
AI Marketplace: Serving Environment for AI Solutions Using
Kubernetes

Marc A. Riedlinger1, Ruslan Bernijazov2 and Fabian Hanke2

1Fraunhofer IOSB-INA, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Lemgo, Germany
2Fraunhofer IEM, Fraunhofer Institute for Mechatronic Systems Design, Paderborn, Germany

Keywords: Kubernetes, Service Mesh, Artificial Intelligence, Machine Learning, Cloud-Native.

Abstract: Recent advances in the field of artificial intelligence (AI) provide numerous potentials for industrial compa-
nies. However, the adoption of AI in practice is still left behind. One of the main reasons is a lack of knowledge
about possible AI application areas by industry experts. The AI Marketplace addresses this problem by pro-
viding a platform for the cooperation between industry experts and AI developers. An essential function of
this platform is a serving environment that allows AI developers to present their solution to industry experts.
The solutions are packaged in a uniform way and made accessible to all platform members via the serving
environment. In this paper, we present the conceptual design of this environment, its implementation using
Amazon Web Services, and illustrate its application on two exemplary use cases.

1 INTRODUCTION

Recent developments in the field of Machine Learn-
ing (ML) and related areas accelerate the adoption of
ML in business as well as consumer-facing solutions.
Established software companies start integrating ML
into existing solutions and new start-ups that focus on
specific artificial intelligence (AI) application areas
are being formed. Especially in knowledge-intensive
application areas, like product creation, utilization of
ML promises great potentials in terms of efficiency
gains and quality improvements (Dumitrescu et al.,
2021), (Schräder et al., 2022). The term product cre-
ation refers to the development process of technical
systems and consists of the four main cycles, namely,
strategic product planning, product development, ser-
vice development, and production system develop-
ment. Figure 1 visualizes the main steps of this pro-
cess based on (Gausemeier et al., 2019).

As of yet, the practical application of AI in prod-
uct creation is still a major hurdle for the industry
(Bernijazov et al., 2021). A key challenge for the
adoption of ML solutions by industry companies is to
build a common understanding of the capabilities of
ML-based software solutions. Industry practitioners
often lack the required ML expertise to assess how
their processes can be supported by ML-based sys-
tems, whereas ML experts lack the required domain
knowledge to identify suitable use cases for ML in

product creation.
The project AI Marketplace1 (AIM) addresses

these challenges by building a platform that facilitates
the collaboration between industrial companies with
AI experts and AI solution providers. One of the en-
visioned functionalities of the platform is a serving
environment that allows AI providers to demonstrate
their solutions to possible industrial customers by up-
loading a demo version to the platform. That way,
industrial customers can experience existing AI so-
lutions via a web-based user interface (UI) and get
in touch with the solution provider, if their business
might benefit from a similar solution.

The development of this serving environment re-
quires a standard format for the provisioning of AI
solutions together with an infrastructure for the de-
ployment and operation of the solutions. The stan-
dard must assure that all uploaded demonstrators can
be handled in a uniform way by the platform but also
be applicable to the majority of existing AI solutions
to minimize the additional development overhead for
solution providers. The infrastructure must be able to
operate the uploaded demonstrators, support the addi-
tion and removal of them, and ensure that they do not
interfere with each other. Moreover, the amount of
available demo apps is not defined a priori and is ex-
pected to grow as AI is being adopted more and more

1ki-marktplatz.com

Riedlinger, M., Bernijazov, R. and Hanke, F.
AI Marketplace: Serving Environment for AI Solutions Using Kubernetes.
DOI: 10.5220/0011980800003488
In Proceedings of the 13th International Conference on Cloud Computing and Services Science (CLOSER 2023), pages 269-276
ISBN: 978-989-758-650-7; ISSN: 2184-5042
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

269



From initial 
business
ideas...

...to start 
of series
production

Strategic Product 
Planning

Business Planning

Product 
Development

P
ro

d
u

c
t

C
o

nception Product
In

te
g

ra
ti

o
n

Design and

Elaboration

Service 
Development

P
o

te
nt

ia
l

Id
en

tif
ic

at
ion

Service

Integratio
n

Service Planning

Production System 
Development

Workflow Planning

P
ro

d
u

c
tio

n
S

ystem

In
te

g
ration

Productio
n

S
y

s
te

m

Conce
p

ti
o

nS
er

vi
ce

C
on

ce
ption

Produ
ct

Identificatio
n

Cross-Sectional Processes

Figure 1: Illustration of the 4-cycle model of product creation. Adapted from (Gausemeier et al., 2019).

by industry. Therefore, the platform must be able to
scale and handle increasing workloads in the future.

The present work explores the question of how
such a platform could look like from a technologi-
cal point of view. As a result, this paper contributes
a production-ready serving environment for web ap-
plications based on Kubernetes (Google, 2014) along
with a standardized packaging approach to facilitate
the deployment of apps onto the provided platform.

The remainder of the paper is organized as fol-
lows. First, the related work is analyzed in Section 2.
Next, the requirements towards the platform and the
hosted AI apps are defined in Section 3. Thereafter,
an implementation of the serving environment is out-
lined using a managed Kubernetes instance of Ama-
zon Web Services (AWS) and validated using two dif-
ferent use cases of varying complexity regarding host-
ing in Section 4. Finally, the topic is concluded with
an outlook about future work in Section 5.

2 RELATED WORK

In recent years, the adoption of AI solutions in small
and medium-sized enterprises (SMEs) has been ob-
structed by the lack of expertise in developing and
deploying ML models (Schauf and Neuburger, 2021),
(Salum and Abd Rozan, 2016). As companies in-
creasingly turn towards AI applications to support
their business processes, the pressure to keep up with
competition and meet customer demand has led to an
increase in complexity and shorter production times
(Kreuzberger et al., 2022), (Schauf and Neuburger,
2021), (Salum and Abd Rozan, 2016).

This section explores the current state of ML
in SMEs and the challenges they face, as well as
the potential solutions offered by machine learning
operations (MLOps) to overcome these challenges
(Kreuzberger et al., 2022). In contrast to usual
software development processes, the development of
ML solutions entails additional challenges. As high-
lighted by SCULLEY ET AL., there are specific ML-
specific risk factors that must be taken into account
in system design, such as boundary erosion, entangle-
ment, hidden feedback loops, undeclared consumers,

and data dependencies. Additionally, the software en-
gineering framework of technical debt applies to ML
systems as well (Sculley et al., 2015). ZHOU ET AL.
also noted that the deployment of ML solutions can
be challenging, especially when it comes to keeping
the development phase short and offering the product
to customers quickly (Zhou et al., 2020).

DevOps has seen increasing attention in recent
years as organizations aim to bridge the gap be-
tween software development (Dev) and operations
(Ops). MLOps is the consistent further development
of DevOps to address the ML-specific challenges that
DevOps does not meet. MLOps provides best prac-
tices, concepts, and the development culture needed
to effectively manage the end-to-end life cycle of ML
applications (Symeonidis et al., 2022). The emer-
gence of MLOps from the DevOps approach has high-
lighted the unique challenges posed by ML, such as
concerns around data complexity and model devel-
opment and training. As MLOps offers a solution to
these challenges, this led to the integration of MLOps
processes into development (Mäkinen et al., 2021).
ZHOU ET AL. present a functional ML platform built
with DevOps capabilities using existing continuous
integration (CI) and continuous delivery (CD) tools
together with Kubeflow (Zhou et al., 2020).

In recent years, there has been a shift in the ap-
proach to deploying applications, with the current
state of the art being the use of Docker (Merkel,
2014) containers along with a microservice archi-
tecture (Dragoni et al., 2016). On the one hand,
Docker provides a Platform-as-a-Service (PaaS) so-
lution via containers at the operating system level.
On the other hand, the microservice architecture aims
to combine small, self-contained units of system ele-
ments. When both concepts are combined, microser-
vices are deployed as individual containers in a net-
work, increasing the modularity of the system but also
the complexity of the deployment process (Richard-
son, 2018). KARABEY AKSAKALLI ET AL. identi-
fied several challenges related to the deployment of
microservices, such as architectural complexity and
fault tolerance. Besides, further challenges were iden-
tified related to the communication concerns of a mi-
croservice platform, e.g. service discovery, and load

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

270



balancing (Karabey Aksakalli et al., 2021).
Moreover, companies expressing growing inter-

est in cloud computing have identified its potential
benefits, as well as the challenges in deploying soft-
ware on Infrastructure-as-a-Service (IaaS) platforms
(Karabey Aksakalli et al., 2021). Cloud comput-
ing offers many benefits, such as on-demand use and
the ability to scale infrastructure according to needs.
However, deploying software on IaaS platforms can
be challenging and requires expertise in operations.
SMEs often lack the personnel to put these services
into operation (Schauf and Neuburger, 2021), (Salum
and Abd Rozan, 2016).

In addition to traditional DevOps and MLOps
tools, several specialized tools have been developed
specifically for managing ML models. Container or-
chestration tools are also playing a key role in de-
ploying scalable solutions. These technologies, in
combination with cloud computing environments, en-
able the full potential of microservices to be lever-
aged. Hereby, Kubernetes is one of the most widely
used open-source container orchestration platforms.
Developed by Google in 2014 and now operated by
the Cloud Native Computing Foundation (CNCF),
Kubernetes is designed to automate the deployment,
scaling, and management of containerized applica-
tions (Google, 2014). It is often used as the founda-
tion for building MLOps platforms and workflows. In
the following, multiple of these frameworks for serv-
ing AI solutions are presented.

KServe originated from Kubeflow and is now
a stand-alone Kubernetes-native model serving plat-
form. It allows for the deployment and management
of ML models and is designed to work seamlessly
with Kubernetes and other cloud-based technologies
to provide a complete MLOps solution (Kubeflow
Serving Working Group, 2021).

Seldon Core is another popular platform for de-
ploying and managing ML models on Kubernetes. It
provides a set of tools and frameworks for building,
deploying, and monitoring ML models in production
(Seldon Technologies Ltd., 2018).

BentoML is an open-source platform for deploy-
ing ML models to various serving platforms, in-
cluding Kubernetes. It provides a consistent inter-
face for packaging and deploying models, as well as
tools for monitoring and managing deployed models.
BentoML also facilitates the integration with other
MLOps tools and workflows (BentoML, 2019).

Overall, these tools provide a variety of options
for deploying and managing ML models on Kuber-
netes and other cloud-based platforms. They help to
automate many of the complex tasks associated with
MLOps and provide a more efficient and effective

way to manage ML models in production.
However, in contrast to the described frameworks

for providing AI solutions, the solution presented in
this paper aims at providing a generalized approach.
The presented frameworks, such as KServe, focus
on the deployment of ML models, but, generally-
speaking, an AI solution does not necessarily consist
of an ML model alone. With the generic approach
presented in this work, it is possible to deploy various
software components necessary for web-based AI so-
lutions. For instance, this could be a web-based front
end that is linked to an AI algorithm.

3 CONCEPT

The motivation for the present work is to design a
platform for the AIM that enables the hosting of an
undefined number of AI solutions. Hereby, these so-
lutions are created by AI authors and serve as demon-
strators that are publicly hosted on the platform.

On a conceptual level, the requirements towards
such a serving environment are addressed in the next
sub-section which is followed by the packaging ap-
proach that unifies hosting of AI applications.

3.1 Requirements and Implications

An AI solution can be everything from a mere ML
model with a web interface to a full-fledged web ap-
plication. Moreover, the serving environment shall
host an indefinite number of these solutions. There-
fore, the environment has to be hosted using a cloud-
provider offering this degree of elasticity. This way,
computing resources can automatically be added on-
demand which prevents manual scaling of the cluster.

As a result of being a cloud-deployment, the serv-
ing environment is designed in accordance with the
cloud-native principles as postulated by the CNCF
(CNCF, 2018b), such as observability, security and
loose coupling. Furthermore, to design a cloud-
platform with inherent interoperability, only open-
source components of the CNCF cloud-native land-
scape (CNCF, 2018a) are chosen. Additionally, a ser-
vice mesh using the open-source container orchestra-
tion system Kubernetes is considered to achieve an
observable and secure platform. Hereby, AI apps are
deployed as isolated microservices which results in a
decoupled architecture.

Besides, by choosing Kubernetes as orchestration
system, a certain level of independence from cloud-
providers is baked into the platform as additional ben-
efit. Moreover, the whole infrastructure of the serving

AI Marketplace: Serving Environment for AI Solutions Using Kubernetes

271



environment is laid out in code which facilitates its
automatic deployment.

Furthermore, the traffic between the user of an AI
service and the service itself has to be encrypted us-
ing transport layer security (TLS) to avoid potentially
sensitive data from being transmitted in plain text.
In addition to that, the communication between mi-
croservices inside the Kubernetes cluster shall also be
encrypted to maximize security.

3.2 Standardized Solution Packaging

The AI solutions must follow a standardized pack-
aging in order to be deployed on the serving envi-
ronment. Hereby, the requirements demanded by the
packaging process are designed to be only as restric-
tive as necessary to provide maximum freedom to the
AI developer. On the other hand, certain restrictions
have to be employed to achieve a unified deployment.

Since the AI applications are hosted on the cloud,
resources are expensive. Therefore, it is recom-
mended that apps should be as conservative as pos-
sible in terms of resource consumption. Furthermore,
efficient apps have a minimal latency on startup and
teardown which improves the scaling process and, in
the end, benefits the user experience.

Figure 2: Solution Packaging.

Figure 2 illustrates the standard format of how an
AI app has to be packaged so that it can be deployed
on the serving environment. First, the application and
its logic or AI model can be created with any language
and AI framework as long as a representational state
transfer (REST) application programming interface
(API) can be integrated. The REST API is a widely
used and platform-agnostic standard in web develop-
ment and therefore well suited as interface implemen-
tation. The API denotes the interface to talk to the AI
model beneath and provides all relevant functionali-
ties to work with it. Second, the AI application along
with the API are wrapped by a Docker image. This
image is responsible for storing all necessary depen-
dencies to run the solution once a container is instanti-
ated. Thereby, the Docker container must expose port
8080 that is used to consume external traffic which is
then routed to the application.

Another requirement to the AI application is that

it has to host a web page under its root path. This way,
a user accessing the app via the browser sees a visual
representation of what’s included in the solution. For
example, a web page displaying the OpenAPI speci-
fication (OpenAPI Initiative, 2011) of the REST API
along with the functionality to test each given end-
point is well-suited under the root path (see Fig. 6).

Lastly, the AI solution has to be stateless. There-
fore, no data should be aggregated within the applica-
tion. The rationale behind this restriction is two-fold.
On the one side, storage, i.e. a database, does not
scale similarly to other services since only one sin-
gle source of truth is allowed. Different concepts are
needed to accomplish scaling of storage in contrast to
scaling stateless apps. On the other side, the Docker
container could grow indefinitely which complicates
the scheduling on resource-bounded cloud resources.
This issue could be solved by providing a separate
storage service which manages the state of stateful AI
apps and scales on its own. However, in this paper,
the focus is on stateless applications and incorporat-
ing stateful apps is left for future work.

4 IMPLEMENTATION

The following section demonstrates the implementa-
tion of the serving environment using a managed Ku-
bernetes instance of AWS. First, the architectural de-
sign of the environment is provided. Next, the de-
ployment of two different use cases are discussed in
the follow-up sub-section.

4.1 Serving Environment Architecture

The serving environment is designed as microservice
architecture that is deployed onto a Kubernetes clus-
ter. Consequently, each AI application is deployed as
separate service which allows automated scaling of
these services only where it is needed. Hereby, Ku-
bernetes provides the heavy lifting of managing the
scaling of the individual services and the cluster as a
whole when further compute resources are needed.

A high-level overview of the architecture of the
serving environment including its main components
is given in Fig. 3. The Kubernetes cluster is di-
vided into two different node groups General and So-
lutions. Thereby, each node group is associated to
one instance type that defines the compute and storage
capabilities, processor type and operating system of
the underlying virtual machine (VM). Within a node
group, only nodes of the associated instance type can
be created. Kubernetes automates the scaling of node
groups whenever compute resources have to be added

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

272



Figure 3: Serving Environment Architecture.

or removed. The clear distinction between the two
node groups is achieved with Kubernetes taints, toler-
ations and affinities. These settings can be attached to
node groups and pods to avoid that pods are scheduled
in the wrong node group.

Node group General hosts general Kubernetes
pods (visualized as rectangles) that provide core func-
tionality, such as traffic routing, or extend the features
of the cluster, such as TLS, auto-scaling, and service
mesh capabilities. On the other hand, node group
Solutions only hosts AI pods and therefore needs a
more powerful VM type than General. If further node
groups are required to match different resource re-
quirements, they can be added to the cluster alongside
Solutions. By providing different node groups, AI au-
thors can select the group that best suits the needs
of their AI solutions. Additionally, only related AI
pods are hosted per node to avoid having underuti-
lized nodes after AI solutions are shut down.

The entry point of external traffic, e.g. a browser
or a script, into the cluster is denoted by the Ingress
resource sitting at the edge of the Kubernetes cluster
and defining the mapping between routes and corre-
sponding services. Each ingress resource is associ-
ated with an Ingress Controller that actually does the
traffic routing defined in the ingress resource. Hereby,
certain limiters such as rate limits or request size lim-
its can be employed in the controller to protect the
internal AI services from becoming exhausted.

The Cert Manager (Jetstack, 2017) pod is respon-
sible for generating a free certificate issued by Let’s
Encrypt and automatically keeping the certificate up-
to-date. For the serving environment, a wildcard cer-
tificate is utilized which allows TLS communication
not only for the main domain associated to the envi-
ronment, but also for sub-domains which are created

for each AI solution. As a result, the communication
between the calling party and the Ingress Controller
is encrypted and secure. Due to the usage of a wild-
card certificate, Cert Manager needs access to the do-
main name system (DNS) provider where the domain
is registered so the DNS challenge can be conducted.
This is needed by Let’s Encrypt to verify that the do-
main belongs to the party requesting the certificate.

The Cluster Autoscaler enables automatic scal-
ing of the node groups when there are not enough
compute resources for incoming workloads such as
freshly scheduled pods. Additionally, the Cluster
Autoscaler also terminates underutilized pods to im-
prove costs.

Linkerd (Buoyant, 2016) is a light-weight and fast
service mesh implementation. It improves the observ-
ability of a cluster by making the traffic between pods
visible. This is achieved by injecting sidecar prox-
ies into the respective pods. This meshing of pods is
exemplarily visualized for the ingress pod and an AI
pod in Fig. 4. Hereby, both containers do not directly
communicate with each other anymore, but via proxy
containers that gather traffic metrics alongside. By
using Linkerd, these performance metrics are stored
to the Prometheus database (SoundCloud, 2012) and
can also be visualized in the Linkerd dashboard.

Figure 4: Meshing of Pods according to Linkerd.

Furthermore, since TLS is terminated at the

AI Marketplace: Serving Environment for AI Solutions Using Kubernetes

273



Ingress Controller, the internal communication inside
the cluster takes place unsecured via the hypertext
transfer protocol. To remedy this security concern,
Linkerd provides mutual TLS for cluster-internal
communication. Thereby, the communication be-
tween two proxies (see Fig. 4) is bi-directionally en-
crypted adding an extra layer of security to the cluster
in case a node becomes compromised.

Kubernetes Event-driven Autoscaling (KEDA)
(Microsoft and Red Hat, 2019) extends the condi-
tions upon which auto-scaling of pods is triggered.
By default, the Kubernetes Horizontal Pod Autoscaler
(HPA) can only scale pods based on their memory or
CPU consumption. As a result, traffic-based scaling is
not possible without an extension like KEDA. Further-
more, HPA cannot scale down to zero pods. There-
fore, at least one replica of a pod must always remain
active even though it might not be needed. KEDA pro-
vides scaling down to zero and also scaling up from
zero maximizing cost efficiency.

Traffic-based scaling is realized by having the
Ingress Controller store request-related events to
Prometheus. Subsequently, each request to the sub-
domains, where the AI solutions are hosted, are stored
along with a timestamp. From there, KEDA can query
those metrics and decide about scaling. For example,
each AI pod that has not received any requests in the
past 30 minutes is removed. Since only related AI
pods are hosted per node, all pods are terminated and
consequently, the node is removed by the Cluster Au-
toscaler as well afterwards which optimizes costs. On
the other hand, KEDA detects requests regarding ter-
minated pods and re-schedules them accordingly.

The AI applications are hosted in the node group
Solutions. However, before a new AI app can be
hosted, it needs to be packaged according to the stan-
dardized solution packaging presented in Section 3.2.
After packaging, the AI app has to be uploaded to a
Container Registry the Kubernetes cluster has access
to. Next, the new AI service has to be added to the
cluster via a Kubernetes manifest. Finally, the Ingress
resource needs to be extended and re-applied to the
cluster to include the routing to the new AI service.

4.2 Use Cases

This section demonstrates two exemplary engineer-
ing apps of varying complexity that are hosted on the
serving environment presented in the last section.

On the one hand, this demonstrates the capabil-
ities of the serving environment but also serves as
guidance about how an actual AI application has to
be designed to be hosted on the platform.

4.2.1 Natural Language Processing

The first use case addresses the hosting of a natural
language processing (NLP) model. Such models are,
for example, often employed to analyze requirements
in the scope of strategic product planning and product
development. Possible applications are the classifica-
tion of existing requirements or the search for similar
requirements from prior projects. In our use case, the
Universal Sentence Encoder (USE) (Cer et al., 2018)
is utilized to compute embeddings of text. These em-
beddings can then, in a follow-up step, be used to
compute the similarity between two pieces of text.

Figure 5: USE Deployment.

Figure 5 illustrates how the USE web application
is designed in order to be hosted on the serving en-
vironment. For that, the TensorFlow (Abadi et al.,
2015) model of the USE is wrapped in a Python-based
REST API using the FastAPI library (Ramı́rez et al.,
2018). This API exposes two different endpoints, one
that expects a mere string input and another for taking
care of text files. In summary, these endpoints take the
input from the request, compute the embeddings and
return them to the caller.

Following the standardized packaging established
in Section 3.2, the whole application is packaged as
Docker image along with all necessary dependen-
cies for execution. Afterwards, the resulting im-
age is pushed to an AWS container registry acces-
sible by the serving environment. Once the image
is downloaded to the environment and executed, the
REST API is made available on a Uvicorn web server

Figure 6: USE Swagger UI.

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

274



(Christie et al., 2017) in the container that is hosted
within the scheduled Kubernetes pod.

FastAPI automatically generates a Swagger UI
from the specified REST API. This UI of the USE
web application is depicted in Fig. 6. Moreover,
the given endpoints can also directly be tested in the
browser using that web page facilitating quick testing.

Users can integrate this service in their apps by
calling the API functions and using the embeddings
e.g. for a similarity analysis. Also, this hides the com-
plexity of creating such a service from the user.

4.2.2 Intelligent Part Comparison

The intelligent part comparer is a tool with which
CAD models can be evaluated with respect to their
similarity. The evaluation is mainly based on the ge-
ometry of the models. This AI-based application in-
tends to relieve the challenges coming with the man-
agement of identical parts which is especially a con-
cern in companies that work in product development.

The web application consists of three compo-
nents, a JavaScript web UI the user can interact with
(see Fig. 8), a Python-based Flask server (Grinberg,
2018) that only exposes endpoints of the part com-
parer meant to be publicly available, and an ASP.NET
server (Microsoft, 2002) which provides the function-
ality to conduct the comparison of CAD models. Be-
sides, the ASP.NET server holds a static collection of
CAD models used to perform the comparison against.

Figure 7 illustrates how the components of the part
comparer are mapped to Kubernetes in order to be
hosted on the serving environment. Thereby, all ser-
vices are deployed on individual Kubernetes pods to
allow them to be scaled separately. Furthermore, each
service follows the standardized packaging presented
in Section 3.2 to facilitate the deployment and resides
as Docker image in an AWS container registry acces-
sible by the serving environment.

Figure 8: Intelligent Part Comparer UI.

Once a user opens the web link of the part com-
parer in the browser, it will be redirected to the web
UI service as depicted in Fig. 8. Then, the web page
is downloaded to the browser of the user and rendered
afterwards. Thereafter, the user can interact with the
web page by uploading a CAD file and pressing the
Compute Similarity button to receive a list of similar
CAD models. In the background, the web UI calls
functions exposed by the Flask server’s public REST
API. Finally, the Flask server calls the private compar-
ison function of the cluster-internal ASP.NET server
and returns the results back to the user’s browser.

5 CONCLUSION

Bringing AI applications into production is a chal-
lenging and costly task. In this paper, a serving envi-
ronment is outlined that can be used to host different
AI applications in a uniform way. It allows AI devel-
opers delivering their AI apps in a cost-effective way
and thereby increases the overall accessibility of AI.
The serving environment is implemented by utilizing
a managed Kubernetes instance of AWS and tested
with multiple AI applications. In future work, further
experiments are planned to gain a better understand-

Figure 7: Intelligent Part Comparer Deployment.

AI Marketplace: Serving Environment for AI Solutions Using Kubernetes

275



ing of the limitations of the approach (e.g. with re-
spect to scalability). Moreover, various functional im-
provements are to be done, like the integration of Ku-
bernetes StatefulSets to provide storage services and
the integration of role-based access control (RBAC)
for the applications. RBAC can be realized, for ex-
ample, using the identity and access management so-
lution Keycloak (Red Hat, 2014).

ACKNOWLEDGMENT

This work was supported by the research and devel-
opment project ”AI Marketplace” which is funded by
the Federal Ministry for Economic Affairs and Cli-
mate Action in Germany.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., et al.
(2015). TensorFlow: Large-scale machine learning on
heterogeneous systems.

BentoML (2019). BentoML. https://www.bentoml.com
(accessed 9 December 2022).

Bernijazov, R., Dicks, A., Dumitrescu, R., Foullois, M.,
Hanselle, J. M., Hüllermeier, E., Karakaya, G.,
Ködding, P., Lohweg, V., Malatyali, M., and et al.
(2021). A meta-review on artificial intelligence in
product creation. In Proceedings of the 30th Inter-
national Joint Conference on Artificial Intelligence.

Buoyant (2016). Linkerd. https://linkerd.io (accessed 28
November 2022).

Cer, D., Yang, Y., Kong, S.-y., Hua, N., et al. (2018). Uni-
versal sentence encoder.

Christie, T. et al. (2017). Uvicorn. https://www.uvicorn.org
(accessed 28 November 2022).

CNCF (2018a). Cloud Native Landscape. https://landscape.
cncf.io (accessed 28 November 2022).

CNCF (2018b). Trail Map. https://github.com/cncf/trail
map (accessed 28 November 2022).

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,
Montesi, F., Mustafin, R., and Safina, L. (2016). Mi-
croservices: yesterday, today, and tomorrow.

Dumitrescu, R., Riedel, O., Gausemeier, J., Albers, A., and
(Eds.), R. (2021). Engineering in germany – status
quo in business and science.

Gausemeier, J., Dumitrescu, R., Echterfeld, J., Pfänder, T.,
Steffen, D., and Thielemann, F. (2019). Innovationen
für die Märkte von morgen: Strategische Planung von
Produkten, Dienstleistungen und Geschäftsmodellen.
Hanser, München.

Google (2014). Kubernetes. https://kubernetes.io (accessed
28 November 2022).

Grinberg, M. (2018). Flask Web Development: Develop-
ing Web Applications with Python. O’Reilly Me-
dia, Inc.

Jetstack (2017). cert-manager. https://cert-manager.io (ac-
cessed 28 November 2022).

Karabey Aksakalli, I., Çelik, T., Can, A., and Tekinerdogan,
B. (2021). Deployment and communication patterns
in microservice architectures: A systematic literature
review. Journal of Systems and Software, 180.

Kreuzberger, D., Kühl, N., and Hirschl, S. (2022). Ma-
chine learning operations (mlops): Overview, defini-
tion, and architecture.

Kubeflow Serving Working Group (2021). KServe.
https://kserve.github.io/website (accessed 9 Decem-
ber 2022).

Mäkinen, S., Skogström, H., Laaksonen, E., and Mikkonen,
T. (2021). Who needs mlops: What data scientists
seek to accomplish and how can mlops help?

Merkel, D. (2014). Docker: lightweight linux containers for
consistent development and deployment. Linux Jour-
nal.

Microsoft (2002). ASP.NET. https://dotnet.microsoft.com/
en-us/apps/aspnet (accessed 9 January 2023).

Microsoft and Red Hat (2019). KEDA. https://keda.sh (ac-
cessed 28 November 2022).

OpenAPI Initiative (2011). OpenAPI. https://www.open
apis.org (accessed 28 November 2022).

Ramı́rez, S. et al. (2018). FastAPI. https://fastapi.tiangolo.
com (accessed 28 November 2022).

Red Hat (2014). Keycloak. https://www.keycloak.org (ac-
cessed 3 March 2023).

Richardson, C. (2018). Microservices Patterns: With exam-
ples in Java. Manning.

Salum, K. and Abd Rozan, M. Z. (2016). Exploring the
challenge impacted smes to adopt cloud erp. Indian
Journal of Science and Technology, 9.

Schauf, T. and Neuburger, R. (2021). Supplementarische
Informationen zum DiDaT Weißbuch, chapter 3.4
Cloudabhängigkeit von KMU. Nomos.

Schräder, E., Bernijazov, R., Foullois, M., Hillebrand, M.,
Kaiser, L., and Dumitrescu, R. (2022). Examples
of ai-based assistance systems in context of model-
based systems engineering. In 2022 IEEE Interna-
tional Symposium on Systems Engineering (ISSE).

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T.,
Ebner, D., Chaudhary, V., Young, M., and Dennison,
D. (2015). Hidden technical debt in machine learning
systems. NIPS.

Seldon Technologies Ltd. (2018). Seldon Core.
https://www.seldon.io/solutions/open-source-
projects/core (accessed 9 December 2022).

SoundCloud (2012). Prometheus. https://prometheus.io
(accessed 28 November 2022).

Symeonidis, G., Nerantzis, E., Kazakis, A., and Papakostas,
G. A. (2022). Mlops - definitions, tools and chal-
lenges. In 2022 IEEE 12th Annual Computing and
Communication Workshop and Conference (CCWC).

Zhou, Y., Yu, Y., and Ding, B. (2020). Towards mlops: A
case study of ml pipeline platform. In 2020 Interna-
tional Conference on Artificial Intelligence and Com-
puter Engineering (ICAICE). IEEE.

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

276


