.
One option is to design an authoring environment to
enable efficient development of custom parsers by
hand. Building a custom parser by hand is a big en-
deavour and there has to be a good reason to justify
the effort. Normally we consider this option only
when there are specific requirements that cannot be
satisfied by using a typical parser generator. This is
typically the case when the input language is very spe-
cialised or there are particular requirements in terms
of performance or integration that cannot be met. A
more flexible approach that covers a wide range of
cases and promises shorter development time is to
use a parser generator. Parser generators may offer
a cost effective alternative to building custom parsers
but they are not trivial to use themselves. They come
with constraints and limitations in terms of what in-
put grammars they support and what types of target
languages they are suitable for. Not all parser genera-
tors are compatible with all types of grammars. This

consideration is needed because it shows the available
options along with potential constraints and limita-
tions with existing tools and technologies. The first
and foremost constraint in our case is the fact that we
expect the parser generator to be able to operate in
the browser. Therefore the expectation is to find a
tool that is itself developed in JavaScript. This crite-
rion narrows down significantly the available range of
options.

For that part a domain analysis is done to see what
the available tools and technologies are in the market
and what the technical specifications for those tools
are.At the time that this part of the research was done
the major players were Jison, PEG.js, ANTLR and
Chevrotrain. The main two rivals in terms of popular-
ity (npm trends) have always been PEG.js and Jison.
These are the oldest tools in the market. PEG.js has
always been by far the most popular tool in the mar-
ket. This trend has only recently changed in favour
of chevrotain that superseded PEG.js in 2022. Popu-
larity (No of downloads per unit of time) as well as
support and maintenance (frequency of updates) are
important criteria in our decision because they relate
to the size of the target user segment we aim for. An-
other consideration is performance benchmarks that
show how performant the tools are when parsing text
in JSON notation (typical test). Unfortunately, these
reports proved not to be very helpful because they
show ambiguous and sometimes contradicting results
favouring one or the other tool. A possible explana-
tion for that might be the fact that the results are heav-
ily influenced by the range of use cases considered.

Jison was written in 2009 as an assisting tech-
nology for a compilers course. It creates bottom-
up parsers that recognize context-free languages ex-
pressed in LALR(1), LR(0), SLR(1) grammars. Ji-
son is an JavaScript implementation of Bison. Bi-
son is a parser generator written in the 1990s to con-
vert context-free grammars into deterministic parsers.
PEG.js was written in 2010 to generate top-down
parsers in JavaScript. The format and syntax of the
grammar used is similar to the one used in Jison.
PEG.js recognises a form of grammars that is alter-
native to context-free grammars and uses the packrat
parsing technique to support any language defined by
an LL(k) or LR(k) grammars (Bouilliez, 2014).

4 THE PARSER GENERATOR

The tool we chose to work with in the first proto-
type is PEG.js. The tight integration of the tool with
JavaScript, the concise syntax of the supported input
language for the grammar, the quality and clarity of

Online Polyglot Programming Education with LFT (Lingua Franca Transformer)

307



the documentation available as well as its huge pop-
ularity in the market contributed to the decision. The
tool follows the Parsing Expression Grammar (PEG)
formalism. PEG (Ford, 2004) formalises a language
in terms of an analytic grammar and that means that
syntax rules correspond more directly to the struc-
ture and the semantics of the parser generated for that
language. PEG is designed specifically to accommo-
date the needs of programming language and com-
piler writing and is considered more powerful than
traditional LL and LR formalisms. The PEG.js im-
plementation accepts syntax rules in PEG and allows
inline statements expressed in JavaScript. That means
that syntax rules in JavaScript can be embedded in
the grammar document in order to direct the gener-
ated parser to reshape the resulting AST and trans-
form it to whatever output language we desire. Tools
that lack this functionality have to resort to separate
components to process the resulting trees and make
them conformant to the desired specification. There
is no separate lexer component for the identification
of tokens as this functionality is integrated with the
tool.

The following is a very simple example of a lan-
guage specification given in PEG:
text = words:(w:word space? {return w;})*
{return words;}
word = letter+
letter = [a-zA-Z0-9]
space = " "

Parsing starts with the rule given first. The ini-
tial rule is called text and references two other rules
named word and space respectively. These rules need
to be defined as well. The rule word is defined as one
or more letters. Letter is defined as any alphabetical
or numerical character (English alphabet). Space is
defined as the whitespace character. Going upwards,
text is defined as any sequence of word tokens option-
ally followed by a space. The JavaScript snippets give
instructions to the parser to return only the matched
word tokens, not the spaces.

5 THE ARCHITECTURE

LFT is primarily intended to enable dynamic trans-
formations of new and existing languages into
JavaScript. This is based on the premise that a poly-
glot environment in the browser can add educational
value to existing learning materials. Learning ma-
terials in that context take the form of web com-
ponents (widgets) that encapsulate some functional-
ity exposed via a GUI and/or an API. Learning de-
signers or learning application developers communi-

cate with these widgets programmatically to initialise
them with content, to monitor learner activity and
progress, to assess learner achievements and so on.
Learners on the other hand sometimes communicate
with them programmatically via the GUI to create and
manipulate content and learn new concepts in the pro-
cess. In both cases we have a widget that requires
instructions expressed in JavaScript to operate.

If the activity logic needs to be expressed in an
alternative language, we need a mechanism to trans-
form this code dynamically into JavaScript before we
send it off to the widget.

Figure 1: LFT Architecture.

LFT accepts the formal specification of the in-
put language as well as the syntax rules for the out-
put language in the same text and generates a parser
for that language. The parser is then used to process
the source code in the target language and produce an
equivalent representation in the intended form. This
form in most of the cases is expected to be an Ab-
stract Syntax Tree (AST) that conforms to the ESTree
specification, formerly known as SpiderMonkey AST.
This is not mandatory but rather a convention used for
convenience if the target language is JavaScript. AST
is a language neutral, generic tree-like representation
of the syntactic structure and the language constructs
found in the source code. It is abstract in the sense
that it does not depict every little detail found in the
syntax or the semantics of the code but only the struc-
ture. The ESTree specification is assumed because it
is a standard format for JavaScript. In LFT the ESTree
AST serves as the common language denominator be-
cause its specification is much simpler than that of
JavaScript itself and it allows automated conversion
into JavaScript via compatible code generators. The
final step is to dynamically evaluate the JavaScript
code and execute the instruction in the component.

6 THE TOOL

The tool is designed to facilitate the authoring pro-
cess of syntax rules for new and existing languages
in PEG. The assumed target language is the ESTree

CSEDU 2023 - 15th International Conference on Computer Supported Education

308



specification. The interface is split in panels organ-
ised as tabs. The first tab shows the editor that can
be used to author the syntax rules for the input lan-
guage - On the right there is another editor that can
be used to test these rules with some text expressed in
the language being specified.

Figure 2: LFT Editor.

If the rules are well formed and the input is valid
the resulting AST is displayed in another frame. This
part of the interface can be used for the specification
of any output language and ESTree output is not as-
sumed. If the target language is ESTree then a more
careful inspection of the output is needed. For that
there is an additional tab that allows the author to per-
form a comparative analysis of the output between the
statements given in the new language and JavaScript.

Figure 3: Comparison Tab.

The comparisons tab gives two editors, one for
each language. The author is supposed to provide
equivalent statements in both languages to express the
same operation and examine carefully the generated
ASTs.

If the ASTs don’t match up then there is a mis-
take in the PEG syntax. An automatic comparison is

performed and differences are highlighted in a third
frame. The next tab is called Testbed and is designed
to give an idea of how the newly defined language
could be used to manipulate a turtle in a Microworld.

Figure 4: LFT Testbed.

7 IMPLEMENTATION DETAILS

In the context of LFT the parser is a JavaScript ob-
ject that gets generated dynamically by a third party
component found in the PEG.js1 library. This com-
ponent is a parser generator that conforms to the PEG
formalism as presented earlier. Once the parser is cre-
ated it can be used to parse code expressed in the input
language and generate code expressed in the output
language dynamically. LFT was designed to allow
transformations between any two languages but its
primary goal is to allow the creation of transpilers to
JavaScript. As stated previously the purpose for this is
to enable the use of different languages in the context
of web browsers. Therefore, the expected target lan-
guage is typically an Abstract Syntax Tree (AST) that
conforms to the ESTree3 specification. This specifi-
cation is the most common and standard format for
JavaScript AST. Once the parser is created the next
step is to enter a sample text in the input language
and let the parser generate the respective AST for
inspection. The AST is formatted appropriately and
placed in a graphical control to enable visual inspec-
tion. A third-party library called JSON Viewer42 is
used for the formatting. Further tests are done in the
‘Comparisons’ tab and that entails the automatic com-
parison and visual inspection of ASTs that are sup-
posed to be identical. The test at that stage is to give
two equivalent statements, one in the input language
and the other in JavaScript and check if the resulting
ASTs are exactly the same. Parsing the JavaScript
code is done by a tool named Esprima53. Automatic

1https://pegjs.org/
2https://github.com/abodelot/jquery.json-viewer
3https://esprima.org/

Online Polyglot Programming Education with LFT (Lingua Franca Transformer)

309



comparison is performed by a third party component
called objectDiff64. This checks both ASTs, detects
discrepancies in the structures and displays visual in-
dicators of the differences. This allows for a much
more succinct testing of the parser conformity with
the ESTree specification5. The final and ultimate test
is to evaluate the parser in the challenging context of
a microworld. This entails writing code in the input
language to control and manipulate a turtle in a turtle-
world. This environment is an own component built
specifically for this project. The environment was de-
veloped in HTML5, JavaScript and Raphael76. The
API exposed by this microworld expects to be used in
JavaScript.

Therefore, the ESTree AST generated by the
parser must be transformed to Javascript before it gets
executed. For this a third-party component named
Escodegen87 is used. The visualisation that shows
the interactive AST for the code given in the testbed
is done with the third-party library named D38. Fi-
nally, all the text editors used in this project are imple-
mented using the third-party library called Ace109.

8 EVALUATION
METHODOLOGY

The evaluation component was a two-fold process.
The first part involved three software engineers that
were presented the tool and after a short familiarisa-
tion session they were given the task to develop gram-
mars for simple mathematical expressions. There was
also a second round of more challenging projects that
took place involving the development of a significant
portion of Java 7, scheme, lisp and logo. During the
activities the participants were asked to reflect on the
process and the usability of the tool using free text.
A general qualitative outcome of this feedback is that
the tool at that level is relatively easy to use, it speeds
up the process, and it is effective in producing ade-
quate results.

The second part of the evaluation was a work-
shop involving two other groups of stakeholders, ICT
teachers and learning designers. A non-random sam-
pling method was used for the selection of the par-
ticipants as there was a specific criterion needed to
be met. The participants had to be knowledgable in

4https://github.com/NV/objectDiff.js
5https://github.com/estree/estree
6http://raphaeljs.com/
7https://github.com/estools/escodegen
8https://d3js.org/
9https://ace.c9.io/

learning technologies, familiar with this area of ex-
pertise, and relatively skilled in IT. The participants
selected were three learning designers and two ICT
teachers. The workshop was delivered in three parts.
Initially the participants were given a general presen-
tation of the tool. Then, they were then given a short
presentation of the outputs generated by the develop-
ers in the first part of the evaluation. Having a first-
hand experience of tangible outputs from that part the
participants were finally asked to ideate on potential
use cases of the tool. This was a focus group dis-
cussion facilitated by a moderator. This discussion
generated very interesting outcomes and prospects of
future work presented in the following section.

9 SUGGESTED USE CASES

The feedback received by the software engineers that
did the usability testing as well as the workshop in the
previous section gave us ideas and suggestions for po-
tential use cases. The main type of users/stakeholders
identified were software developers, learning design-
ers, ICT Teachers, programming teachers and com-
pilers teachers. Starting from the latter, the most con-
spicuous use of the tool would be as an assistive tech-
nology in University courses on compilers. It would
also benefit programming education by enhancing
web-based IDEs (Integrated Development Environ-
ments) with the ability to offer multi-language op-
tions. Additionally programming teachers could ben-
efit by designing specialised languages for smoothen-
ing the learning curve on algorithmic thinking. These
could be more high-level languages given as an inter-
mediate step to make learning easier for beginners and
less skilled developers. Another idea is to promote
self-regulated learning to students learning a new lan-
guage. Students knowledgable in one language could
verify the correctness of their code by writing the
same code in the language they know well and com-
pare the transpilation outpouts to the new language.
In this case the technology could be used as a meta-
cognitive tool.

A different area of interest is web-based learn-
ing environments. In this category we have envi-
ronments that natively support a language possibly
exposed through a GUI component (Malt+) and en-
vironments that are not designed to teach program-
ming but offer an API in JavaScript such as Geoge-
bra (Carvalho et al., 2021). Geogebra is an appli-
cation designed to teach geometry, algebra, statistics
and calculus through a dynamic and interactive user
interface. If an environment encapsulates concepts
that may be difficult to express with the language na-

CSEDU 2023 - 15th International Conference on Computer Supported Education

310



tively supported, then it becomes apparent that the
option to use a more expressive language would en-
hance the usefulness and thus the educational value
of it. That combined with the fact that there would
be no cognitive overhead for existing learners makes
the idea even more appealing. Equally appealing is
the idea to reuse learning environments like Geoge-
bra in different ways and offer even programming
education through them. That would increase sig-
nificantly the usefulness and value of those environ-
ments as it would offer the opportunity to educators
to take advantage of the strengths of different lan-
guages to convey different concepts using well tested
and familiar to students interfaces. Respectively, it
would also increase reusability of those environments
allowing access to different communities of people
and thus increasing the educational value of exist-
ing investments. Combining the strengths of differ-
ent languages with different conceptual abstractions
like objects, emotions, metaphors, and abstract pro-
cesses supported by different environments is like us-
ing the best of both worlds to synthesise and convey
compelling learning scenarios to prospective learners.

10 CONCLUSIONS AND FUTURE
WORK

This paper presents an authoring environment de-
signed to assist learning designers and developers to
define grammars for new and existing languages for
the web. This work took place in the context of the
EU funded project ExtenDT210 and the development
took place on the AWS (Amazon Web Services) plat-
form. The benefit of using this tool is to optimise
the process of defining input languages and make the
output easily transformed into JavaScript. The in-
tention of this work is to allow communication with
web functionality in any language and thus take ad-
vantage of language-specific features combined with
existing functionality to enhance learning and opera-
tional benefits. Preliminary usability testing gave us
positive feedback. Furthermore, focus group discus-
sions gave us directions on potential future uses. We
envisage in future iterations to develop the tool further
and combine it with many different learning or other
JavaScript components in order to exploit its full po-
tential and benefit. We also intend to carry out more
elaborate evaluation cycles to assist with design im-
provements and the ergonomics of the interface.

10https://extendt2.eu/

REFERENCES

Azad, A. and Smith, D. T. (2014). Teaching an introductory
programming language in a general education course.
Journal of Information Technology Education. Inno-
vations in Practice, 13:57.

Balat, V., Vouillon, J., and Yakobowski, B. (2009). Experi-
ence report: Ocsigen, a web programming framework.
In Proceedings of the 14th ACM SIGPLAN interna-
tional conference on Functional programming, pages
311–316.

Becker, B. A. and Quille, K. (2019). 50 years of cs1 at
sigcse: A review of the evolution of introductory pro-
gramming education research. In Proceedings of the
50th acm technical symposium on computer science
education, pages 338–344.

Becker, B. W. (2001). Teaching cs1 with karel the robot
in java. In Proceedings of the thirty-second SIGCSE
technical symposium on Computer Science Education,
pages 50–54.

Bergin, J., Roberts, J., Pattis, R., and Stehlik, M. (1996).
Karel++ A gentle introduction to the art of object-
oriented programming. John Wiley & Sons, Inc.

Bergin, J., Stehlik, M., Roberts, J., and Pattis, R. (2005).
A gentle introduction to the art of object-oriented pro-
gramming in java. cafepress. com. Google Scholar
Google Scholar Digital Library Digital Library.

Bouilliez, P. (2014). Glass cat–a tool for interactive visual-
ization of the execution of oz programs in the pythia
platform. Université Catholique de Louvain.

Canou, B., Chailloux, E., Vouillon, J., et al. (2012).
How to run your favorite language in web browsers.
WWW2012 dev track proceedings.

Carvalho, C. V. D. A., De Medeiros, L. G. F., De Medeiros,
A. P. M., and Santos, R. M. (2021). Papert’s mi-
croworld and geogebra: A proposal for enhancing
functional teaching. Modern Perspectives in Lan-
guage, Literature and Education Vol. 5, pages 1–12.

Cooper, S., Dann, W., and Pausch, R. (2000). Alice: a 3-d
tool for introductory programming concepts. Journal
of computing sciences in colleges, 15(5):107–116.

Duke, R., Salzman, E., Burmeister, J., Poon, J., and Mur-
ray, L. (2000). Teaching programming to beginners-
choosing the language is just the first step. In Pro-
ceedings of the Australasian conference on Comput-
ing education, pages 79–86.

Ezenwoye, O. (2018). What language?-the choice of an
introductory programming language. In 2018 IEEE
Frontiers in Education Conference (FIE), pages 1–8.
IEEE.

Ford, B. (2004). Parsing expression grammars: a
recognition-based syntactic foundation. In Proceed-
ings of the 31st ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 111–
122.

Goosen, L. (2008). A brief history of choosing first pro-
gramming languages. In IFIP International Confer-
ence on the History of Computing, pages 167–170.
Springer.

Online Polyglot Programming Education with LFT (Lingua Franca Transformer)

311



Hannafin, M., Land, S., and Oliver, K. (1999). Open learn-
ing environments: Foundations, methods, and mod-
els. Instructional-design theories and models: A new
paradigm of instructional theory, 2:115–140.

Henriksen, P. and Kölling, M. (2004). Greenfoot: com-
bining object visualisation with interaction. In Com-
panion to the 19th annual ACM SIGPLAN conference
on Object-oriented programming systems, languages,
and applications, pages 73–82.

Irimia, A. (2001). Enhancing the introductory computer sci-
ence curriculum: C++ or java? Journal of Computing
Sciences in Colleges, 17(2):159–166.

Kahn, K. (1996). Toontalktm—an animated programming
environment for children. Journal of Visual Lan-
guages & Computing, 7(2):197–217.

Kölling, M. and Henriksen, P. (2005). Game programming
in introductory courses with direct state manipulation.
In Proceedings of the 10th annual SIGCSE conference
on Innovation and technology in computer science ed-
ucation, pages 59–63.

Kynigos, C. and Latsi, M. (2007). Turtle’s navigation and
manipulation of geometrical figures constructed by
variable processes in a 3d simulated space. Informat-
ics Educ., 6(2):359–372.

Laakso, M.-J., Kaila, E., Rajala, T., and Salakoski, T.
(2008). Define and visualize your first programming
language. In 2008 Eighth IEEE International Confer-
ence on Advanced Learning Technologies, pages 324–
326. IEEE.

Lewis, M. C., Blank, D., Bruce, K., and Osera, P.-M.
(2016). Uncommon teaching languages. In Proceed-
ings of the 47th ACM Technical Symposium on Com-
puting Science Education, pages 492–493.

Lindoo, E. (2020). Results of using a multi-programming
language approach to decrease drop-fail rates in cs1.
Journal of Computing Sciences in Colleges, 36(2):31–
41.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., and
Rusk, N. (2008). Programming by choice: urban
youth learning programming with scratch. In Pro-
ceedings of the 39th SIGCSE technical symposium on
Computer science education, pages 367–371.

Mannila, L. and de Raadt, M. (2006). An objective compar-
ison of languages for teaching introductory program-
ming. In Proceedings of the 6th Baltic Sea conference
on Computing education research: Koli Calling 2006,
pages 32–37.

Matsumura, T. and Kuramitsu, K. (2016). A declarative
extension of parsing expression grammars for recog-
nizing most programming languages. Journal of In-
formation Processing, 24(2):256–264.

Minor, J. T. and Gewali, L. P. (2004). Pedagogical issues
in programming languages. In International Confer-
ence on Information Technology: Coding and Com-
puting, 2004. Proceedings. ITCC 2004., volume 1,
pages 562–565. IEEE.

Naveed, S., Sarim, M., and Nadeem, A. (2018). C in
cs1: Snags and viable solution. Mehran Univer-
sity Research Journal of Engineering & Technology,
37(1):1–14.

Papert, S. (1980). Mindstonns vol. 607. New York: Basic
Rooks.

Parker, K. R., Chao, J. T., Ottaway, T. A., and Chang, J.
(2006). A formal language selection process for intro-
ductory programming courses. Journal of Information
Technology Education: Research, 5(1):133–151.

PATTIS, R. (1981). Karel the robot john wiley & sons. New
York.

Serrano, M., Gallesio, E., and Loitsch, F. (2006). Hop: a
language for programming the web 2. 0. In OOPSLA
companion, pages 975–985.

Smith, C. and Rickman, J. (1976). Selecting languages for
pedagogical tools in the computer science curriculum.
ACM SIGCSE Bulletin, 8(3):39–47.

Sobral, S. R. (2019). Cs1: C, java or python? tips for a
conscious choice.

Sobral, S. R. (2020). The first programming language and
freshman year in computer science: characterization
and tips for better decision making. In World Confer-
ence on Information Systems and Technologies, pages
162–174. Springer.

Sobral, S. R. (2021). The old question: which programming
language should we choose to teach to program? In
International Conference on Advances in Digital Sci-
ence, pages 351–364. Springer.

Solomon, C. J. and Papert, S. (1976). A case study of a
young child doing turtle graphics in logo. In Proceed-
ings of the June 7-10, 1976, national computer con-
ference and exposition, pages 1049–1056.

Tharp, A. L. (1982). Selecting the “right” programming
language. ACM SIGCSE Bulletin, 14(1):151–155.

Van Haaster, K. and Hagan, D. (2004). Teaching and learn-
ing with bluej: an evaluation of a pedagogical tool. Is-
sues in Informing Science & Information Technology,
1.

Wainer, J. and Xavier, E. C. (2018). A controlled experi-
ment on python vs c for an introductory programming
course: Students’ outcomes. ACM Transactions on
Computing Education (TOCE), 18(3):1–16.

Wen, E., Warren, J., and Weber, G. (2020). Browservm:
Running unmodified operating systems and applica-
tions in browsers. In 2020 IEEE International Confer-
ence on Web Services (ICWS), pages 473–480. IEEE.

Wexelblat, R. L. (1979). First programming language: Con-
sequences (panel discussion). In ACM Annual Confer-
ence, page 259.

Zschaler, S., Demuth, B., and Schmitz, L. (2014). Sales-
point: A java framework for teaching object-oriented
software development. Science of Computer Pro-
gramming, 79:189–203.

CSEDU 2023 - 15th International Conference on Computer Supported Education

312


