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Abstract: Dealing with image retrieval in corporate systems becomes challenging when the dataset is small and the
images present features in multiple scales. In this paper, we propose the notion of multiscale context features,
in order to decrease information loss and improve the classification of images in such scenarios. We propose
a preprocessing approach that splits the image into a set of patches, computes their features using a pre-
trained model, and computes the context feature representing the whole image as an aggregation of the features
extracted from individual patches. Besides that, we apply this approach in different scales of the image,
generating context features of different scales, and we aggregate them to generate a multiscale representation
of the image, which is used as the classifier input. We evaluated our method in a geological images dataset
and in a publicly available dataset. We evaluate our approach with three efficient pre-trained models as feature
extractors. The experiments show that our approach achieves better results than the conventional approaches
for this task.

1 INTRODUCTION

This work is part of a project whose goal is to de-
velop an image retrieval system for the petroleum in-
dustry. Due to the enormous amount of data in current
corporate databases, managing and retrieving the rel-
evant data for supporting the tasks of interest becomes
a challenge. In this context, dealing with images is an
even more challenging task. The main reason is the
absence of explicit meaning associated with images,
hindering the retrieval of this kind of data through
conventional search queries.

A common approach for dealing with this sce-
nario involves annotating images with semantic tags
to allow searching and retrieving them (Hollink et al.,
2003). However, manual annotation is laborious and
not feasible in big data. Thus, automatic approaches
for image classification could be of great value for
automatically labeling images in this scenario (Wong
and Leung, 2008; Zhang et al., 2012), making possi-
ble a subsequent retrieval of this data through conven-
tional queries. Deep learning techniques are natural
candidates for automatically labeling large databases
of images.
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In the last decade, Convolutional Neural Networks
(CNN) (Krizhevsky et al., 2012; Szegedy et al., 2015;
Tan and Le, 2019) and, most recently, Vision Trans-
formers (ViTs) (Dosovitskiy et al., 2020) significantly
improved the performance on image classification
tasks. Researchers have been using these techniques
in several distinct domains (Sladojevic et al., 2016;
Dung et al., 2019; Abbas et al., 2021; Hong et al.,
2020). Despite these great results, sophisticated neu-
ral network architectures generally demand signifi-
cant amounts of training data to achieve great perfor-
mances (Zhu et al., 2021). Transfer learning (Torrey
and Shavlik, 2010) has emerged in this context as a
promising approach to deal with this problem (Liang
and Zheng, 2020; Horry et al., 2020), since these
approaches take advantage of the knowledge learned
from bigger amounts of data for dealing with tasks in
which only small data is available.

In general, when transfer learning is applied, im-
ages used for feeding the pre-trained neural networks
are standardized to match the input requirements of
the architectures (LeCun et al., 1998; Krizhevsky
et al., 2009). However, datasets of images with differ-
ent sizes and aspect ratios are very common in real-
world settings. Thus, this standardization process can
discard critical parts of the image or change its aspect
ratio, causing information loss or introducing noise.
Some approaches address these issues by applying,
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for instance, patch-based architectures (Anthimopou-
los et al., 2016; Araújo et al., 2017) or Fully Convo-
lutional Network (FCN) (Wang et al., 2021; Zhuang
et al., 2021). In this work, we investigate the hypoth-
esis that the aggregation of features extracted from
image patches by pre-trained models (called context
features) can better represent the global information
of the images. We also analyze whether combining
context features of different scales can improve the
classification quality in image datasets containing im-
ages of varying sizes representing relevant features in
different scales.

In the Petroleum Geology domain, which is the fo-
cus of this work, the datasets are generally reasonably
small, and the images commonly have heterogeneous
sizes and visual features that are apparent in different
scales. Thus, this paper focuses on presenting an ap-
proach based on multiscale context features for geo-
logical image classification that deals with such chal-
lenges. Our approach involves three steps: (i) firstly,
we extract context features in different scales of each
image using transfer learning from pre-trained mod-
els; (ii) next, we aggregate the context features of
each scale to generate a multiscale representation of
the image information; and (iii) finally, we use the
resulting multiscale context features that represents
each image as input for training a classifier.

We evaluated our method in a corporate dataset
of geological images, which is the main focus of this
work. Additionally, we also evaluated our approach
in a publicly available dataset, in order to promote
the reproducibility of our results and demonstrate our
approach’s capabilities to deal with images of other
domains. Both datasets include highly varied images
that challenge traditional approaches, including im-
ages with heterogeneous sizes and that present some
features in different scales. We measure our algo-
rithm’s performance using three different pre-trained
models as feature extractors: DenseNet (Huang et al.,
2017), ResNeXt (Xie et al., 2017)) and CLIP (Rad-
ford et al., 2021). We compare our method with
two well-established approaches for dealing with im-
ages of different sizes: (i) normalizing the image to
the architecture input requirements by resizing and
performing a center crop and (ii) applying a pre-
trained model for extracting the features of the whole
image without discarding information. Our exper-
iments suggest that the proposed approach outper-
forms both considered alternatives. Furthermore, our
work demonstrates that our approach achieves better
performance by using the CLIP pre-trained model as a
feature extractor. We also confirmed our results with a
public dataset (Krause et al., 2013), obtaining similar
results.

The remainder of this paper is structured as the
following. Section 2 presents the related work. We
detail our proposed approach in Section 3. Section 4
presents our experiments. Finally, Section 5 presents
the conclusions.

2 RELATED WORK

In general, sophisticated deep learning models have
a considerable number of trainable parameters, which
demand enormous amounts of training data to achieve
a good performance (Zhu et al., 2021). In contexts
focused on small datasets, it is a common approach
nowadays to apply Transfer Learning (TL) in several
tasks and domains (Torrey and Shavlik, 2010; Zhuang
et al., 2020), being widely used in image classifica-
tion (Kim et al., 2022; Celik et al., 2020). Convo-
lutional Neural Networks (CNN) such as ResNeXt
(Xie et al., 2017) and DenseNet (Huang et al., 2017)
have been achieving great performances when used
for transfer learning, both as being used as pre-trained
models for feature extraction, as well as for end-to-
end classification with fine-tuning (Abou Baker et al.,
2022; Varshni et al., 2019). In (Kieffer et al., 2017;
Mormont et al., 2018), the authors compare the per-
formance achieved with feature extraction and fine-
tuning for classifying histopathology images. The
experiments demonstrate that fine-tuning achieves
higher performance while feature extraction achieves
a good performance requiring fewer computational
resources for training. Our approach benefits from
using transfer learning for feature extraction, allow-
ing our approach to achieve better classification per-
formance in small datasets and to reduce the training
time.

Usually, in image classification tasks, images are
standardized to a homogeneous fixed size (LeCun
et al., 1998; Krizhevsky et al., 2009) for matching
the input requirements of the adopted neural network
architectures. For example, a common approach in-
volves resizing the smallest dimension of each image
to match the input dimensions of the model and, after
that, performing a center crop of the image, discard-
ing information. This process can result in the loss
of relevant information from the images or insertion
of noise in the dataset (Tayal et al., 2021; Han et al.,
2020; Li et al., 2021). On the other hand, in con-
trast to conventional CNN, some works (Wang et al.,
2021; Zhuang et al., 2021) adopt fully convolutional
networks (FCN), which do not require the input im-
ages to have a homogeneous size. As we will show
later, the datasets used in this work are highly het-
erogeneous in size. For this reason, we designed our
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approach to preserve as much information as possible
from the original image.

Some studies consider different spatial scales in
order to classify images. In (Mohan and Venkate-
san, 2020), for example, the authors propose using a
multiscale spatio-spectral feature-based hybrid CNN
model for hyperspectral image classification, which
adopts different window sizes in 3D convolution fil-
ters. In general, in these works, different scales are re-
lated to distinct, independent convolution layers with
various kernels later combined. In general, tasks in-
volving small training datasets can be challenging for
this kind of strategy.

In the medical field, where images tend to be large
and with scattered details (X-ray, CT images), several
works use patch-based approaches to consider all the
image information. These approaches split the im-
ages, so it is possible to analyze them by considering
their different patches (Anthimopoulos et al., 2016;
Araújo et al., 2017). To deal with CT images for clas-
sifying cases of COVID-19 and pneumonia, for ex-
ample, (Xu et al., 2020) use attention techniques to
select areas and use them as patches to perform clas-
sification only in essential areas. In (Barstugan et al.,
2020), the authors present an approach that prepro-
cesses the image (losing information) and splits it into
patches of different sizes, training just one classifier
with these different scales. An example presented in
(Chen et al., 2021) showed remarkable results using
multiscale patch sizes to train a vision transformer,
performing a fusion of features extracted at different
scales. Our approach differs from existing works be-
cause, in order to create the context features, we use
overlapping patches with a small stride while keeping
the image’s original aspect ratio, minimizing informa-
tion loss. Besides that, once each patch is extracted,
we apply transfer learning to extract features of each
patch and aggregate the resulting features for repre-
senting the whole image. This strategy makes our ap-
proach suitable for dealing with small datasets.

3 PROPOSED APPROACH

This section presents our approach. Firstly, we dis-
cuss our method for extracting the image’s context
features in detail. After, we discuss our technique for
generating a multiscale representation of images us-
ing multiscale context features.

3.1 Extracting Context Features

A challenging task when dealing with images of
varying sizes in deep learning models is to preserve

the image information while avoiding the inclusion
of distortions and simultaneously matching the in-
put requirements of the neural network architectures
adopted in the task. Our approach overcomes these
challenges by creating context features that represent
the global image information by aggregating features
extracted with pre-trained models of different parts
(patches) of the image. We represent this process in
Algorithm 1. Our algorithm takes as input the target
image I, a pre-trained model FE used as a feature ex-
tractor, the value N ∈ Z∗ that controls the scale of
analysis, and the stride S ∈ (0,1] of the sliding win-
dow, which is a percentage of the input size of FE.
The first step of the algorithm is resizing image I ac-
cording to the parameter N. We resize the image’s
smallest dimension to N times the input size of FE,
and we resize the other image dimension accordingly
so that the resulting image does not lose its original
aspect ratio. For example, if the input size of FE is
224× 224, by adopting N = 1, the image’s smallest
dimension would be 224 pixels after this resizing pro-
cess.

Algorithm 1: Extraction of context features.
Input: Image as I, pre-trained model as FE, the approach parameter as N

and the stride of the sliding window as S;
Output: A context features vector V ;
begin

W ←Width(I);
H← Height(I);
HJ← height input size of FE;
WJ← width input size of FE;
if H ≤W then

aspect←W/H;
NewH← HJ ∗N;
NewW ← NewH ∗aspect;

else
aspect← H/W ;
NewW ←WJ ∗N;
NewH← NewW ∗aspect;

I← I resized to NewHxNewW ;
P← patches extracted from I using S;
V ← vector of Z positions initialized with zeros;
for Pj in P do

F ← features of Pj , from FE;
V ←V +F ;

V ←V/|P|;
return V ;

After resizing the image, we use a sliding window
to extract the image’s patches. The window (whose
dimensions match the FE dimensions) slides through
the entire image according to the stride S. The ex-
tracted patches can overlap each other according to
the sliding window stride. For example, small val-
ues of S imply larger overlapping between patches,
reinforcing the image’s most prevalent features. For
each patch generated in the last step, the algorithm ex-
tracts its features with FE, taking advantage of trans-
fer learning. The algorithm feeds FE with a given
patch and uses the vector F with Z features generated
by FE as its representation. Once we extract the fea-
tures of all image patches, we calculate their average
to generate a single vector V of features (the context
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features) that represents the information of the entire
image. In the end, the algorithm outputs the vector V
of size Z, which is the output size of FE.

Notice that by keeping the original image’s aspect
ratio, the algorithm avoids the distortion of essential
domain features. Also, our approach is agnostic to the
feature extractor (FE) adopted in the process. Thus,
different pre-trained models can be used for different
contexts. Besides, our approach extracts patches from
the image as an intermediate step for obtaining the
local features related to specific parts of the image.
In the end, the algorithm outputs a single vector of
context features that may represent the whole image.
Since generating context features for representing im-
ages is performed as a preprocessing phase, our ap-
proach consumes less computational resources in the
training phase than approaches that use all individ-
ual patches as inputs for training the model. Finally,
since we generate context features by transfer learn-
ing from models that usually were pre-trained on big
datasets, our strategy can be a promising approach for
training classifiers with relatively small datasets.

3.2 Generating Multiscale Context
Features

In the second step, we use the Algorithm 1 to generate
context features of a given image I at multiple scales
by varying the values of N. Next, context features
of different scales are aggregated into a single vec-
tor by concatenation. Our approach assumes that the
resulting feature vector (multiscale context features)
represents the global information of a given image at
multiple scales. The multiscale context features ex-
tracted from a given image can then be used as the
input data for training a given arbitrary classifier.

We illustrate our overall approach in figure 1. In
this example, our approach generates multiscale con-
text features that integrate context features generated
by Algorithm 1 with N=1, N=2, and N=3. Notice that
these scales were considered just for the sake of the
example since our approach is flexible, allowing the
integration of more or fewer scales as needed.

It is crucial to notice that by changing the value
of N, the resulting patches focus on areas with dif-
ferent sizes relative to the image size. The larger the
N, the smaller the area of the image that a patch con-
tains. Then, given an image I, different values of N
can highlight different image patterns or the same pat-
tern at different scales in I. Thus, this strategy can be
a promising approach for dealing with sets of images
of very different sizes representing the same pattern
at different scales.

4 EXPERIMENTS

In this section, we discuss the experiments1 to eval-
uate our approach. Firstly, we describe the datasets
used in our experiments. Next, we explain the
methodology that we follow for performing the exper-
iments. Finally, we discuss our experimental results.

4.1 Datasets

As stated earlier this work is part of a project whose
goal is to develop an image retrieval system for the
petroleum industry. Due to this, we evaluate our ap-
proach with a dataset of geological images. It is im-
portant to notice that the dataset used in this project
was developed in cooperation with companies and
cannot be shared due to copyright issues. In order to
promote the reproducibility of our results and demon-
strate it can be applied to other domains we also eval-
uated the proposed approach with the Stanford Cars
dataset (Krause et al., 2013), which is publicly avail-
able.

In (Abel et al., 2019), the authors present an on-
tology for image classification in Petroleum Geol-
ogy containing 175 classes, including, for instance,
ternary diagram, satellite image, geological map, pro-
file, and geological cross-sections. Figure 2 presents
some examples of images from these classes. After,
a set of geological images was collected from geo-
logical reports and labeled by experts for some of the
classes specified by the ontology. The dataset con-
tains 25725 images distributed in 45 classes and is
unbalanced, with classes with only 36 images and
classes with 8450 images, with an average of 571.6
images per class and a standard deviation of 1290.9.
Figure 3 represents the distribution of images in each
class, emphasizing its unbalanced distribution. Be-
sides, the images in the dataset are significantly het-
erogeneous in size and visual features. The average
image area in the dataset is 1072336 pixels with a
standard deviation of 1861876. There are classes with
an average area smaller than half of the others, such
as, for example, the class aerial photograph, which
has 495539 pixels of average area, and the class refer-
ence map, which has 1095760 pixels of average area.
Also, for some images, one of the dimensions is much
larger than the other. We emphasize this high varia-
tion in Figure 4 and in Figure 5, which presents some
statistical properties regarding the image sizes and as-
pect ratios in this dataset. These aspects make this
dataset challenging for image classification.

1Our code is available at https://github.com/
BDI-UFRGS/ContextFeatures

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

410



C
lassifier

Feature E
xtractor 

(FE
)

Feature E
xtractor

(FE
)

Feature E
xtractor 

(FE
)

Output

Multiscale
Context 
Features

Concatenation

Context 
Features

(V)

Average

Patch Features
Resized Image with N = 3

Original Image (I)

PF1
PF2
…

PFA

PF1
PF2
…

PFB

PF1
PF2
…

PFC

 CF1   CF2     …     CFZ

  CF1   CF2    …     CFZ

  CF1   CF2    …     CFZ

 CF1   CF2     …    CFZ

 CF1   CF2     …    CFZ

 CF1   CF2     …    CFZ

Context 
Features

(V)

Context 
Features

(V)

Average

Patch Features

Patch Features

Resized Image with N = 2

Resized Image with N = 1

x

x

x

Average

Set of C Patches 

Set of B Patches 

Set of A Patches 

Figure 1: Example of our methodology for image classification with multiscale context features. Given an image, we apply
Algorithm 1 with different values of N (1,2 and 3, in this example) for generating context features. After, we concatenate the
context features of different scales into a single vector of multiscale context features. Finally, we use these features as input
for a classifier (in both the training and inference phases).

Figure 2: Examples of images illustrating some classes
of the ontology: (a)ternary diagram (Missio Júnior, 2014),
(b) satellite image (Ivanoff, 2013), (c) geological map (Ar-
ruzzo, 2016), (d) profile (Paiva, 2018) and (e) geological
cross-section (Silva, 2015).

The Stanford Cars dataset (Krause et al., 2013), on
the other hand, has a total of 16185 images distributed
in 196 classes. The average number of samples in
each class is 84 with a standard deviation of 6.28. The
samples range from 61 in the smallest class to 110 in
the biggest. Unlike the geological dataset, this one
is balanced but also heterogeneous regarding the size
and aspect ratio, as shown in Figure 6.

4.2 Methodology

In our experiments, we evaluate our approach for clas-
sifying images in both the datasets previously pre-
sented. Since our approach is agnostic regarding the
pre-trained model used as feature extractor, we ap-
plied it with three different pre-trained models2:

2We obtained the resNext-101 and DenseNet-121
pre-trained models from https://pytorch.org/vision/stable/

Figure 3: Representation of the number of instances for
each class of the dataset.

Figure 4: Boxplots representing the statistical properties of
the images in the dataset of Geological images, focusing on
their height, width, and aspect ratio (as Width/Height).

• ResNeXt-101 pre-trained on ImageNet. ResNeXt
(Xie et al., 2017) presents a remarkable perfor-
mance with fine-tuning (Abou Baker et al., 2022).

models.html, and the CLIP Vit-B/32 from https://github.
com/openai/CLIP
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Figure 5: Distribution images according to their dimen-
sions.

Figure 6: Representation of the statistical properties of
the images in the Stanford Cars dataset through box-
plots, focusing on their height, width, and aspect ratio (as
Width/Height).

• DenseNet-121 pre-trained on ImageNet.
DenseNet (Huang et al., 2017) presents a
good performance as a feature extractor (Varshni
et al., 2019).

• CLIP ViT-B/32 pre-trained in a dataset with 400
million images. CLIP (Radford et al., 2021) is a
transformer-based model that presents impressive
results in recent studies (Zhai et al., 2022).

We evaluated our approach’s capability to repre-
sent important features of the target images in differ-
ent basic scales and in multiscale settings. We ap-
plied Algorithm 1 for extracting context features (CF)
of every image in the target dataset, using the three
selected models as feature extractors in three differ-
ent basic scales, controlled by the parameter N. Thus,
we adopted N = 1, N = 2, and N = 3. By concatenat-
ing all possible combinations of the basic three scales,
we also transformed the images into their respective
representation in terms of multiscale context features
(MCF). In order to simplify the explanation, we will
adopt a notation in which we call N1 the context fea-
tures generated with N = 1, and N1+N2+N3 the mul-
tiscale context features constituted by the concatena-
tion of the context features generated with N = 1,
N = 2, and N = 3. The notations of other combina-
tions of scales follow this same pattern.

In our experiments, we adopted a 5-fold cross-

validation procedure. In each iteration, we consider
one fold as test set, and from the data of the remain-
ing folds, we use 10% as validation data and 90% as
training data. We adopt Adam optimizer with a learn-
ing rate of 0.001 and a limit of 100 epochs, applying
early stopping considering 5 epochs without a mini-
mal improvement of 0.001 in the cross-entropy loss
of the validation set. Notice also that the feature ex-
tractor is not fine-tuned in this process.

We use the following metrics to evaluate our ap-
proach: Top-1 Accuracy, Macro Precision, Weighted
Precision, Macro Recall, Weighted Recall, Macro F1,
and Weighted F1. These metrics provide a good eval-
uation of the results since they cover several evalua-
tion aspects in a multiclass classification setting. The
results reported in Tables 1, 2, and 3 are averages ob-
tained from the test set in the cross-validation proce-
dure. We performed the experiments on a desktop
with an Intel i7-10700 CPU and an NVIDIA RTX
3060 GPU. The code was implemented in python, us-
ing mainly the PyTorch library3.

In our first experiment, we tested different values
for the stride, which, as described in the Algorithm
1, defines how much the window slides in pixels as
a percentage of the feature extractor’s input size. We
tested four stride values: 100%, 50%, 10%, and 1%.
For evaluating our approach, we used the resulting CF
to train a simple classifier consisting of only an input
layer and a fully-connected layer (Dense layer) with
a linear activation function layer as output. Notice
that the images in the test set are also transformed
into context features or multiscale context features
and evaluated by the trained classifier. This experi-
ment was carried out on the dataset of geological im-
ages, focusing only on the three basic scales and using
just CLIP as a feature extractor. We opted to use CLIP
due to the amount of data used in its training, and its
reported performance.

Table 1 presents the results of the first experiment.
We achieved the best overall performance by adopting
1% of stride S. In general, lower stride values imply
higher macro and weighted F1 performance. This re-
sult suggests that by using lower values of stride, the
resulting context features emphasize the most impor-
tant features that represent the overall information of
the image.

We performed a second experiment in the geolog-
ical dataset (Table 2) and the Stanford Cars dataset
(Table 3), comparing our approach with three other
different families of approaches. In the first one,
we only use the feature extraction layers of the pre-
trained DenseNet, which contains only convolution
and pooling operations and can take input images of

3https://pytorch.org/
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Table 1: Experimental results using different stride values
for different scales. CLIP (Radford et al., 2021) was used
as a feature extractor and applied to the geological dataset.
We group the results according to the scale size (parameter
N) and for each scale.

Scale Stride Top-1 Accuracy
Macro Weighted

Precision Recall F1 Precision Recall F1

N1 100% 92.44% 85.24% 82.42% 82.57% 92.32% 92.44% 92.33%
N1 50% 92.29% 86.54% 80.72% 82.43% 92.28% 92.39% 92.15%
N1 10% 92.71% 86.96% 81.75% 83.48% 92.62% 92.71% 92.52%
N1 1% 92.93% 86.07% 83.47% 84.6% 92.84% 92.93% 92.85%

N2 100% 91.92% 84.17% 80.84% 82.20% 91.84% 91.92% 91.81%
N2 50% 91.68% 85.40% 78.04% 80.13% 91.59% 91.69% 91.36%
N2 10% 91.96% 85.76% 78.66% 80.73% 91.88% 91.96% 91.68%
N2 1% 92.57% 85.6% 82.39% 83.73% 92.51% 92.57% 92.48%

N3 100% 90.23% 80.96% 76.05% 77.92% 90.08% 90.23% 90.03%
N3 50% 90.86% 82.06% 77.39% 79.19% 90.74% 90.86% 90.69%
N3 10% 90.91% 82.15% 77.61% 79.33% 90.78% 90.01% 90.74%
N3 1% 90.94% 81.96% 78.07% 79.6% 90.83% 90.94% 90.79%

varying sizes. The only constraint of this model is
that the smallest image dimension should be greater
or equal to 224 pixels. Thus, in this case, the only
preprocessing involved was resizing (preserving the
aspect ratio) images that were smaller than the input
requirements of this model. We used the preprocessed
images as input for this model. Then we used the fea-
tures produced as the output of this model for training
the same simple classifier described in the first exper-
iment for evaluating our approach. Notice that in this
approach, we do not discard image information. Due
to this, we refer to this approach as lossless in Table 2
and Table 3. We also perform feature extraction with
this model over the images in the test set, and then,
the trained model evaluates the features.

For the other two families of approaches, we take
the Raw Image (RI), resize the smaller edge of the
image to the size of the architecture input, and per-
form a center crop. The first of these two approaches
uses the original image’s resulting fragment as input
for a pre-trained model used as a feature extractor.
We use the resulting features (simple features - SF)
for representing the image. In this case, we used the
same three pre-trained models adopted for generating
the context features in our approach. Notice that this
approach also uses transfer learning from the same
pre-trained models, but uses only the information of
an arbitrary (central) part of the original image. We
used the same simple classifier of the first experiment
to evaluate the approaches that use transfer learning,
taking the features extracted by the pre-trained mod-
els as input. The images in the test set are processed
the same way as the training images and then evalu-
ated by the trained model.

Finally, we also trained an end-to-end DenseNet
architecture without pre-training, using as input only
the fragments of the image resulting from resizing and
cropping (as previously discussed). We include this
method in our experiments to compare our approach

with the performance of a sophisticated architecture
without using transfer learning. In this method, the
model input is the raw image information, contrast-
ing with the other approaches that use input features
provided directly by a pre-trained feature extractor,
context features, or multiscale context features.

We refer to these last two families of approaches
that discard some image information as lossy in Table
2 and Table 3.

4.3 Results

We present our results in the dataset of geological im-
ages in Table 2 and the results obtained in the Cars
dataset in Table 3. Each experiment is organized in
a separate row, corresponding to a specific approach
discussed in our methodology section. We grouped
our results according to the input information of each
compared approach. In order to improve readabil-
ity, we also specify in the tables if the approach uses
transfer learning (TL column) and the metrics men-
tioned in the previous subsection. In the following
paragraphs, we will discuss the results of Table 2, re-
lated to the dataset of geological images. Macro F1
is the main metric used in the comparisons as it best
represents the effectiveness of the approaches in un-
balanced datasets.

Line 1 presents the performance of the DenseNet
model trained using only parts of the raw images
(lossy information) as input, without taking advan-
tage of transfer learning. This approach presents
the worst performance amongst the compared ap-
proaches, demonstrating that using transfer learning
significantly improved the results in this dataset. This
result was expected since the dataset is reasonably
small and contains a high variability regarding the vi-
sual features of each class.

In Line 2, we show the results of using features ex-
tracted by DenseNet, taking the whole image as input
(lossless information). The results obtained by this
approach are very similar to those of Line 4, which
also uses DenseNet. Notice that the approach of Line
4 discards some image information by cropping the
images after resizing them. Thus, according to the
results, resizing and cropping images produce a rea-
sonable representation of the information contained
in the whole image for this model. In Line 4, only
macro precision and Macro F1 are slightly superior
compared to the results of the approach in Line 2.

In Lines 3-5, CLIP results outperformed those
achieved using DenseNet and Resnext. These results
suggest that CLIP can produce more representative
features from the lossy information of the images ob-
tained after resizing and cropping operations.
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Table 2: Comparison of the metrics achieved by each experiment configuration in the geological dataset. Each row contains
a different configuration. We divided these setups in the table according to the input information (Column 4) and the use of
transfer learning (Column 3). In Column 4 RI (lossy) indicates the approach using the Raw Image as input with resize and
crop to 224x224 input size, and SF is the approach that uses the generated Simple Features as input. lossless indicates the use
of the original image information, with resizing only images with the smallest dimension small than 224 pixels, whereas lossy
indicates the use of the resizing and cropping in all images to the standard input size. Also, CF denotes Context Features and
MCF indicates Multiscale Context Features. The operator + indicates the concatenation of the features of different scales.

Row Model TL Input Information Top-1 Accuracy Macro Weighted
Precision Recall F1 Precision Recall F1

1 DenseNet × RI(lossy) 85.53% 72.44% 70.87% 71.32% 85.54% 85.53% 85.44%
2 DenseNet

√
SF(lossless) 90.23% 81.16% 78.08% 79.39% 90.11% 90.23% 90.1%

3 ResNeXt
√

SF(lossy) 87.77% 76.66% 72.77% 74.37% 87.45% 87.77% 87.53%
4 DenseNet

√
SF(lossy) 89.87% 81.73% 77.91% 79.45% 89.65% 89.87% 89.68%

5 CLIP √ SF(lossy) 92.86% 86.33% 83.16% 84.45% 92.74% 92.86% 92.74%
6 ResNeXt

√
CF(N1) 87.93% 76.68% 73.17% 74.61% 87.65% 87.93% 87.71%

7 DenseNet
√

CF(N1) 89.85% 80.88% 77.44% 78.86% 89.63% 89.85% 89.67%
8 CLIP √ CF(N1) 92.93% 86.07% 83.47% 84.6% 92.84% 92.93% 92.85%
9 ResNeXt

√
CF(N2) 88.72% 78.75% 74.06% 75.9% 88.46% 88.72% 88.5%

10 DenseNet
√

CF(N2) 90.06% 81.69% 77.2% 79.03% 89.91% 90.06% 89.9%
11 CLIP √ CF(N2) 92.57% 85.6% 82.39% 83.73% 92.51% 92.57% 92.48%
12 ResNeXt

√
CF(N3) 88.04% 77.62% 72.74% 74.66% 87.78% 88.04% 87.80%

13 DenseNet
√

CF(N3) 89.2% 79.85% 74.81% 76.81% 88.98% 89.2% 88.99%
14 CLIP √ CF(N3) 90.94% 81.96% 78.07% 79.6% 90.83% 90.94% 90.79%
15 ResNeXt

√
MCF(N1+N2) 89.68% 80.14% 76.33% 77.9% 89.43% 89.68% 89.49%

16 DenseNet
√

MCF(N1+N2) 91.08% 83.35% 79.65% 81.16% 90.92% 91.08% 90.94%
17 CLIP √ MCF(N1+N2) 93.69% 87.76% 85.01% 86.17% 93.64% 93.69% 93.62%
18 ResNeXt

√
MCF(N1+N3) 89.84% 80.07% 76.93% 78.28% 89.64% 89.84% 89.7%

19 DenseNet
√

MCF(N1+N3) 91.2% 82.94% 79.75% 81.12% 91.05% 91.2% 91.07%
20 CLIP √ MCF(N1+N3) 93.62% 87.36% 84.7% 85.85% 94.55% 93.62% 93.56%
21 ResNeXt

√
MCF(N2+N3) 89.31% 79.27% 75.66% 77.18% 89.10% 89.31% 89.14%

22 DenseNet
√

MCF(N2+N3) 90.43% 82,00% 77.86% 79.57% 90.26% 90.43% 90.28%
23 CLIP √ MCF(N2+N3) 92.57% 85.11% 82.47% 83.61% 92.5% 92.57% 92.49%
24 ResNeXt

√
MCF(N1+N2+N3) 90.10% 80.2% 77.28% 78.52% 89.95% 90.10% 89.98%

25 DenseNet
√

MCF(N1+N2+N3) 91.36% 83.83% 79.98% 81.57% 91.23% 91.36% 91.23%
26 CLIP √ MCF(N1+N2+N3) 93.74% 88.07% 85.25% 86.41% 93.73% 93.74% 93.69%

In the following discussion, we focus on analyz-
ing the performance of our approach. In this context,
we notice that context features generated in different
basic scales (in Lines 6-14) present promising results.
In general, for all pre-trained models considered in the
experiments, the results obtained from the scale with
N = 1 provide slightly better results in most of the
considered metrics when compared with the results in
Lines 3-5. An exception to this pattern is the case
of DenseNet, whose results are similar but generally
worse when using context features.

By comparing the results obtained in the three ba-
sic scales, we can notice that when adopting CLIP as
the feature extractor, in general, as the scale increases,
the performance decreases in most of the metrics.
However, this is not true in the case of Resnext and
DenseNet, which achieves better results at scale with
N = 2. We hypothesize that this difference results
from the differences in the training datasets used by
CLIP, DenseNet, and Resnext.

In Lines 15-23, we present the results using multi-
scale context features (MCF) generated from the con-
catenation of two basic scales. We can notice that
the approaches using MCF that combine the scales re-
sulting from N = 1 and N = 2 (Lines 15-17) achieve
better results in all metrics when compared to all the
previously discussed approaches. Notice that the re-

sults achieved by adopting the CLIP model are the
best ones in this context. The results in Line 17, ob-
tained using CLIP, surpass the other approaches pre-
sented in Lines 15-23. Besides that, by using Resnext
and DenseNet as feature extractors, we achieve the
best results considering scales of N = 1 and N = 3.
These results are intriguing since, by considering only
the context features of basic scales for these models,
we obtain the best results with the scale of N = 2.The
underlying reasons for this result should be investi-
gated in future works. Finally, for this dataset, the
approaches using MCF obtained from combining the
scales of N = 2 and N = 3 achieved the worst results.
For this dataset, the scale with N = 1 produces the
most informative features, complemented by context
features of the scales with N = 2 and N = 3 (depend-
ing on the pre-trained model used as feature extrac-
tor).

Finally, Lines 24-26 present the results obtained
from multiscale context features generated from the
concatenation of the three basic scales. For all consid-
ered pre-trained models, the performance obtained by
these approaches is superior to the performances of all
the other approaches using context features and multi-
scale context features. We can see this effect when we
compare each approach using a specific model along
the different scales and combinations. Also, the ap-
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Table 3: Achieved results in the Stanford Cars dataset. This table adopts the same notation adopted in Table 2.

Row Model TL Input Information Top-1 Accuracy Macro Weighted
Precision Recall F1 Precision Recall F1

1 ResNeXt × RI(lossy) 23.85% 25.44% 23.92% 23.93% 25.38% 23.85% 23.87%
2 DenseNet

√
SF(lossless) 57.94% 59.30% 57.90% 58.21% 59.08% 57.94% 58.12%

3 ResNeXt
√

SF(lossy) 47.61% 47.56% 47.67% 47.41% 47.37% 47.61% 47.29%
4 DenseNet

√
SF(lossy) 57.33% 57.59% 57.34% 57.25% 57.39% 57.33% 57.15%

5 CLIP √ SF(lossy) 83.29% 83.44% 83.20% 83.24% 83.44% 83.29% 83.29%
6 ResNeXt

√
CF(N1) 50.79% 50.72% 50.81% 50.57% 50.54% 50.79% 50.47%

7 DenseNet
√

CF(N1) 60.72% 60.90% 60.76% 60.62% 60.69% 60.72% 60.51%
8 CLIP √ CF(N1) 86.52% 86.66% 86.42% 86.48% 86.66% 86.52% 86.54%
9 ResNeXt

√
CF(N2) 50.43% 50.18% 50.36% 49.77% 50.02% 50.43% 49.73%

10 DenseNet
√

CF(N2) 59.21% 59.10% 59.15% 58.68% 59.02% 59.21% 58.68%
11 CLIP √ CF(N2) 70.03% 70.33% 69.93% 69.80% 70.23% 70.03% 69.80%
12 ResNeXt

√
CF(N3) 40.68% 39.88% 40.67% 39.28% 39.74% 40.68% 39.22%

13 DenseNet
√

CF(N3) 46.97% 46.57% 46.90% 45.93% 46.82% 46.97% 45.91%
14 CLIP √ CF(N3) 43.74% 43.60% 43.69% 42.37% 43.44% 43.74% 42.30%
15 ResNeXt

√
MCF(N1+N2) 60.28% 60.72% 60.26% 60.33% 60.53% 60.28% 60.25%

16 DenseNet
√

MCF(N1+N2) 70.23% 70.75% 70.19% 70.34% 70.59% 70.23% 70.29%
17 CLIP √ MCF(N1+N2) 87.27% 87.44% 87.18% 87.26% 87.45% 87.27% 87.31%
18 ResNeXt

√
MCF(N1+N3) 59.95% 59.27% 58.87% 58.88% 59.11% 58.95% 58.85%

19 DenseNet
√

MCF(N1+N3) 68.74% 69.27% 68.66% 68.82% 69.11% 68.74% 68.79%
20 CLIP √ MCF(N1+N3) 86.43% 86.58% 86.34% 86.40% 86.59% 86.43% 86.45%
21 ResNeXt

√
MCF(N2+N3) 56.56% 56.76% 56.49% 56.25% 86.62% 56.56% 56.22%

22 DenseNet
√

MCF(N2+N3) 64.95% 65.04% 64.88% 64.72% 64.98% 64.95% 64.73%
23 CLIP √ MCF(N2+N3) 70.92% 71.21% 70.82% 70.80% 71.13% 70.92% 70.81%
24 ResNeXt

√
MCF(N1+N2+N3) 63.43% 63.95% 63.36% 63.47% 63.81% 63.43% 63.44%

25 DenseNet
√

MCF(N1+N2+N3) 72.51% 73.07% 72.41% 72.60% 72.95% 72.51% 72.60%
26 CLIP √ MCF(N1+N2+N3) 86.71% 86.90% 86.61% 86.69% 86.90% 86.71% 86.74%

proach in Line 24, using Resnext, provides worse re-
sults when compared to those achieved by DenseNet
using lossless image information as input (Line 2).
However, this is different for the approaches in Lines
25-26, using DenseNet and CLIP, which achieve bet-
ter results. Finally, the results in Line 26, using pre-
trained CLIP as the feature extractor, achieve the best
results in the experiments.

In general, the pre-trained CLIP model allows our
approach to achieve the best results when compared
with the performance achieved by using DenseNet
and Resnext. Furthermore, by using context fea-
tures and multiscale context features, in general, we
achieve better results than conventional approaches
that use transfer learning (Lines 2-5). Finally, the
multiscale context features generated by considering
the three basic scales, in general, achieve better re-
sults, suggesting that multiscale context features can
represent the information of the whole image at differ-
ent scales, emphasizing different patterns or the same
pattern at different scales. Thus, these features pro-
vide different perspectives that can be exploited dur-
ing training, resulting in robust classifiers.

Next, we will discuss the results regarding the
Stanford Cars dataset, reported in Table 3. Gener-
ally, the results obtained in this dataset follow the
patterns observed in the dataset of geological images.
The performance achieved with scale N = 1 (Lines 6-
8) is better than the performance obtained with sim-
ple features (Lines 2-5) and the ResNeXt without
transfer learning (Line 1). The other scales do not
have the same performance, but, as in the geological

Figure 7: Performance (Macro F1) obtained on the geolog-
ical dataset using simple features extraction (SF) and the
proposed context features approach (CF and MCF).

dataset, the concatenation of multiple scales improves
the results (Lines 15-26). Also, we can notice that
CLIP achieves the best overall performance in this
dataset. However, a significant difference is that in
this dataset, the best performance was achieved us-
ing only two scales (Line 17). This difference only
appears when adopting CLIP, as both ResNeXt and
DenseNet have their best performance using three
scales (Lines 24 and 25).

The improvements obtained using our approach in
the Stanford cars dataset are more pronounced than
those observed in the geological dataset. By us-
ing ResNeXt, our approach achieves an improvement
of 16.06% of Macro F1, since the performance in-
creases from 47.41%, when using simple features,
to 63.47%, achieved by considering multiscale con-
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text features with three scales. With DenseNet, our
approach achieves an improvement of 15.35% of
Macro F1, since that by using simple features we
achieve 57.25%, and by using the three-scale MCF
we achieve 72.60%. By adopting CLIP as a feature
extractor, our approach achieves an improvement of
4.02% of Macro F1, increasing from 83.24%, when
adopting simple features, to 87.26%, when adopting
MCF with N = 1 and N = 2.

Figure 8: Performance (Macro F1) obtained on the Stanford
Cars dataset using simple features extraction (SF) and the
proposed context features approach (CF and MCF).

Figures 7 (geological dataset) and 8 (Stanford
Cars dataset) represent a visual comparison of the
Macro F1 achieved by the classifier, by using simple
features and by using context features and multiscale
context features. In both figures, it is possible to no-
tice that context features of single scales provide in-
teresting results, but by considering multiple feature
scales (MCF) the performance increases in a signifi-
cant way. The results reinforce that our approach is
effective in both datasets.

5 CONCLUSION

This work proposes an approach for geological image
classification based on context features. Our goal was
to improve the classification of these geological im-
ages into an image retrieval system for the petroleum
industry. Our methodology splits images into patches
of multiple scales and uses transfer learning to gen-
erate context features and multiscale context features.
Our approach’s goal is to represent the information
of the whole image, avoiding discarding crucial in-
formation. Our procedure represents a preprocessing
step for representing the images in the target dataset.
Even though fine-tuning is a powerful approach, our
methodology based on feature extraction presents a
satisfactory performance and promotes a light con-

sumption of computational resources during training
time, with the advantage of needing retraining only on
the classifier layers. It is also important to notice that
our methodology is agnostic regarding image sizes,
making it suitable for dealing with datasets that in-
clude images of varying sizes.

We evaluated our approach in a geological dataset,
which is the target of this project, and also in a public
dataset. We also compared our approach with con-
ventional approaches for image classification. Our
results show that the proposed approach can generate
representative features of the target images. Besides,
we concluded that our approach achieves the best
results using multiscale context features, surpassing
the performance of the alternative approaches consid-
ered in our experiments. The results also show that
our approach is suitable for dealing with relatively
small datasets by taking advantage of transfer learn-
ing from pre-trained models (used as feature extrac-
tors). Finally, by using the pre-trained CLIP model
for generating multiscale context features, our ap-
proach achieved the best overall results, outperform-
ing DenseNet and ResNeXt by a reasonable margin,
suggesting that this model can generate more repre-
sentative features in this experimental setting.

We plan to investigate how to improve the pro-
posed approach in future works. For example, we
hypothesize that by considering the informativeness
of each image patch into account, our approach can
generate even better context features. We also intend
to explore the relationships among the scales of anal-
ysis and their combinations; the pre-trained models
used as feature extractors, and the statistical proper-
ties of the target dataset. This analysis can provide
insights into why features produced by a given pre-
trained model produce better results when consider-
ing the combination of specific scales of analysis in a
given dataset.
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